Overcoming Fragmentation in Decision Trees
Through Attribute Value Grouping

K. M. Ho and P. D. Scott

Department of Computer Science,
University of Essex,
Colchester, CO4 35Q, UK
hokokx@essex.ac.uk and scotp@essex.ac.uk

Abstract. In this paper we investigate several methods for producing smaller deci-
sion trees by reducing fragmentation through the use of methods that lower the mean
branching factor. All the methods considered achieve this goal by grouping the values
that each attribute may take. We show how such grouping may be carried out by us-
ing either top-down iterative splitting or bottom-up iterative merging. Such methods
may be applied either globally at the onset of tree construction or locally whenever
a new node is considered. We also compare two approaches to assessing the quality
of such attribute value groupings: information gain ratio, as employed in C4.5, and
a combination of x? and Cramer’s V. The results of a comparative study of eight
methods show that a top-down global method, using x> and Cramer’s V, produces
consistently smaller tree sizes without loss of accuracy or computation time. These
findings may be of considerable practical importance in data mining since it is widely
recognised that smaller trees are much easier to understand.

1 Introduction

Decision tree induction ([1],{13]) has become firmly established as one of the most widely used
data-mining techniques. Unfortunately experience with real world data sets has shown that
existing methods may construct very large decision trees, that may be of limited practical
utility. Any method for reducing the size of decision trees without sacrificing classification
accuracy would be of considerable practical importance in mining large real world data sets.

In this paper we introduce and compare a number of techniques for restricting the size
of decision trees by reducing their average branching factors. We begin, in Section 2, with a
review of the origins of over-complexity in decision trees and existing methods for simplifying
them. In particular we examine the problem of unnecessary fragmentation of the sample
space that arises through forming distinct subtrees for every value of a nominal attribute. In
the following section we examine several different approaches to grouping attribute values to
reduce such fragmentation. Section 4 presents a series of experimental comparisons of eight
alternative methods for grouping the values of nominal attributes. Seven of these are novel,
while the eighth is the method provided as an option in C4.5 [13]. We conclude that a top-
down global method is the most effective technique for reducing fragmentation in decision
trees.

2 Controlling Decision Tree Size

One important advantage of using decision tree techniques is that this form of classification
function can be easily understood, provided that the tree produced is reasonably small. In
recent years, because of the rapidly rising interest in data mining, these techniques have
been used with ever larger sets of training data. Unfortunately large training sets may lead

338

to large decision trees containing many thousands of nodes. Oates and Jensen [11} have
presented evidence that tree size often increases linearly with training set size. Large trees
may prove exccllent classifiers but they are so difficult to comprehend that they provide
little useable information about the patterns that exist in the data. Developing methods of
producing smaller decision trees without sacrificing classification accuracy is therefore an
important, rescarch problein whose solution will have widespread practical application,

The size of a decision tree, defined as the number of nodes it contains, will depend on
both the maximum depth and the mean branching factor of its nodes. It follows that if we
are to develop decision tree construction techniques that produce smaller trees we must use
one or both of two possible approaches:

1. Restrict the maximum depth of the tree and its subtrees.
2. Restrict the branching factor of the non-terminal nodes.

Each of these approaches could be applied either a priori or a posteriori. An a priori re-
striction is applied to constrain or eliminate a portion of the tree before it has been built,
whereas an a posteriori restriction is used to remove a portion of the tree that has already
been constructed. Depth restriction is often known as pruning.

2.1 Overfitting and Pruning

One important cause of excessive decision tree size is overfitting. It manifests itself in decision
tree construction as excessively deep trees. It can be limited by restricting the depth to which
the tree is allowed to grow, but the use of stopping criterion, sometimes called pre-pruning,
may be ineffective in detecting when the procedure has begun to model characteristics
peculiar to the sample [4]. Consequently the majority of researchers (e.g. [13]) favour some
forin of post-pruning in which apparently useless subtrees are removed from a complete
decision tree. Breslow and Aha [2] have provided a comprehensive review of a wide range of
pruning techniques.

In principle therefore, effective pruning is a technique for reducing tree size, without
sacrificing classification accuracy, by eliminating those parts of the original tree that arise
through overfitting. In practice, pruning is used extensively even at a small cost in accuracy
because of the greater accessibility of smaller trees.

2.2 Fragmentation and Attribute Value Grouping

Overfitting leads to decision trees that are too deep. In contrast, a fragmentation occurs
when a decision tree is too broad: that is, when nodes have more branches than would be
necessary to produce the best possible classification accuracy. The following simple example
shows how fragmentation is likely to arise frequently with the majority of decision tree
construction procedures.

Suppose a decision tree program attempts to build a tree to recognise some class, C,
using a training set made up of feature vectors of nominal attributes A, Ay, ..Ax. Suppose
also that the class C is in fact defined thus:

C=VoiA(Vs2VVsa)A Va3

where V; ; denotes that attribute A; takes its jth value. When a typical decision tree program
selects an attribute to construct a new node it will create a separate branch for each of the
possible values for that attribute. Thus, assuming as an example that each attribute has four
possible values, if the program selects attributes in the order Ag, A2, Ag it will construct a
tree like that shown on the left of Figure 1. The entire subtree associated with Vs 2 is repeated

339

Vs1--- NO Vsa or Vsa--- NO
Vs,2 Vi,2 or Ve 4
Vai Vo
Ve, --- NO Ve, or Vg2 or Vg 4--- NO
V8,2 . NO V3_3 .-+ YES
Vs.a e YES V2_2 or V2‘3 or V2,4 e NO
Voa-+ NO
Va,2-+- NO
Vaa--- NO
V2,40 NO
Vsa:-+ NO
Vi
Vau
Va,1:+ NO
Vaz-++ NO
Vas - YES
Vaa- - NO
Vo2--- NO
Vag.. . NO
Vaq:-- NO

Fig. 1. Alternative decision trees for an example discussed in the text. Left: Without attribute value
grouping. Right: With attribute value grouping

in node V5 4. This immediately suggests that a much simpler tree could be constructed if
the values of attributes could be grouped and then branches created for each group of values
rather than for each value. Such a tree is shown on the right of Figure 1.

It is immediately obvious both that the tree without attribute value grouping is consid-
erably larger and exhibits significant fragmentation in that it partitions the example space
into 16 regions. In contrast the tree incorporating attribute grouping would produce identical
classifications but only divides the exampleé space into 4 regions. Clearly such fragmentation
can have a major effect on tree size. In addition it may impair the classification accuracy of
the resultant decision tree because the set of training examples must be distributed across
more subtrees and hence will provide proportionally less reliable evidence for each.

Pruning will not help to solve this problem: removing any part of the larger tree will
seriously affect its classification accuracy. The obvious remedy would be for the program to
consider all possible groupings of an attribute’s values when searching for the best attribute
for a new node, and hence avoid producing more branches than necessary. Unfortunately
the number of possible groupings rises very rapidly with the number of values an attribute
can take, and hence exhaustive consideration of all groupings is often infeasible.

One solution to this difficulty is to restrict the number of groups. The original CLS
program [8] always divided the attribute values into two groups; one containing only the
best value and the other containing all the rest. Both CART [1] and Assistant-86 (3} also
produce hinary trees but permit several values in each group. Fayyad and Irani [6] have
produced evidence that such binary groupings are likely to lead to smaller trees than k-
way trees, but Kononenko [10] has produced a counter example to the stronger version of
this hypothesis. Quinlan has adopted a different approach in C4.5 [13]. If the —s option is
selected then the program will search for the best grouping of an attribute’s values using
a form of agglomerative hierarchical clustering [5]. Such methods are essentially bottom-up
hill-climbing procedures in which groups are repeatedly merged. C4.5 continues the process
until any further merging would lead to significant degradation of gain ratio.

340

3 Approaches to Attribute Value Grouping

The development of attribute value grouping procedures to combat fragmentation appears
to have attracted much less interest than the problem of devising pruning methods to com-
bat overfitting. There is therefore considerable scope for research work whose goal is to
develop alternative grouping procedures and establish how effective they are in decision tree
construction.

3.1 Local or Global Groupings

All of the methods referred to in the previous section perform attribute grouping locally.
They search for the best groupings of each attribute’s values every time they select the best
attribute for a proposed new node. Although such local groupings can be more finely tuned
to the local region of the example space, this approach suffers from two disadvantages: it
is potentially costly since the grouping operation is performed many times, and many of
the groupings will be based on small samples and hence may not reflect the characteristics
of the parent population. We therefore decided to investigate the possibility of developing
procedures that carried out attribute value grouping globally. Such procedures partition each
attribute’s values once only, before tree construction begins, using the entire training sample.
Those methods that form only two groups of attribute values are not suitable for global
grouping, since they would not be able to form three or more groups under any circumstances.
This problem does not arise when they are applied locally since the same attribute may be
subject to several successive groupings. Our investigations have therefore concentrated on
methods that can partition a k-valued attribute into any number up to k groups.’

3.2 Bottom-Up or Top-Down Grouping

As we noted above, C4.5 includes an option that evokes attribute value grouping using a
hill-climbing bottom-up method applied locally. This suggests the possibility of a top-down
approach that carries out repeated splitting. One such procedure would operate as follows:

1. Create an m x n table, where m is the number of class labels and n is the number of
possible values of the attribute. Let cell[z, j] of the table contain the number of training
examples in class ¢ that had the jth attribute value.

2. Identify the modal class for each column and form groups of columns that share the
same modal class. There will be at most m such column groups.

3. Apply binary splitting repeatedly to each of these column groups until a point is reached
at which either no more splitting is possible or no split satisfies some criterion function
(liscussed below).

3.3 Group Formation Criteria

Top down methods require a criterion to determine whether splitting a group is worthwhile;
bottom-up methods need one to decide whether a pair of groups should be merged. In either
case we require a function which will allow us to compare the quality of the representation
with and without a particular grouping transformation.

The —s option of C4.5 {13] uses the information gain ratio both to select the best grouping
and to determine the point at which merging should stop. In earlier work, Quinlan [12]
experimented with x? as a stopping criterion for tree construction but abandoned it because
of uneven results. We have had similar experiences using x* as a grouping criterion: we

341

encountered difficulties in setting thresholds that were appropriate for both large and small
sets of training data.

This difficulty is not particularly surprising. The x? test measures the statistical signifi-
cance of an association between two variables, not its strength. Even the weakest association
will appear significant in a large enough data set. We therefore experimented with Cramer’s
V, a standard statistical measure of the strength of association between two nominal vari-

ables (7], defined as:
Cramer'sV = _x (1
TVNEL-1)

where L is the smaller of the number of rows and columns in 2-way table plotting values of
one variable against those of the other.

Our initial experiments with Cramer’s V also led to uneven results. This again is un-
surprising. Cramer’s V tells us whether a relationship is weak or strong if present but not
whether there is sufficient evidence to conclude it exists. We therefore decided to use a crite-
rion based on both x2 and Cramer's V: the former establishes that an apparent association
exists while the latter determines if it is strong enough to be of any interest. As the results
reported below show, this combination proved very satisfactory when we used a threshold
of p=0.01 for the x? test, and 0.1 for Cramer’s V.

Data Sets Cases(Classes| 2 | 3 14-5]6-10]11-20]> 20
ad jadult 32562 2 211111 5 3 1
b5 |bhps5000 10265 2 3]15]16| 59 | 17 0
b8 [bhps8000 10265 2 3|16{16] 58 | 17 0
sm |bhpssmoker [10265] 2 [6[t7{13]57 [17 | O
bc |breast-cancer | 286 2 3{210] 2 2 0
bs [balance-scale | 625 3 0[{0j4(0 0 0
dna|DNA-nominal| 3186 3 o({oteo| O 4] 0
sp |splice 3190 3 0[0]10[60| O 0
car [car 1728 4 0(3[13}] 0 0 0
nur fnursery 12961 5 114(3] 0 0 0
soy [soybean-large | 683 19 (1514} 5] 1 0 0

Table 1. Characteristics of the data sets used in evaluations. The columns labelled with numbers
indicate the number of values the nominal attributes could take.

3.4 Eight Procedures for Grouping Attribute Values

In this section we have seen that grouping procedures can be used locally or globally, can
use a top-down or bottom-up strategy, and can employ either information gain ratio or x?
plus Cramer’s V as the grouping criterion. Taken together the various combinations define
eight distinct methods for attribute grouping. We will use a simple notation to name these
in which TD-CC-G denotes a globally applied top-down method using x? plus Cramer’s V
as its grouping criterion, while BU-IG-L denotes a locally applied bottom-up method using
information gain ratio as grouping criterion.

4 An Experimental Comparison

In order to compare all eight attribute value grouping procedures we compared their per-
formance on eleven data sets. Eight of these are well known and were taken from the UCI
Repository. Because we wanted to investigate how the grouping procedures would perform

342

using data sets that had a large number of nominal attributes, we created three more data
sets using data from the 1991 wave of BHPS ! , a large social science survey carried out
annually in the UK. In b5 and b8 the variable to be predicted is income below 5K and below
8K respectively; in sm it indicates whether or not the respondent smokes. All continuous
attributes are pre-discretized into categorical groups, therefore, all procedures receive the
data as nominal (or discretized) attributes.

We used C4.5 (Release 8 [13],[14]) without the —s attribute grouping option to provide
a control, while setting the —s flag provided the BU-IG-L method. The remaining seven
methods were implemented by modifying the C4.5 code with different grouping procedures.
The code to run the experiments and the generation of training and test datasets were taken
from the MLC4+ library [9].

Table 2 shows the mean classification accuracies obtained for all nine programs with each
data set, while Table 3 shows the mean size of the trees constructed. Limitations of space

4.5 Local

k-way BU-IG-L BU-CC-L TD-1G-L TD-CC-L
accuracy | accuracy |ratio] accuracy |ratio] accuracy Jratio| accuracy |ratio
ad |/86.02 + 0.33{86.24 3 0.22| 1.00{86.18 - 0.29] 1.00 [83.08 - 0.56] 0.97 |82.90 & 0.530.96
b5 ({83.51 + 0.31(80.87 4 0.46/0.97/82.38 £ 0.35{0.99{79.13 & 0.52]0.95 |{81.39 + 0.16{0.97
b8 |{{85.06 + 0.38(82.53 + 0.27{0.97[83.60 &+ 0.69{0.98 [77.94 - 3.60{0.92 [83.11 * 0.58}0.98
sm |172.60 % 0.47|67.63 £ 0.48]{0.93]71.96 £ 0.44/0.99 |67.88 + 1.74/0.93 |71.64 £ 0.25[{0.99
be |{71.00 £ 2.25|68.20 & 2.38]0.96 |70.65 + 2.83]| 1.00|65.75 £ 2.92| 0.93 [71.00 £ 2.91|1.00
bs }65.12 £ 0.60(76.80 - 1.36 1.18 {65.12 + 0.60| 1.00 |69.28 + 3.00|1.06 {77.92 + 1.18{1.20
dna([93.72 £ 0.72]93.70 £ 0.91} 1.00 [92.72 4 0.91]0.99 {93.44 £ 0.58] 1.00|93.75 £ 0.56]1.00
sp [193.95 £ 0.34]93.92 £ 0.34] 1.00 [94.01 £ 0.06] 1.00 {94.20 £ 0.55] 1.00|93.73 & 0.24]1.00
car [[90.34 £ 0.31[97.05 & 0.49] 1.07 [95.78 & 0.49{ 1.06 {90.05 £ 2.65] 1.0095.25 + 0.40} 1.05
nur [[96.45 £ 0.18199.41 £ 0.05] 1.03[99.54 + 0.07{1.03 (90.17 + 2.13{0.93 {98.07 £ 0.10{1.02
soy [188.28 £ 1.98(89.17 £ 1.17]1.01 [89.46 £ 1.55] 1.01[82.13 + 2.50{0.93 |89.16 £+ 1.39| 1.01

[[ave 84.19 85.06 1.01 84.67 1.00 81.19 0.97 85.27 1.02
C4.5 Global
k-way BU-1G-G BU-CC-G TD-1G-G TD-CC-G

accuracy | accuracy [ratio| accuracy Jratio| accuracy [ratio] accuracy |[ratio

ad [186.02 & 0.33|81.64 3 0.81]0.95 [86.08 & 0.32{1.00 |84.08 & 0.28]0.98 {85.32 £ 0.30{0.99
b5 [[83.51 £ 0.31]83.02 - 0.30{ 0.99 {82.37 + 0.36] 0.99 {77.60 + 1.76{0.93 [83.42 £ 0.22{1.00
b8 |{85.06 & 0.38]68.50 X 4.28| 0.81 [83.60 % 0.69{0.98 [79.60 & 0.42]0.94 |84.68 + 0.76{1.00
sm ||72.60 £ 0.47|72.31 £+ 0.17[1.00{71.96 = 0.44]0.99 |69.93 - 0.66]0.96 [73.89 £ 0.36]1.02
be |[71.00 4+ 2.25]72.04 + 1.76 1.01 [71.34 + 2.65[1.00[72.75 &+ 2.43{1.02]70.29 £ 1.79{0.99
bs [165.12 4 0.60(67.36 & 1.88]1.03 [68.32 & 1.80[1.05]74.24 £ 2.01]1.14{77.76 £ 2.11{1.19
dnaf[93.72 + 0.72|94.22 + 0.55/ 1.01 |94.38 = 0.36{ 1.01 [93.88 = 0.58| 1.00 |94.54 & 0.60| 1.01
sp [|93.95 £ 0.34[93.92 £ 0.34] 1.00|94.04 * 0.37]1.00 {93.67 £ 0.51] 1.00 {94.80 & 0.35{1.01
car [{90.34 & 0.31/85.82 +0.42]0.95 |94.44 - 0.77]1.05 [87.10 £ 1.71]| 0.96 {92.42 = 0.89] 1.02
nur [{96.45 = 0.18]86.92 £ 0.17]0.90[97.64 & 0.12} 1.01 [92.32 & 0.30{0.96 |97.90 £ 0.12{1.02
soy |{88.28 + 1.98(89.90 + 1.42]1.02[88.28 & 1.98]1.00[88.72 & 1.90| 1.00 {88.87 + 2.061.01

ave 84.19 81.42 0.97 84.77 1.01 83.08 0.99 85.81 1.02

Table 2. Classification accuracies of decision trees produced using alternative methods for grouping
attribute values. The columns labelled accuracy are the mean and standard deviation for 5 cross-
validation runs. The columns labelled ratio are the ratio of the respective accuracies over the control,
k — way method.

preclude the inclusion of timing data, but as might be expected, the local methods were
generally slower.

! BHPS data may be obtained from Data Archive, University of Essex, Colchester, CO4 35Q, UK.

343

5 Discussion

As can be seen, the four local methods were not consistently more accurate than the control,
k — way, but three of the four global methods were generally less accurate. The exception
was TD-CC-G whose accuracy was very close to that of the control for all data sets except
bs for which it performed significantly better. On the other hand the global methods usually
produced considerably smaller trees than either local methods or the control. Indeed in three
of the four cases they appeared to be grouping too much with a consequent loss of accuracy.

C4.5 Local
k-way BU-IG-L BU-CC-L TD-IG-L TD-CC-L
nodes nodes [ratio] nodes |ratio] nodes [ratio] nodes [ratio

ad [548 £ 49706 £ 12 [1.29] 553 £ 20 [1.01] 112 £22]0.20{99 £ 17 [0.18
b5 {11051 & 19[1204 £ 48] 1.15 {1133 = 137 1.08] 949 + 60 [0.90 [849 -+ 33{0.81
b8 |j 789 & 69 [1144 % 29]1.45 1123 = 20 | 1.42 542 % 270 0.69 |850 £ 50 1.08
sm 111790 + 73|2294 + 67(1.28 [1968 % 199| 1.10]676 & 115]0.38 {996 -+ 25] 0.56
be 11+ 4 2045 |2.64] 2243 |2.00f 2745 [2.45[24+2 12.18
bs 3542 6344 |1.80] 83+8 (2.37] 5567 |1.67| 63+4 |1.80
dnafl 162+4 [121 +1]0.75| 153+4]0.94] 145+ 9 |0.90| 139+ 6 [0.86
sp [[314£5 | 170+4 [0.54| 189+ 10 |0.60(152+ 3 |0.48|118 +3[0.38
car || 1562 4£2 | 1034+3 }0.68) 1031 (068 845 |0.55] 70+2 |0.46
nurif 466 + 11| 31044 [0.67| 291+ 1 }0.62|241 +170.52| 207 £ 3 |0.44
soyll 861 89+4 [1.03] 98+3 |L14] 9043 [1.05] 811 [0.94

ave]| 491 567 J1.21] 520 [1.18] 279 To.88] 318 |0.88
CA.5 Global
k-way BU-1G-G BU-CC-G TD-1G-G TD-CC-Q
nodes nodes |[ratio| nodes |ratio] nodes {ratio| nodes [ratio

ad 11548449 251 [0.05] 238+3 |0.43] 33+2 [0.06[100+4}0.18
b5 111051 + 49| 259 + 10[0.25]| 1180 +33 |1.12] 896 + 31 | 0.85 {978 = 55/ 0.93
b8 [78969190+ 13]0.24] 943+ 6 |[1.20[966 & 70 !1.22|691 & 27[0.88
sm (1790 £ 73({1067 = 59(0.60 {1663 + 123{0.93 {2090 + 63]1.17 {167 & 27]0.09
be 11+4 10+2 091 102 |0.91F 6%0 [0.55] 6+0 [0.55
bs 35+ 2 1240 J0.34] 47+1 [1.34] 141 |0.40) 36+ 5 [1.03
dnaff 162+4 | 11443 [0.70] 134+2 [0.83] 1212 [0.75[117 + 12{0.72
sp || 3145 | 170+ 4 |0.54| 183+3 |0.58] 143+3 |0.46}140 %5 {0.45
car || 15242 | 2341 [0.156] 561 {0.37] 30+2 |0.20] 38%3 |0.25
nur{{ 466 & 11| 301 (0.06] 318415 |0.68] 8042 {0.17{249 &+ 12{0.53
soy || 861 69+1 |080] 861 |1.00) 9141 |1.06} 8941 |1.03

ave 491 179 0.42 442 0.85 406 0.63| 237 |0.60

Table 3. Number of nodes in classification trees produced using alternative methods for grouping
attribute values. The columns labelled nodes indicate the mean and standard deviation for 5 cross-
validation runs. The columns labelled ratio indicate the ratio of the respective number of nodes
over the control, k — way method.

Again the exception was TD-CC-G, which was, rather surprisingly, not only more accurate
but also more consistent in producing small trees. In some cases the local methods actually
produced trees that were significantly larger than those generated by the control method.

The story concerning bottom-up and top-down methods is more muddled. Similarly
neither Information Gain Ratio nor x? plus Cramer’s V showed a consistent advantage over
the other.

Nevertheless it is possible to draw at least one firm and useful conclusion from these
results. Of all those tested, TD-CC-G would appear to be the best method for reducing

344

fragmentation in decision tree construction. It achieves the higher-end of the predictive
accuracy compared while producing markedly smaller tree sizes. Fortunately it also required
less computation time than any other method for all but one of the data sets.

Acknowledgements

We are grateful to the ESRC's programme on the ALCD for supporting part of the work
reported in this paper under grant number H519255030.

References

1.

2.

3.

(4]

(=]

10.

11.

12.

13.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, Pacific Grove, CA., 1984.

L. A. Breslow and D. W. Aha. Simplifying Decision Trees: A Survey. Knowledge Engineering
Review, 12:1-40, 1997,

B. Cestnik, I. Konoenko, and 1. Bratko. A knowledge elicitation tool for sophisticated users.
In 1. Bratko and N. Lavrac, editors, Progress in Machine Learning. Sigma Press, Wilmslow,
“ngland, 1987.

. P. R. Cohen and D. Jensen. Overfitting Explained. In Proc. Sizth International Workshop on

Artificial Intelligence and Statistics, pages 115-122, FL, 1997. I't. Lauderdale.
B. S. Everitt. Cluster Analysis. Heinemann, London, 2nd edition, 1980.

. U. M. Fayyad and K. B. Irani. The attribute selection problem in decision tree generation. In

Proc. Tenth National Conference on Artificial Intelligence, pages 104-110, San Jose, CA., 1992.
AAAI Press.

. J. Healey. Statistics: A Tool For Social Research. Wadsworth, Belmont, CA., 1990.
. E. Hunt, J. Martin, and P. Stone. Ezperiments in Induction. Academic Press, New York, 1966.
. R. Kohavi, G. John, D. Manley, and K. Pfleger. MLLC++: Amachine learning library in C++.

In Tools with Artificial Intelligence, pages 740-743. IEEE Computer Society Press, 1994.

I. Kononenko. A counter example to the stronger version of the binary tree hypothesis. In
FECML-95 Workshop on Stalistics and Machine Learning in KDD, Crete, 1995.

T. Oates and D. Jensen. The Effects of Training Set Size on Decision Tree Complexity. In The
Preliminary Papers of the Sizth International Workshop on Artificial Intelligence and Statistics,
pages 379-390, 1997.

J. R. Quinlan. The effect of noise on concept learning. In R.S.Michalski, J.G.Carbonell, and
T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach. Volume I1. Mor-
gan Kaufman Publ. Inc., Los Altos, CA, 1986.

J. R. Quinlan. Programs for Machine Learning. Morgan Kaufman Publ. Inc., Los Altos, CA,
1993.

. J. R. Quinlan. Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence

Research, 4:77-90, 1996.

