NOTATION

For a locally compact space with a countable base, T, we shall denote by $\mathcal{C}(T)$ the space of all real continuous functions and by $\mathcal{C}_{O}(T)$, $\mathcal{C}_{C}(T)$, $\mathcal{C}_{b}(T)$ the subspaces of functions vannishing to infinity, of functions of compact support, of bounded functions. The space of all real Borel functions on T will be denoted by $\mathcal{B}(T)$ and the subspace of bounded Borel functions by $\mathcal{B}_{b}(T)$.

A kernel on T will be a positive linear operator V from $\mathcal{B}_b(T)$ into $\mathcal{B}(T)$ such that for each $x \in T$ the map $f \longrightarrow Vf(x)$ defines a Radon measure. The measure associated to x is denoted by V^X , i.e. $V^X(f) = Vf(x)$.

All terminology and notation on Markov processes will be that of [6]. Particularly if $(\Omega,M,M_t,X_t,\theta_t,P^X)$ is a standard process with state space (E,E), f is a nearly Borel positive function and A is a nearly Borel set we use the notation $T_A = \inf\{t>0 / X_t \in A\}$, $P_A^{\lambda}f(x) = E^X[\exp(-\lambda T_A).f(X_{T_A}), T_A < -]$ and $P_A = P_A^0$.

We say that a standard process is continuous if $t \longrightarrow X_t$ is a.s. continuous on [0,5).

For the terminology and notation from the theory of harmonic spaces which is not specifically explained here we refer to [13].

I. LOCAL OPERATORS

1. General Properties

1.1. A sheaf of vector spaces of real continuous functions on a locally compact space, X, is a family { A(U)/U open set } such that:

 1° For each open set U, A(U) is a vector space of real continuous functions on U;

2° If $U_1 \subset U_2$ are open sets and f \in A(U_2) then f $\cup_1 \in$ A(U_1);

 3° If {U_i/i \(\varphi \) is a family of open sets, U= φ U i and i \(\varphi \) I

 $f \in C(U)$ satisfies $f_{U_i} \in A(U_i)$, then $f \in A(U)$.

1.2. A local operator, L, on a locally compact space, X, is a pair ($\{D(U,L)/U \text{ open set}\}$, $\{(L,U)/U \text{ open set}\}$), where $\{D(U,L)/U \text{ open set}\}$ is a sheaf of vector spaces of real continuous functions on X and $\{(L,U)/U \text{ open set}\}$ is a family of linear operators such that:

 1° (L,U) : D(U,L) \longrightarrow C(U) is a linear operator.