
Object Mining:
A Practical Application of Data Mining for the

Construction and Maintenance of Software Components

Anders Torvill Bjorvand
Department of Informatics, University of Oslo.

P.O. Box 1080 Blindem, 0360 Oslo
Email: torvill@trolldata.no

Abstract. This paper adresses the issue of automatic construction and
maintenance of software components by utilizing data mining techniques.
Some methods are shown, and more specifically, an implementation on an
IBM PC is demonstrated. This approach is particularly useful for the synthesis
of embedded decision support components and intelligent agents.

1 Introduction
In the following, a working knowledge of the object-oriented paradigm and data
mining is recommended.

The object-oriented paradigm, invented at the Norwegian Computing Center in the
1960s ([5]), has gained a tremendous momentum in both academia and industry, and
is now widely regarded as the most important current methodology for the
construction of large information systems.

Compared to previous approaches, these information systems are easier to both
build and maintain since they are divided into autonomous parts; making delegation
of responsibilities easier. A lower degree of coupling between different parts of the
system is a natural consequence of this approach.

This paper introduces the notion of Object Mining which is the process/idea of
using data mining for both creation of and maintenance of such components. This
concept was first published in [4] . The current paper, however, emphasizes the
practical aspects of using this technology. The example is based on a smaller example
in [4]. It will become clear that this approach merges creation and maintenance in a
way that gives full support to the entire life cycle of the system. Most practical
investigations show that maintenance of a software system represents a greater cost
than the initial creation.

1.1 Structure of this Document

I will explain how the Object Mining technology merges these techniques to become
a powerful tool for both development and maintenance of computer software. Much
of this technology is explained through an example from real life showing the entire
process from data analysis to the finalized component.

First we will introduce Object Mining, then we will illustrate it with some
examples, then we will describe an implementation of it.

1.2 Related Research

The idea of synthesizing software into components is new, but its ancestors are many.
The most important are the fields of embedded and distributed expert systems and

intelligent agents. A fair overview of this can be seen in [9].

122

The Object Mining technology is, as will become evident, related to the field of
expert systems. Traditional expert systems were constructed as monolithic
applications that corresponded with the world through a human being, but the
adaptation to an embedded expert system seems a natural one, where the expert
system automatically interacts with the rest of the system. This, howe'r would
require changes to the intended object model of the system with respect to
communications, interpreters, etc. The Object Mining technology produces
components that fit easily into the existing object model. This is crucial to
maintaining an elegant, understandable and therefore maintainable design.

2 Object Mining
An object can be viewed as a set of attributes/variables and a set of methods to set/get
and/or analyze those attributes. For the great class of objects where this d,~finition of
an object holds true in a strict fashion, our method is applicable (some known
exceptions are typical user interface objects and objects with attribute-values that are
hard to discretize (typically mathenmtical functions and computational objects)). Data
mining techniques take sets of attributes and their combinations of values as input.
The product is a set of rules. By putting these attributes and rules together, we have an
automatically produced object (also called software component in more modern
terminology).

The Object Mining technology is the idea of utilizing data mining techniques to
produce software objects. The choice of data mining techniques will vary with the
domain that is being modelled, and is not part of the Object Mining technology.

To formalize, the Object Mining technology is best applied through the following five
steps:
�9 Given an object model of your system, check which objects you either have or can

easily sample data/measurements about.
�9 Given the databases for these objects, choose the parameters for which you want

the component to supply you with results. These parameters are called the
decision parameters. The set of decision parameters can very well be the entire
set of parameters. This will often be the case in components intended to perform
simulations.

�9 Apply data mining techniques to produce a set of rules ou the form "ifparam_l=6
and param_2=34 and and param_n = 56 then decision_param_l=4 and ... and
decision param_m=75". The initial number of parameters should also decrease
because the dependency analysis performed by the data mining system should
prove some parameters redundant/superfluous. This is provided for very nicely in
many data mining techniques - a common one is the reducts of rough set theory.

* Create a component with the following features:
�9 Internal variables representing all the parameters and decision paran teters.
�9 A data structure Ibr the ruleset.
�9 Methods for setting and reading the values of each variable, eg set_param_l 0,

get param_10, etc.
�9 Methods retrieving the values of the decision parameters. These methods rely

on data mining strategies for applying the ruleset.

123

�9 Incorporate these objects in your system according to the object model - interfaces
might be an issue here.

The component described would be relatively simple. To use it, you set its conditional
values and every time you want a decision value you ask for it explicitly - upon which
it is calculated and returned. These tasks of interacting with the object might of course
be delegated to several objects. Some objects might provide with data acquisition,
some want to read the decisions etc.

A natural extension is an "active component" where the objects that rely on
information from the component can be automatically informed of changes. This is
accomplished by letting the dependent objects register with the component. Every
time one of the parameters of the component changes, the set of decision parameters
are immediately recalculated (without an explicit method invocation). If the values of
one or more of the decision values have changed, an event informing of the change is
automatically posted to the objects that have registered themselves.

Active objects fit well into the framework of process control and other systems
where the object plays an active part. An obvious application domain where this sort
of functionality would be required, is the field of intelligent agents. A more advanced
way of registering for notification might be subscription lists with detailed
information when each object should be notified. An object in charge of crisis
situations might for instance only be noticed when the parameters reach a critical
level.

3 Examples
We have a simple example concerning dogs. This example was introduced in [4], but
is elaborated on here.

3.1 Dog Recognizer Model
Figure 1 shows the UML 0 sequence diagram for a simple system for visual
recognition of breeds of dogs. The system consists of a camera, a feature recognizer
and the Object Mining generated component Dogs. The camera component supplies
the feature recognizer with a picture of a dog, the feature recognizer extracts the
characteristics of the dog's tail and hair and initializes the Dogs component with it.
The Dogs component is then capable of informing the system of the breed of the dog.
A more realistic example would of course have to handle exceptions and ambiguities.

124

: Feature
Extractor

I

n
i

1 : getPicture()

: Camera I I - Dogs

I I

i I
2: setAttributeHair()

3: setAttdbuteTail() I

I I
4: getAttributeDecision() > /

Figure 1 UML Sequence diagram for the dog recognition process

3.2 Development of the Dogs Component
We have a database of 10000 dogs. Each dog is stored in a record with several
parameters like hair length, color, length of tail, breed etc. We have an image
processing system that automatically extracts/recognizes all of these features except
breed. We want a component that in each case can classify a dog based on certain
features. Following the process outlined above, we get the following:
�9 We have a dog database, we choose the breed parameter as our only decision

parameter.
�9 We apply data mining techniques and obtain the ruleset for determining the breed

of dogs based on the information/experience in the database. Let's oversimplify
and say that in our case, all other parameters than size and color are proved
redundant in order to decide the breed. We get a ruleset with rules of the form: "if
color=black and size=big then breed=Doberman Pincher"

�9 We can then automatically create a component with the following features:
�9 Variables: color, size and breed.
�9 A data structure for the rules.
�9 Methods setting and reading the values of each variable:

�9 set_param_size0, get_param_size0
�9 set_param_color0, get_param_color0
�9 The method: get_decision_breed0 relying on data mining strategies for

applying the ruleset.

125

To summarize, the Object Mining technology applies the techniques of data mining to
the task/problem of producing objects/components.

4 I m p l e m e n t a t i o n

The crucial parts of the technology have already been implemented as an add-on to
the data mining system "Rough Enough" which is also copyrighted by the author of
this paper. "Rough Enough" as a pure data mining tool (without the Object Mining
capabilities) was developed in 1995 at the Nowegian University of Science and
Technology in Trondheim, Norway. The Object Mining capabilities have been added
during 1997 and parts of 1998 and are part of version 4.0 of the Rough Enough
system. Rough Enough is a general purpose data mining tool based on rough set
techniques. It is further described in [1], [2] and [3].
The system can be downloaded from the internet address http://www.trolldata.com/.

4.1 Component Creation

The system will produce components conforming to the JavaBean standard from Sun
Microsystems which is the most popular component standard right now built upon the
Java language ([8]). OMGIs CORBA 2 IDL 3 files will also be automatically produced
to allow the components more easily to be a part of an open distributed system.

The Java event model also supports the listener registration interface so that objects
can register with the components developed through Object Mining so as to receive
updates through the event system. Active objects, as explained in section 2, are
therefore straightforward in Java.

4.2 The Dog Example Revisited
We will now return to the dog example and show a practical case of applying these
methods.

Case

We have a table of information about dog breeds (Table 1). We want a component that
can classify between these breeds, which makes the breed-attribute our decision
attribute.

10MG - Object Management Group - a consortium of leading information technology companies creating
and maintaining industrial standards for object oriented development
2 CORBA - Common Object Request Broker Architecture - an OMG standard for distributed access to
objects
3 IDL - Interface Definition Language - a middle language between the CORBA server and the different
objects which may be implemented in Java, C++, Smalltalk, Cobol etc.

126

Table I . Dog Information System

Object Breed Tail Hair Size
number
1 Doberman Pincher Short Short Big
2 Dalmatian Long Short Big
3 Cocker Spaniel Sho~t Long Small
4 German Shepherd Long Medium Big

Processing with Data Mining Techniques
First, we import the data into a data mining system.

By applying data reduction methods, we get the result that tail and haft are
sufficient with respect to deciding the breed. This makes the size parameter
superfluous in our case.

By utilizing a method for synthesising rules, the ruleset is obtained. Each class of
data mining techniques has its own methods of rules creation, so I will leave that
alone for now.

Crea t ion of a Component
A component is created from the rules. Currently, the system only supports JavaBeans
conforming to the JDK 1.1 standard (the most recent Java standard at time of writing).

The system supports both passive and active objects and several rules-application
strategies.

The particular component created in this example was a passive one called Dogs.
It contains the following structure:
�9 Internal variables: AttributeTail, AttributeHair, AttributeDecision a:ld Ruleset

(double array)
�9 Methods:

�9 Dogs(): constructor
�9 getAttributeTail and setAttributeTail: sets and gets the tail attribute
�9 getAttributeHair and setAttributeHair: sets and gets the hair attribute
�9 calculateDecision: sets the value of the AttributeDecision variable utilizing the

Ruleset variables
�9 getAttributeDecision: invokes the method calculateDecision and then returns

the value of the variable AttributeDecision

Listing of the Source for the Dog Component
The following code shows that each conditional attribute has an internal va'dable with
external methods for setting and getting its value. The rules are represented with a
double array, and the decision is calculated on demand. Due to space limita*Jons, the
full text of the method calculateDecision0 could not be included. It is not part of the
general framework either, so displaying it would n o t be very interesting - the method
for applying rules should be chosen from the domain, possibly even on a situation to
situation basis.

127

~ ublic class Dogs implements java.io. Serializable

// Property declarations
protected int AttributeDecision = O;
protected int AttributeTail = O;
protected int AttributeHair = O;

// Ruleset
protected int[][] ruleSet = {

{-1, 2, 4},
{-1, 3, 3},
{1, 1, 1},
{1, 3, 3},
{2, 1, 2},
{2, 2, 4},

};

// Constructor

~ ublic Dogs()

}

~ rotected void calculateDecision()

// here, different schemes for
// rule-interpretation can be
// implemented

}

~ ublic void setAttributeTail(int attributevalue)

AttributeTail = attribute_value;
}

~ ublic int getAttributeTail()

return AttributeTail;
}

~ ublic void setAttributeHair(int attribute_value)

AttributeHair = attribute_value;
}

~ ublic int getAttributeHair()

return AttributeHair;
}

~ ublic int getAttributeDecision()

calculateDecision();
return AttributeDecision;

}

128

Using the Component
Figure 2 shows a Java Applet utilizing the Dogs component. The Applet was created
in the Symantec Visual Cafe Java environment. The Applet consists of textfields, a
button, the Dogs component and a component that translates between the domain
(tail-lengths, breeds) and our discretized component working internally in integers.
The Dogs component was used as is, and did not need manual refinement. When the
Tail and Hair parameters are given, pressing the Calculate-button gives the name of
the Breed.

Figure 2 Java Applet using the Dogs JavaBean

5 Conclusion
We have identified the possibilities and importance of utilizing data mining
techniques for synthesis of objects from experimental data. Several examples have
been given, and an implementation is described.

The application of data mining to software engineering, called Object Mining in
this paper, shows great promise, and will hopefully be further investigated in the
future.

6 Future Research
The techniques outlined here suggests that a central system and a database might
generate components based on the latest information with regular intervals. The next
logical step would be to let these components enhance themselves through rule
improvement by feedback. This opens up several important applications for
embedded decision support systems and autonomous intelligent agents. A problem,
especially with embedded systems, is that a lightweight object like the ones outlined
in this paper often will be the only feasible way to go. A single superobject might
sound glorious, but it might be too large or too inefficient.

129

By automating software construction relying on experimental data, the issue of
correctness immediately becomes a major one. Completeness, inconsistency and
handling of indeterminate decisions should be further investigated. There is a great
potential for automating several of these tasks more easily than in traditional
approaches to correctness preservation of programs.

Creating general "superobjects" with their own rule storage and techniques for
exploring their own domain, a total system can be created with only one object class.
In many ways, this is only a different perspective on agent oriented programming. I
believe that an integration of that approach and the principles of genetic programming
would be a fruitful direction of research.

Ways of integrating the Object Mining approach with modelling is an important
field of study; especially within the new UML standard ([6] and [7]).

Acknowledgements
I would like to thank my wife Annette for her support and my little daughter Susanne
for her cheerful smile. I would also like to thank the people at Oslo Research Park for
fruitful discussions concerning the Object Mining technology.

References

[1] Bjorvand, Anders Torvill (1997). 'Rough Enough' - A System Supporting the
Rough Sets Approach. Proceedings of the Sixth Scandinavian Conference on
Artificial Intelligence 1997. Helsinki, Finland. IOS Press, Amsterdam.

[2] Bjorvand, Anders Torvill and Komorowski, Jan (1997). Practical Applications of
Genetic Algorithms for Efficient Reduct Computation. Proceedings of the 15th
IMACS World Congress 1997 on Scientific Computation, Modelling and Applied
Mathematics. Wissenschaft & Technik Verlag, Berlin.

[3] Bjorvand, Anders Torvill (1997). Rough Enough - Software Demonstration.
Proceedings of the 15th IMACS World Congress 1997 on Scientific
Computation, Modelling and Applied Mathematics. Wissenschaft & Technik
Verlag, Berlin.

[4] Bjorvand, Anders Torvill (1998). Synthesis of Objects: A Rough Sets Approach to
Automatic Construction and Maintenance of Software Components. European
Conference on Artificial Intelligence, August, 1998. Workshop entitled Synthesis
of Intelligent Agent Systems from Experimental Data.

[5] Dahl, O.J., Myrhaug, B. and Nygaard, K. (1968). SIMULA 67 Common Base
Language. Norwegian Computing Center, Oslo.

[6] Douglass, Bruce Powell (1998). Real-Time UML - Developing Efficient Objects
for Embedded Systems. Addison-Wesley.

[7] Fowler, Martin and Scott, Kendall (1997). UML Distilled - Applying the Standard
Object Modeling Language. Addison-Wesley.

[8] Gosling, James and Joy, Bill and Steele, Guy (1996). The Java Language
Specification. Addison-Wesley.

[9] Kaelbling, Leslie Pack (1993). Learning in Embedded Systems. MIT Press.

