§2. Semigroups

For any $u \in Q$ we put

denom(u) = $\{0 \neq n \in \mathbb{Z}: nu \in \mathbb{Z}\}$

and for any $u' \subset Q$ we put

denom(u') = $\{0 \neq n \in \mathbb{Z}: nu \in \mathbb{Z} \text{ for all } u \in u'\}$.

We note that Q is an additive abelian semigroup and Z is an (additive) subsemigroup of Q. In fact Q is a nonnegative ordered additive abelian semigroup where by a nonnegative ordered additive abelian semigroup we mean the nonnegative part of an ordered additive abelian group, i.e., the set of all nonnegative elements of an ordered additive abelian group. Likewise Z is a nonnegative ordered additive abelian semigroup. Moreover Q is divisible, but Z is not, in the following sense.

An additive abelian semigroup G is said to be divisible if for every $v \in G$ and $0 \neq n \in Z$ there exists $v^* \in G$ such that $v = nv^*$. Note that if \overline{G} is a divisible ordered additive abelian group then for every $w \in \overline{G}$ and $u \in Q$ there exists a unique $w^* \in \overline{G}$ such that for every $n \in \text{denom}(u)$ we have $(nu)w = nw^*$; we define: $uw = w^*$; we observe that this notation is consistent with regarding \overline{G} as a module over the ring of rational numbers; we also note that if G is the nonnegative part of \overline{G} then for every $w \in G$ and $u \in Q$ we now have $uw \in G$.

4