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Abstract. The design of non-linear visualizing transformations of data sets 
that allow for a good separation of classes (categories) on the diagnostic maps 
is considered. The proposed transformations are based on a model of the 
ranked family of decision rules. Such family of rules could be generated by 
separate and conquer algorithms. 
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1 Introduction 

Knowledge discovered in databases is usually represented in the form of logical rules 
which can be used, for example, in expert systems [1]. A chain of rules is a conven- 
ient manner of explanation and justification of decisions suggested by a computer 
system. The graphical representation of the information contained in a database is 
also important because it allows for deeper involvement of users in a decision mak- 
ing process. 

Pattern recognition methods could be often adopted to solving the data mining 
problems [2] Neural networks models can be also used in the design of computa- 
tional tools for data mining and knowledge discovery in databases ([3], [4]). We are 
referring here to the so-called neural ranked networks [5]. The ranked layers could 
be generated in accordance with separate-and-conquer or covering strategy ([6], [7]). 
Such layers may be used in the design of non-linear visualizing transformations of 
data sets in the form of the diagnostic maps [8]. 

The diagnostic maps constitute a graphical representation of data, which results 
from the compression of data sets which greatly preserves their separability. The 
selected groups of patients (classes, categories) could be well separated on the map. 
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The diagnostic maps constitute the main tool of diagnosis support in the computer 
system "Hepar" ([9], [10]). In this paper, the design of the visualizing transforma- 
tions based on a family of logical rules is described. 

2 The learning sets and the ranked decision rules 

Let us assume that we have access to a database with descriptions of some objects (91 
(j'= 1 ...... m). In result of some measurements, a set of n discrete or continuous num- 
bers (features) x i could be related to the each object 6// (xiE {0,1} or xiE R1). The 
data describing objects O/are  represented in the form of column feature vectors r,J = 
[xq,....,X~N]T belonging to N-dimensional feature space. We assume that the ob- 

J , J 
jects descriptions in the database are labeled, which means that each object O/ is 
related to one of the classes. (category) (o k (k = 1 ...... K). The k-th learning set C k 
contains m k feature vectors xJ(k) associated with the class (ok: 

Ck = {xJ(k)} ( /= 1 ........ ink). (1) 

The learning sets are separable if they are disjoined in the given feature space: 

( V k ' a k )  Ck, n C k  = 0 .  (2) 

This means, that the elements xJ'(k') and xJ(k) are always different if they belong 
to two different learning sets C k. 

In the framework of pattern recognition, the learning sets C k are used to solve the 
classification problem. During the classification process, the feature vectors x of 
unknown origin are allocated into one of the classes (o k in accordance with an allo- 
cation rule dw(x) which may depend on some vector of parameters w (w E R N ): 

{dw(x ) = k } ~ { x is allocated into class (ok} �9 (3) 

The choice of the vector w = [Wl,....,WN] T could be made on the basis of the 
learning sets C k in accordance with the reclassification postulate: 
The parameters w (3) should be chosen in such a manner that each feature vector x 

from the learning sets is properly classified: 

( V k E  {1 ....... K}) ( V x E  Ck) dw(x ) = k. (4) 

The above demand characterizes the deterministic approach to the design of the 
classifiers. In a statistical approach we are satisfied if only a dominant (1-c0-part of 
the feature vectors xJ from the learning sets is properly classified. 

The allocation rule dv(x) could be based on the layer of n'formal neurons FNi 
described by the following decision nile ri '(w,0;x): 

r i '  = r i ' ( W , 0 ;  x )  = 1 tf  <w,x> > 0 .  (5) 

ri '  = ri '(w,0; x) = 0 / f  <w,x> < 0 .  

where w = [w 1 ......... WN] TE R N is the weight vector, 0 is the threshold, and <w,x> = 
Z w i x i is the inner product. 
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The formal neuron FNi is excited (ri' =1) if and only if the weighted sum of in- 
puts x i is greater then the the threshold 0 .  

Let us consider also the layer build from the n' logical elements Ei operating in a 
parallel manner on the same feature vectors x in accordance with the following deci- 
sion rule: 

ri = r i (w , 0 ;  x) = 1 i f  Wi Xi --> 0 .  (6)  

ri = r i (w ,0 ;  x)  = 0 if wix i  < 0 .  
The above decision rule could be treated as a special case of the formal neuron 

rule (5) which depends on only two parameters wi and 0. 
The element Ei partitions the feature space X into two regions separated by the 

following hyperplane: 

Hi(w,0; x) = {x: wi xi = 0 } .  (7) 

The hyperplane Hi(w,0; x) is parallel to all but the i-th coordinate axis of the 
feature space X. The feature vector x excites the element Ej (ri =1) if and only if x is 
located on the positive side ( wi xi > 0) of the hyperplane Hi(w,0;x). 

The allocation rule dv(r(x)) (3) of the classifier based on the layer of n '  logical 
elements Ei is determined by the output vector r -- [r 1 ...... rn] T of this layer. In a par- 
ticular case, the ranked allocation rule could be used. 

Definition 1: The ranked allocation nile has the following general structure: 

/ f  ((rl (x)=0)^(r2(x)=0)^... ̂ (ra(x) = 1)) (8) 
then (x is allocated into the class O)k(1)) 

where the number k(/) of the chosen class COk(1) is determined by the assigned 
number ("rank") l of the first excited element Ei in the layer (l _<n'). 

Definition2: The layer of n' elements Ei (formal neurons FNi) is ranked with re- 
spect to the learning sets C k if and only if there exists a decision rule (8) which al- 
lows for correct classification of the all elements xJ(k) of these sets. 

The elements constituting the ranked layer are indexed (ordered) in such a man- 
ner that the elements Ei (or their decisions rules r~(x)) with low values of the index i 
are the most "important". For example, the rule r2(x) is more important than r3(x) .  

In accordance with (8), the allocation is based on the most important, excited ele- 
ment El. 

The order among the elements Ei results from described later the separate-and- 
conquer procedure of the layer design. Let us define, for the moment, the support set 
Aa of the decision rule ri(x), as the set of such feature vectors x which excite the ele- 
ment E~ (r~(x) =1). We can remark that if the support sets Ai a r e  disjoined (Ai (h Aj  = 

O), then the elements Ei could be ranked in an arbitrary manner. 
Definition 3: The layer of n' elements Ei is a-ranked with respect to the learning 

sets C k if and only if there exists a decision rule (8) which allows for correct classifi- 
cation of at least the dominant (1-r of the all elements xJ(k) of these sets. 

The last definition will be used in a statistical approach to classification, when we 
are satisfied with only a dominant part of the feature vectors xJ(k) from the learning 
sets being properly classified. 
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The procedure of designing a layer of formal neurons FNi which is ranked with 
respect to the learning sets C k has been described in the papers [8] and [12]. This 
multistage procedure could be used also in design of the ranked layer from the logi- 
cal elements El. The procedure is based on finding the sequence of so called admissi- 
ble hyperplanes Hi(w*,0*;x) (7). 

Definition 4: The hyperplanes Hi(w*,0*; x) are admissible with respect to the 
family of learning sets {Ck} if and only if the vectors xJ(k) from only one set C k are 
situated on its positive side. This means that: 

(3k) (Wi* xji ~> 0") ::~ (~J E Ck). (9) 

Definition 5: The hyperplanes Hi(w*,0*;x) are co-admissible with respect to the 
family of the learning sets {Ck} if and only if at least the (1-a)-part of the vectors 
xJ(k ~) situated on its positive side belongs to only one learning set C k. 

The vectors xJ(k) which are situated on the positive side of the admissible (a- 
admissible) hyperplane Hi(w*,0*;x) (7) are removed before the next stage of the 
design procedure. In other words, the learning sets C k are reduced during successive 
n stages of the design procedure. This procedure could be treated as a special case of 
the separate-and-conquer strategy [2]. Generally, the separate-and-conquer algorithm 
searches for a rule that explains a part of the learning sets Ck, separates these exam- 
ples and recursively conquers the remaining examples by designing more rules until 
no examples remain. 

The separate-and-conquer procedure allows us to find the sequence of admissible 
or a-admissible hyperplanes Hi(w,0; x) (7). As a result, the ranked allocation rule (8) 
can be established. Note that this rule could be represented in the following form: 

i f  ((Yi(,)xi(a) < 0 i(l)) A(yi(2) Xi(2) < 0 i(2))A...A(~/i(1)Xi(l) ~ 0 i(l)) (10) 
then (x is allocated into the class (Ok(l)) 

where 7i �9 { 1,-1 } and 0i is the threshold value of the i-th element Ei. 
Each of the above subrules or hyperplanes Hi(Yi,0i;x) (7) is defined by two pa- 

rameters Ym and 0,1. These parameters are to be found in accordance with the postu- 
late of admissibility or a-admissibility with respect to a given family of the learning 
sets {Ck}. An (x-admissibility is taken into consideration in the case of the statistical 
approach to design of the ranked layers. From a computational point of view it is 
relatively easy to find the numbers Yn~ and 0m using a discrete, exhaustive search. The 
basis exchange algorithms, similar to linear programming methods, have been de- 
veloped for the purpose of finding the admissible hyperplanes related to the formal 
neurons FNi [12]. These algorithms allow to find the solution in efficient manner 
even in the case of large learmng sets C k. 

3 Data transformations based on the ranked layer 

The feature vectors xi from the learning sets C k are transformed by the ranked layer 
built from n' elements Ei into n'-dimensional vectors r 1, with binary components r I i. 
This transformation has the following general form: 
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r I = F(W; r ) .  (11) 

where W is the vector of the layer parameter. 
A few feature vectors xJ could be integrated into one vector r 1 in accordance with 

the transformations (15) (we can enumerate the vectors r I in such a manner that they 
are different: I~l' ~ rlerl'). As a result, the data sets are compressed and the number 
m' of the different vectors r 1 could by significantly less than m. Let us define the 
active fields SION ) of the layer with the transformation function F(W; x): 

S 1 = S(W; r 1) = { xJ 'F (W;  xJ) = r 1 and (3 Ck: xJE Ck) } . (12) 

The feature vectors xJ belonging to one active field S 1 are integrated into one vector r 1 
by the ranked layer. 

Definition 6: The active field S l is of the clear type if and only if it contains the 
feature vectors xJ from one learning set C k. Equivalently, the mixed active field 
contains the elements of more than one learning set C k (1). 

Definition 7: The learning set C k is dominant in the active field S 1 if most of the 
feature vectors xJ constituting S 1 belong to C k. Let symbol Sl(k ) mean the active field 
with the dominant set C k, or in other words, the active field related to the class r k. 

The class membership of the vectors r I could be defined (assigned) in the fol- 
lowing manner: 

{ the learning set C k is dominant in the active field S 1 } o  {rlE o~ k} (13) 

The labeled vectors r 1 constitute the transformed learning sets Dk: 

D k = { rl(k)} (l = 1 ...... m'k) .  (14) 

where m 'k is the number of transformed vectors rl(k) belonging to the class o) k (m 'k 
_< ink). 

The most important property of the ranked layer is its (separable) linearization of 
the learning sets ([11], [12]). This means that the sets D k of the vectors r 1 trans- 
formed by the ranked layer are linearly separable: 

(V k = 1 ........ K) (q Wk, O k ) (V rlE Dk) <Wk, rl> _> O k (15) 
and (VrlE Di, i ~ k) <wk, rl> < O k 

The family of the sets D k is linearly separable if  each set D k can be separated in the 
feature space from the sum of all remaining sets D i by some hyperplane H'(w,0; x) 
(9). This linearization property could be used, among other applications, in the de- 
sign of the visualizing transformations. 

4 Design of the ranked visualizing transformations 

We consider special nonlinear transformations from the N-dimensional feature 
space X onto a plane (two dimensions): 

Yl = F I (Wl ;  x) (16) 
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Y2 = F2(W2, x) 

where y = [Yl, Y2] T and W k (k = 1,2) are parameters of the transformations. Each of 
the above two transformations is related to one axis of the plane and will be based on 
a separate layer of the elements El, ranked with respect to some sets G 1 as described 
below. 

The feature vectors xJ(k) are transformed and visualized as the points yl(k') on 
the plane. The vectors yl(k) belonging to one class co k constitute the transformed 
learning sets F k (14). 

F k = { yl(k)} (l = 1 ...... m 'k) (17) 

The so called diagnostic maps of the learning sets C k can be generated by the 
transformations (16). A diagnostic map visualizes the data in such a manner that the 
selected sets F k are well separated. In other words, the feature vectors xJ(k) belonging 
to the selected sets C k are transformed and visualized as the points yl(k) located in 
the separate regions of the map. A decision support rule could be based on the diag- 
nostic map in the following manner: 

if the transformed feature vector y(x) (16) is located on the map (18) 
in the region o f  the well separated set(-s) F k 

then the vector x shouM be allocated into the class(-es) co k. 

Let us divide the data set twice into some subsets Gkl and Gk2 (k = 1,2) of the 
feature vectors xJ in order to design the transformations (16). Two ranked layers of 
the elements Ei, are designed by using the subsets Gki. The first layer is ranked with 
respect to the sets {Gll, G12 } (Gll vs G12), and the second layer is ranked with re- 
spect to the sets {G21, G22 }. The sets Gkl and Gk2 will be transformed by the k-th 
ranked layer into the sets Dkl and Dla of the vectors rJ. In accordance with the previ- 
ous consideration, the sets Dkl and Dla are linearly separable (19). Let (Vk*,0k*) be 
the parameters of a hyperplane which separates the sets Dkl and Dk2. These pa- 
rameters can be used also in definition of the linear transformation of the trans- 
formed vectors rkJ from the sets Dkl: 

Ylj = <Vl*, rl!> + 01" (19) 
Y2j = <v2*, r2J> + 02* 

The transformed vectors yJ=[yjl,Yj2] T. will constitute points on the diagnostic 
maps which represent the feature vectors xJ. 

In summary, the transformation of the feature vectors xJ into the points yJ on the 
diagnostic maps is done in two steps. During the first step, each feature vector xJ is 
transformed by two parallel ranked layers into two vectors rlJ and r2J. During the 
second step, the vectors rlJ and r2J are transformed linearly (19) into the point yJ. 

Note that the diagnostic map designed in this way is divided into the following 
quarters: 

the upper-rightquarter - G l l  n G21 (20) 
the lower-right quarter - G 11 n G22 
the Iower-leflquarter - G12 n G22 
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the upper- le f lquar ter  - G12 ~ G21 

The Iris data sets have been visualized in this manner (Fig. 1). 

5 An example of the diagnostic map design 

The Fisher's Iris data sets contain 150 four-dimensional feature vectors x J from 
three classes cok (learning sets Ck): col -_Iris setosa, O h - Iris versicolor,  O33 - Iris 
v irginnica [3]. Each learning set C k contains in this case exactly 50 feature vectors 
xJ. The transformation (16) related to the first axis of the diagnostic map has been 
defined by the layer of 7 elements Ei with the rule (14) ranked with respect to two 
sets C 2 and C 1 u C 3 (par t i t ion  C 2 vs. C1u C 3 ) (Tab.l). Similarly, the layer of the 
second axis was ranked with respect to sets C 2 and C 1 u C 3 (Tab.2). 

Table 1. Ranked layer designed for the  

Rule 
index 

Index of 
control 

feature xt 

)artition C 2 vs. C 1 uC 3 (first axis) 

Threshold 
O) 

Dominant 
Classesco i 

Numbers of the 
separated feature 

vectors 

Direction 

1 3 2.45 -1 
2 4 1.8 1 
3 3 4.5 -1 
4 2 3.05 1 
5 3 5.1 1 
6 1 6 1 

-1 

col w t ~  
col uo.~ 

t~ 
col u~ 

col u t ~  

50 (34 % ) 
43 (29 %) 
36 (24 %) 

5(3 %) 
5(3 %) 
9 (6 %)  
2(1%) 

Table 2. Ranked layer designed for t h e  

Rule 
index 

Index of 
control 

feature xt 
4 

Threshold 
01 

1.4 
2 4 1.8 
3 3 5.1 
4 1 6 
5 2 3 
6 2 3 

)artition C 3 vs. C 1 uC 2 

Direction Dominant 
Yi Classes coi 

-1 col w t~  

1 
1 ,C01 UO~, 
1 co 1 u t ~  
-1 o~ 
1 col uco7 

"second axis) 

Numbers of the 
separated feature 

vectors 
r 

84 (56 % ) 
40 (27 %) 

7 (5 %) 
11 (7%) 
4(3 %) 
3 (2%) 

1 (< 1%) 7 1 3 



54 

The linear transformations (19) related to each of the two axis has been defined 
by the following parameters: 

V l *  = IV 1 . . . . . . . .  V7] T = [ --10, --2, 6, 2, --2, --10, -10  ] T ,  01,  = 11 
v2  * = I v  1 . . . . . . . .  V7] w = [-10, 2, 2, 0, -10, -10, 0 ] T, 02,  = 9 

4 

O O 3- 
c3 (21) c3 (17) 

2 "  

�9 c3(10), c2(1) 0 

-3 -2 -1 

-2- 

-3" 

- 4  

-5. 

- 6  

- 7  

- 8  

-9 

-10 
el  (8) r (42) 

[ ]  [ ]  -11 

C3vs. C1~C2 

C2vs. C1 uC3  

1 2 3 4 5 6 7 8 9 

e~ A A A 
r c3(2) c2(6) r c2(1) 

c2 (3) r (25) 

A A 

D c l  

Ac2  

O c3 

Fig. 1. Diagnostic map for Iris data 

The characteristic feature of the map is that one set C k of the objects xJ is located 
in the one quarter of the visualising plane. Any four separable data sets could be 
transformed in this way on the plane 

6 C o n c l u d i n g  r e m a r k s  

The procedure for designing the visualising transformations has been described here. 
These non-linear transformations can be based on the ranked layer of the decision 
rules which are extracted from the learning data sets. The visualising transformation 
defines a new structure (topology) of the feature space X. 

The described procedure can be applied to the design of diagnostic maps, which 
can be used in the decision support (18) to complement logical formulas. The maps 
make possible the interactive user involvement in the decision making process. 
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Another possible application of the maps is a search for (non-linear) interactions 
among a groups of objects. The visualizing transformation designed on the base of 
the selected four categories (groups) of objects could be used to visualize the same or 
another object divided into other categories. We could observe in which way the 
selected partitions of the feature space X interact. 

One of the problems which should be avoided during the design of the non-linear 
visualizing transformations is data oveffitting. The transformation based on ranked 
networks may depend on a large number of parameters which have to be estimated 
from the learning data sets. The large number of estimated parameters could dimin- 
ish the generality of the design transformations and the decision rules. 

The design of the ranked layers from the logical elements Ei (6) allows the num- 
ber of  the estimated parameters to be decreased in comparison with the formal neu- 
rons FNi (5). Also, the computation of the ranked mles is easier for the elements Ei 
(6). On the other hand, this diminishes the discrimination power of the decision 
rules and it may be impossible to design the fully separable, ranked layer for some 
data sets by using only the elements Ei (6). This fact could be observed even for the 
Iris data sets. 
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