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Abstract. In this paper we investigate several methods for producing smaller deci- 
sion trees by reducing fragmentation through the use of methods that lower the mean 
branching factor. All the methods considered achieve this goal by grouping the values 
that each attribute may take. We show how such grouping may be carried out by us- 
ing either top-down iterative splitting or bottom-up iterative merging. Such methods 
may be applied either globally at the onset of tree construction or locally whenever 
a new node is considered. We also compare two approaches to assessing the quality 
of such attribute value groupings: information gain ratio, as employed in C4.5, and 
a combination of X 2 and Cramer's V. The results of a comparative study of eight 
methods show that a top-down global method, using X 2 and Cramer's V, produces 
consistently smaller tree sizes without loss of accuracy or computation time. These 
findings may be of considerable practical importance in data mining since it is widely 
recognised that smaller trees are much easier to understand. 

1 Introduction 

Decision tree induction ([1],[13]) has become firmly established as one of the most widely used 
data-mining techniques. Unfortunately experience with real world data sets has shown that 
existing methods may construct very large decision trees, that may be of limited practical 
utility. Any method for reducing the size of decision trees without sacrificing classification 
accuracy would be of considerable practical importance in mining large real world data sets. 

In this paper we introduce and compare a number of techniques for restricting the size 
of decision trees by reducing their average branching factors. We begin, in Section 2, with a 
review of the origins of over-complexity in decision trees and existing methods for simplifying 
them. In particular we examine the problem of unnecessary fragmentation of the sample 
space that arises through forming distinct subtrees for every value of a nominal attribute. In 
the following section we examine several different approaches to grouping attribute values to 
reduce such fragmentation. Section 4 presents a series of experimental comparisons of eight 
alternative methods for grouping the values of nominal attributes. Seven of these are novel, 
while the eighth is the method provided as an option in C4.5 [13]. We conclude that a top- 
down global method is the most effective technique for reducing fragmentation in decision 
trees. 

2 C o n t r o l l i n g  D e c i s i o n  T r e e  S i z e  

One important advantage of using decision tree techniques is that this form of classification 
fimction can be easily understood, provided that the tree produced is reasonably small. In 
recent years, because of the rapidly rising interest in data mining, these techniques have 
been used with ever larger sets of training data. Unfortunately large training sets may lead 
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to large decision trees containing many thousands of nodes. Oates and Jensen [11] have 
presented evidence that tree size often increases linearly with training set size. Large trees 
may prove excellent classifiers but they are so difficult to comprehend that they provide 
little useable information about the patterns that exist in the data. Developing methods of 
producing smaller decision trees without sacrificing classification accuracy is therefore an 
important resear(:h l)roblem whose solution will have wldcsl)read practical al)l)lication, 

Tim size of a decision tree, defined as the number of nodes it contains, will depend on 
both the maximum depth and the mean branching factor of its nodes. It follows that if we 
are to develop decision tree construction techniques that produce smaller trees we must use 
one or both of two possible approaches: 

1. Restrict the maximum depth of the tree and its subtrees. 
2. Restrict the branching factor of the non-terminal nodes. 

Each of these approaches could be applied either a priori or a postcriori. An a priori re- 
striction is applied to constrain or eliminate a portion of the tree before it has been built, 
whereas an a posteriori restriction is used to remove a portion of the tree that has already 
been constructed. Depth restriction is often known as pruning. 

2.1 Overf l t t ing and  P r u n i n g  

One important cause of excessive decision tree size is overfitting. It manifests itself in decision 
tree construction as excessively deep trees. It can be limited by restricting the depth to which 
the tree is allowed to grow, but the use of stopping criterion, sometimes called pre-pruning, 
may be ineffective in detecting when the procedure has begun to model characteristics 
peculiar to the sample [4]. Consequently the majority of researchers (e.g. [13]) favour some 
form of post-pruning in which apparently useless subtrees are removed from a complete 
decision tree. Breslow and Aha [2] have provided a comprehensive review of a wide range of 
pruning techniques. 

In principle therefore, effective pruning is a technique for reducing tree size, without 
sacrificing classification accuracy, by eliminating those parts of the original tree that arise 
through overfitting. In practice, pruning is used extensively even at a small cost in accuracy 
because of the greater accessibility of smaller trees. 

2,2 F ragmen ta t ion  and A t t r i bu t e  Value Group ing  

Overfitting leads to decision trees that are too deep. In contrast, a fragmentation occurs 
when a decision tree is too broad: that is, when nodes have more branches than would be 
necessary to produce the best possible classification accuracy. The following simple example 
shows how fragmentation is likely to arise frequently with the majority of decision tree 
construction procedures. 

Suppose a decision tree program attempts to build a tree to recognise some class, C, 
using a training set made up of feature vectors of nominal attributes A1,A2, ..Ak. Suppose 
also that the class C is in fact defined thus: 

C = V2,~ A (V5,2 v Ys,4) A Ys,s 

where V~,j denotes that attribute Ai takes its j th  value. When a typical decision tree program 
selects an attribute to construct a new node it will create a separate branch for each of the 
possible values for that attribute. Thus, assuming as an example that each attribute has four 
possible values, if the program selects attributes in the order As, A2, A8 it will construct a 
tree like that shown on the left of Figure 1. The entire subtree associated with V5,2 is repeated 
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V,~,t �9 �9 �9 NO 
V5,2 

Vs, t �9 -. NO 
V8,2 �9 �9 �9 NO 
Vs.3 �9 �9 �9 YES 
V 8 , 4  ' ' " NO 

V~,2 ...  NO 
V2,3 �9 �9 NO 
V2,4 �9 �9 NO 

V5.3... NO 
V~,4 

V2,L 
Vs,I . "  NO 
Vsa ' "  NO 
Vs,3 �9 �9 �9 YES 
Vs,4 �9 ' �9 NO 

112,2... NO 
V2,3"" NO 
V2,4 �9 �9 �9 NO 

Vs,t or Vs,s". NO 
V~,2 or V~,4 

V2,1 
V8,1 or Vs,2 or Vs,4"" NO 
Vs,s �9 �9 �9 YES 

V2,2 or V2,s or V2,4'" NO 

Fig. 1. Alternative decision trees for an example discussed in the text. Left: Without attribute value 
grouping. Right: With attribute value grouping 

in node V5,4. This immediately suggests that  a much simpler tree could be constructed if 
the values of attributes could be grouped and then branches created for each group of values 
rather than for each value. Such a tree is shown on the right of Figure 1, 

It  is immediately obvious both that the tree without attribute value grouping is consid- 
erably larger and exhibits significant fragmentation in that  it partitions the example space 
into 16 regions. In contrast the tree incorporating attr ibute grouping would produce identical 
classifications but only divides the example space into 4 regions. Clearly such fragmentation 
can have a major effect on tree size. In addition it may impair the classification accuracy of 
the resultant decision tree because the set of training examples must be distributed across 
more subtrees and hence will provide proportionally less reliable evidence for each. 

Pruning will not help to solve this problem: removing any part of the larger tree will 
seriously affect its classification accuracy. The obvious remedy would be for the program to 
consider all possible groupings of an attribute's values when searching for the best attribute 
for a new node, and hence avoid producing more branches than necessary. Unfortunately 
tile number of possible groupings rises very rapidly with the number of vahms an attribute 
can take, and hence exhmtstive consideration of all groupings is often infeasible. 

One solution to this difficulty is to restrict the number of groups. The original CLS 
progranl [8] always divided the attribute values into two groups; one containing only the 
best value and the other containing all the rest. Both CART [1] and Assistant-86 [3] also 
produce binary trees but permit several values in each group. Fayyad and Irani [6] have 
l)roduced evidence that  such binary groupings are likely to lead to smaller trees than k- 
way trees, but  Kononenko [10] has produced a counter example to the stronger version of 
this hypothesis. Quinlan has adopted a different approach in C4.5 [13]. If the - s  option is 
selected then the program will search for the best grouping of an attr ibute 's  values using 
a form of agglomerative hierarchical clustering [5]. Such methods are essentially bottom-up 
hill-climbing procedures in which groups are repeatedly merged. C4.5 continues the process 
until any further merging would lead to significant degradation of gain ratio. 
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3 A p p r o a c h e s  t o  A t t r i b u t e  V a l u e  G r o u p i n g  

The development of attribute value grouping procedures to combat fragmentation appears 
to have attracted much less interest than the problem of devising pruning methods to com- 
bat overfitting. There is therefore considerable scope for research work whose goal is to 
develop alternative grouping procedures and establish how effective they are in decision tree 
construction. 

3.1 Local or Global  Groupings  

All of the methods referred to in the previous section perform attribute grouping locally. 
They search for the best groupings of each attribute's values every time they select the best 
attribute for a proposed new node. Although such local groupings can be more finely tuned 
to the local region of the example space, this approach suffers from two disadvantages: it 
is potentially costly since the grouping operation is performed many times, and many of 
the groupings will be based on small samples and hence may not reflect the characteristics 
of the parent population. We therefore decided to investigate the possibility of developing 
procedures that carried out attribute value grouping globally. Such procedures partition each 
attribute's values once only, before tree construction begins, using the entire training sample. 

Those methods that form only two groups of attribute values are not suitable for global 
grouping, since they would not be able to form three or more groups under any circumstances. 
This problem does not arise when they are applied locally since the same attribute may be 
subject to several successive groupings. Our investigations have therefore concentrated on 
methods that can partition a k-valued attribute into any number up to k groups. 

3.2 Bot tom-Ui)  or Top-Down Grouping  

As we noted above, C4.5 includes an option that evokes attribute value grouping using a 
hill-climbing bottom-up method applied locally. This suggests the possibility of a top-down 
approach that carries out repeated splitting. One such procedure would operate as follows: 

1. Create an m • n table, where m is the number of class labels and n is the number of 
possible values of the attribute. Let cell[i, j] of the table contain the number of training 
examples in class i that had the j th  attribute value. 

2. Identify the modal class for each column and form groups of columns that share the 
same modal class. There will be at most m such column groups. 

3. Apply binary splitting repeatedly to each of these column groups until a point is reached 
at, which either no more sl)litting is possil)le or no split satisfies some criterion flmction 
(discussed below). 

3.3 Group Formation Criteria 

Top down methods require a criterion to determine whether splitting a group is worthwhile; 
bottom-up methods need one to decide whether a pair of groups should be merged. In either 
case we require a function which will allow us to compare the quality of the representation 
with and without a particular grouping transformation. 

The - s  option of C4.5 [13] uses the information gain ratio both to select the best grouping 
and to determine the point at which merging should stop. In earlier work, Quinlan [12] 
experimented with X 2 as a stopping criterion for tree construction but abandoned it because 
of uneven results. We have had similar experiences using X 2 as a grouping criterion: we 
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encountered difficulties in setting thresholds that were appropriate for both large and small 
sets of training data. 

This difficulty is not particularly surprising. The X ~ test measures the statistical signifi- 
cance of an association between two variables, not its strength. Even the weakest association 
will appear significant in a large enough data set. We therefore experimented with Cramer's 
V, a standard statistical measure of the strength of association between two nominal vari- 
ables [7], defined as: 

Cramer'sV = N(L  - 1) (1) 

where L is the smaller of the number of rows and columns in 2-way table plotting values of 
one variable against those of the other.  

Our initial experiments with Cramer's V also led to uneven results. This again is un- 
surprising. Cramer's V tells us whether a relationship is weak or strong if present but  not 
whether there is sufficient evidence to conclude it exists. We therefore decided to use a crite- 
rion based on both X 2 and Cramer's V: the former establishes that an apparent association 
exists while the latter determines if it is strong enough to be of any interest. As the results 
reported below show, this combination proved very satisfactory when we used a threshold 
of p = 0.01 for the X 2 test, and 0.1 for Cramer's V. 

I] ll)~ta S~t, 
ad adult 
b5 bhps5000 10265 
b8 bhps8000 10265 
sm bhpssmoker 10265 
bc breast-cancer 286 
bs balance-scMe 625 
dna] DNA-nomlnal 3186 
sp splice 3190 
car car 1728 
nur nursery 12961 
soy soybean-large 683 

Ic...~.lCl.~...., 12 ]314-~16-,o111-=o1> 2011 
32562 2 2 1 1  1 5 3 1 

2 3 15 16 59 17 O 
2 3 16 16 58 17 0 
2 6 17 13 57 17 0 
2 3 2 0 2 2 0 
3 0 0 4 0 0 0 
3 0 O6O 0 0 0 
3 0 0 0 60 0 0 
4 0 3 3 0 0 0 
5 1 4 3 0 0 0 
19 15 14 5 1 0 0 

Table  1. Characteristics of the data sets used in evaluations. The columns labelled with numbers 
indicate tile number of values the nominal attributes could take. 

3.4 E i g h t  P r o c e d u r e s  for G r o u p i n g  A t t r i b u t e  Values  

In this section we have seen that grouping procedures can be used locally or globally, can 
use a top-down or bottom-up strategy, and can employ either information gain ratio or X 2 
plus Cramer 's  V as the grouping criterion. Taken together the various combinations define 
eight distinct methods for attribute grouping. We will use a simple notation to name these 
in which TD-CC-G denotes a globally applied top-down method using X 2 plus Cramer's V 
a~ its grouping criterion, while BU-IG-L denotes a locally applied bottom-up method using 
information gain ratio as grouping criterion. 

4 A n  E x p e r i m e n t a l  C o m p a r i s o n  

In order to compare all eight attribute value grouping procedures we compared their per- 
formance on eleven data  sets. Eight of these are well known and were taken from the UCI 
Repository. Because we wanted to investigate how the grouping procedures would perform 
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using data sets that had a large number of nominal attributes, we created three more data 
sets using data from the 1991 wave of BHPS t , a large social science survey carried out 
annually in the UK. In b5 mid b8 the variable to be predicted is income below 5K and below 
8K respectively; in s m  it indicates whether or not the respondent smokes. All continuous 
attributes are pre-discretized into categorical groups, therefore, all procedures receive the 
data as nominal (or discretized) attributes. 

We used  C4.5 (Release  8 [13],[14]) w i t h o u t  t he  - s  a t t r i b u t e  g r o u p i n g  op t i on  to  provide  
a control ,  while  s e t t i n g  t h e  - s  flag provided  t h e  B U - I G - L  m e t h o d .  T h e  r e m a i n i n g  seven  
m e t h o d s  were i m p l e m e n t e d  by m o d i f y i n g  t he  C4.5 code  wi th  different  g r o u p i n g  p rocedures .  
T h e  code  to  r u n  t h e  e x p e r i m e n t s  a n d  t he  gene ra t i on  of  t r a i n ing  a n d  t e s t  d a t a s e t s  were t a k e n  
f rom the  M L C + +  l ib ra ry  [9]. 

Tab le  2 shows  t h e  m e a n  class i f icat ion accurac ies  ob ta ined  for all n ine  p r o g r a m s  w i th  each  
d a t a  set ,  while Tab le  3 shows  t he  m e a n  size of  t he  t r ees  cons t ruc t ed .  L i m i t a t i o n s  of  space  

(;4.5 
k-way 

accuracy 

ad 86.02 4- 0.33 
b5 83.51 4- 0.31 
b8 85.06 4- 0.38 
sm 72.60 4- 0.47 
bc 71.00 + 2.25 
bs 65.12 4. 0.60 
dna 93.72 4- 0.72 
sp 93.95 4. 0.34 
car 90.34 4- 0.31 
nur 96.45 4. 0.18 

BU-IG-L 
accuracy Iratio 

86.24 4- 0.22 
~0.87 4- 0.46 
82.53 4- 0.27 
57.63 4- 0.48 

i68.20 4. 2.38 
76.80 4. 1.36 
93.70 4. 0.91 
93.92 4- 0.34 
97.05 4. 0.49 
99.41 4. 0.05 

Local 
BU-CC-L 

accuracy Jratio 
TD-IG-L 

accuracy [ratio 

~3.08 4- 0.56 0.97 
79.13 4-0.52 0.95 
77.94 4- 3.6(] 0.92 
57.88 4- 1.74 0.93 
55.75 4- 2.92 0.93 
59.28 4- 3.0(] 1.06 
93.44 4- 0.58 1.00 
94.20 4. 0.55 1.00 
90.05 4- 2.65 1.00 
90.17 4. 2.13 0.93 

1.00 
0.99 
0.98 
0.99 
1.00 
1.00 
0.99 
1.00 

1.00 ~6.18 4- 0.29 
0.97 82.38 4- 0.35 
0.97 83.60 4. 0.69 
0.93 71.96 4- 0.44 
0.96 70.65 4- 2.83 
1.18 65.12 4- 0.6(] 
1.00 92.72 4- 0.91 
1.00 94.01 4- 0.06! 
1.07 
1.03 

95.78 4. 0 .491.06 
99.54 • 0 .071.03 

TD-CC-L 
accuracy Iratiol 

82.90 4- 0.53 0.96 
81.39 4- 0.16 0 .97  
83.11 4-0.58 0.98 
71.64 4- 0.25 0.99 
71.00 4- 2.91 1.00 
77.92 4- 1.18 1.20 
93.75 -4- 0.56 1.00 
9333 4- 0.24 1.00 
95.25 4- 0.40 1.05 
98.07 4- 0.10 1.02 

soy 88.28 4" 1.98 

[lave [I 84.19 

C4.5 

] ad 

W 

k-way 
accuracy 

8917 4. 1.17 1.01 89.46 �9 1.55 l.Ol  2.13 + 2.50 093  916 4.1.39 1.01 

85.o5 It011 84.67 I loo l  81.19 1097l 85.27 11.021l 

186.02 4- 0.33l 81.64 4- 0.81 
b5 83.51 4-0.31!83.024-0.30 
b8 85.06 4- 0.38 68.50 4- 4.28 
sm 72.60 4- 0.47 72.31 4- 0.17 
hc 71.00 4- 2.25 72.04 4- 1.76 
bs 65.12 4- 0.60 67.36 4- 1.88 
dna 93.72 4- 0.72 94.22 4- 0.55 
sp 93.95 4- 0.34 93.92 4-0.34 
car 90.34 4- 0.31 85.82 4- 0.42 
nur 90.45 4- 0.18 86.92 4-0.17 
soy 88.28 4- 1.98 

84.19 

Global 
BU-IG-C BU-CC-G TD-IG-G TD-CC-G 

accuracy Iratio accuracy Iratio accuracy Iratic accuracy Iratio 
0.95 86.08 4- 0.32 1.00 84.08 4- 0.28 0.98 85.32 4- 0.30 0.99 
0.99 82.37 4-0.36 0.99 77.60 4-1.76 0.93 83.42 4-0.22 1.00 
0.81 83.60 4- 0.69 0.98 79.60 4- 0.42 0.94 84.68 4- 0.76 1.00 
1.00 71.96 4- 0.44 0.99 69.93 4-0.66 0.96 73.89 4- 0.36 1.02 
1.01 71.34 4. 2.65 1.00 72.75 4- 2.43 1.02 70.29 4- 1.79 0.99 
1.03 i8.32 4- 1.80 1.05 74.24 4- 2.01 1.14 77.76 4- 2.11 1.19 
1.01 )4.38 4- 0.36 1.01 93.88 4- 0.58 1.00 94.54 4- 0.60 1.01 
1.00 94.04 4- 0.37 1.00 }3.67 4- 0.51 1.00 94.80 4- 0.35 1.01 
0.95 94.44 4- 0.77 1.05 87.10 4- 1.71 0.96 92.42 4- 0.89 1.02 
0.90 97.64 4- 0.12 1.01 92.32 4- 0.30 0.96 97.90 4- 0.12 1.02 

89.90 4- 1.42 1.02 88.28 4- 1.98 1.00 88.72 4- 1.90 1.00 88.87 4- 2.06 1.01 

81.42 [0.97] 84.77 t1.01J 83.08 [0.991 85.81 [1.02 H 

T a b l e  2. Classification accuracies of decision trees produced using alternative methods  for grouping 
a t t r ibu te  values. The  columns labelled a c c u r a c y  are the mean and s tandard  deviation for 5 cross- 
validation runs. The  columns labelled r a t i o  are the  ratio of tile respective accuracies over the  control, 
k - w a y  method.  

preclude the inclusion of timing data, but as might be expected, the local methods were 
genera l ly  slower. 

I BLIPS da ta  may be obtained from Data  Archive, University of Essex, Colchester, CO4 3SQ, UK. 
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5 D i s c u s s i o n  

As can be seen, the four local methods were not consistently more accurate than the control, 
k - w a y ,  but three of the four global methods were generally less accurate. The exception 
was TD-CC-G whose accuracy was very close to that  of the control for all data  sets except 
bs for which it performed significantly better.  On the other hand the global methods usually 
produced considerably smaller trees than either local methods or the control. Indeed in three 
of the four cases they appeared to be grouping too much with a consequent loss of accuracy. 

C4.5 Local 
k-way BU-IG-L BU-CC-L TD-IG-L 
nodes nodes ]ratio nodes ]ratio nodes ]ratio nodes 

ad 5484-49 7064-12 1.29 5534.20 1,01 1124-22 0.20 994-17 
I)5 1051 4-49 12044-48 1.15 11334- 1,'17 1.08 9494-60 0.90 8'494-33 
b8 789-4-69 11444-2fi ],45 11234-20 1.42 5424-270 0.69 8504-5(] 
s,n 17904-7322944-67 1.28 19684-199 1.10 6764-115 0.38 9964-25 
bc 114-4 294-5 2 .64  224-3 2 . 0 0  27=t=5 2 .45 244-2 
bs 35 4-2 63 4-4 1 .80  834-8 2.37 55 4-7 1,57 63q'4 
dna 162 4-4 121 4-1 0.75 153 4-4 0 .94  145 -4-9 0.90 139 4-6 
sp 314 4-5 170 4-4 0.54 189 4- 10 0.60 152 4-3 0.48 1184-3 
car 152 4-2 103 4-3 0.68 103 4-1 0.68 84 4-5 0.55 70 4-2 
nur 466 4-11 310 4-4 0.67 291 4-1 0.62 241 4- 17 0.52 207 4-3 
soy 86 4- 1 89 4- 4 1.03 98 4- 3 1.14 

TD-CC-L 
[ratie 
0.18 
0.81 
1.08 

90 4-3 1.05 81 4-1 0.94 

0.56 
2.18 
1.80 
0.86 
0.38 
0.46 ! 
0.44 

Uavell n91 I 567 11.211 520 11.181 279 t0.881 318 108811 
C4.5 Global 
k-way I]U-IG-G I]U-CC-G J Tl)-lG-O 'rD-CC-G 
,,odes nodes Iratlo nodes Iratlol ,,odes ]ratlo nodes Iratlc 

ad 548 4- 49 25 4-1 0 .05  238 4-3 0.43 33 4-2 0.06 1004-4 0.18 
b5 1051 4- 49 2594"10 0.25 1180 4- 33 1.12 896 4-31 0.85 978 4- 55 0.93 
b8 789 4- 69 190 4- 13 0.24 943 4-6 1.20 966 4- 70 1.22 691 4- 27 0.88 
sm 17904-73 10674-59 0.60 16634-123:0.93 20904-63 1.17 1674-27 0.09 
bc 114-4 104-2 0 .91  104-2 0 . 9 1  64-0 0.55 64-0 0.55 
bs 35 4-2 124-0 0.34 47 4-1 1.34 14 4-I 0.40 36 4-5 1.03 
dna 1624-4 1144-3 0.701 1344-2 0.83 1214-2 0.75 1174-120.72 
sp 314 4-5 170 4-4 0.54 183 4-3 0.58 143 4-3 0.46 140 4-5 0.45 
car 152 4-2 23 4-1 0 . 1 5  564-1 0.37 30 4-2 0.20 38 4-3 0.25 
nut 4664-11 304-1 0 .06  3184-15 0.68 804.2 0.17 2 4 9 4 - 1 2  0.53 
soy 86 4-1 694-1 0.80 86 4-1 1.00 91 4-1 1 .06 894-1 1.03 

Table 3. Number of nodes in classification trees produced using alternative methods for grouping 
attribute values. The columns labelled nodes  indicate the mean and standard deviation for 5 cross- 
validation runs. The columns labelled ra t io  indicate the ratio of the respective number of nodes 
over the control, k - w a y  method, 

Again the exception was TD-CC-G, which was, rather surprisingly, not only more accurate 
but also more consistent in producing small trees. In some cases the local methods actually 
produced trees that  were significantly larger than those generated by the control method. 

The story concerning bot tom-up and top-down methods is more muddled. Similarly 
neither Information Gain Ratio nor X 2 plus Cramer's  V showed a consistent advantage over 
the other. 

Nevertheless it is possible to draw at  least one firm and useful conclusion from these 
results. Of all those tested, TD-CC-G would appear to be the best  method for reducing 
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f ragmenta t ion in decision tree construction.  It achieves the  higher-end of the  predictive 
accuracy compared while producing markedly smaller tree sizes. Fortunately it also required 
less computa t ion t ime than  any other  method for all but  one of the da ta  sets. 
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