Skip to main content

Effect of molecular structure on local chain dynamics: Analytical approaches and computational methods

  • Chapter
  • First Online:
Atomistic Modeling of Physical Properties

Part of the book series: Advances in Polymer Science ((POLYMER,volume 116))

Abstract

Analytical and numerical approaches for the treatment of local chain dynamics are reviewed. Two main approaches are considered. First the dynamic rotational isomeric state (DRIS) formalism which has been developed as the dynamic counterpart of the classical rotational isomeric state theory of chain statistics is recapitulated and compared with other analytical treatments of chain conformational dynamics. The DRIS model is based on the solution of the multivariate master equation describing the time evolution of discrete chain configurations. The limitations and implications of the formalism are discussed. The real conformational and structural characteristics of the chain are rigorously included in the DRIS formalism. This feature makes it particularly suitable for application to specific polymer chains. However, the cooperative motion of relatively long chain segments is considered in the DRIS formalism through a mean field approximation, only. This shortcoming is overcome by a newly developed approach, referred to as the cooperative dynamics model. The latter takes account of the restrictions imposed on the mechanism of conformational transitions by chain connectivity and environmental frictional resistance in addition to those from internal conformational barriers. Comparison of both DRIS and the cooperative kinematics approaches with Brownian simulations indicates that these approaches may be advantageously used for predicting the time evolution of bond rotameric states, the distribution of angular reorientations of bonds in the neighborhood of a rotating one, the types of coupled transitions which are most strongly favored by the particular chain structure. This type of information which would otherwise be extracted from the statistical analysis of long trajectories generated by Brownian or molecular dynamics simulations is readily obtainable from either the DRIS or the cooperative kinematics theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Rouse PEJ (1953) J Chem Phys 21: 1272

    Article  CAS  Google Scholar 

  2. Zimm BH (1956) J Chem Phys 24: 269

    Article  CAS  Google Scholar 

  3. Flory PJ (1969) Statistical mechanics of chain molecules. Interscience, New York

    Google Scholar 

  4. Jernigan RL (1972) In: Karasz FE (ed) Dielectric properties of polymers. Plenum, New York, p 99

    Google Scholar 

  5. Bahar I, Erman B (1987) Macromolecules 20: 1368

    Article  CAS  Google Scholar 

  6. Bahar I, Erman B (1988) J Chem Phys 88: 1228

    Article  CAS  Google Scholar 

  7. Bahar I, Erman B, Monnerie L (1989) Macromolecules 22: 431

    Article  CAS  Google Scholar 

  8. Bahar I, Erman B, Monnerie L (1989) Macromolecules 22: 2396

    Article  CAS  Google Scholar 

  9. Bahar I, Erman B, Monnerie L (1990) Macromolecules 23: 1174

    Article  CAS  Google Scholar 

  10. Bahar I, Erman B, Monnerie L (1991) Macromolecules 24: 3621

    Google Scholar 

  11. Bahar I, Erman B, Monnerie L (1992) Macromolecules 25: 6309

    Article  CAS  Google Scholar 

  12. Bahar I, Erman B, Monnerie L (1992) Macromolecules 25: 6315

    Article  CAS  Google Scholar 

  13. Erman B, Bahar I (1992) In: Noda I, Rubingh DN (eds) Polymer solutions, blends, and interfaces. Elsevier Science Publ. B.V., p 197

    Google Scholar 

  14. Ferrarini A, Moro G, Nordio PL (1990) Liquid Crystals 8: 593

    CAS  Google Scholar 

  15. Monnerie L, Vivoy JL (1986) In: Winnik MA (ed) Photophysical and photochemical tools in polymer science. p 193

    Google Scholar 

  16. Heatley F (1979) Progress in NMR spectroscopy. Pergamon, London, vol. 13

    Google Scholar 

  17. Heatley F (1986) Academic Press, London, vol. 17

    Google Scholar 

  18. Spiess HW (1985) Adv in Polym Sci 66: 23

    CAS  Google Scholar 

  19. Ediger MD (1991) Annu Rev Phys Chem 42: 225

    Article  CAS  Google Scholar 

  20. Williams G (1972) Chemical Reviews 72: 55

    Article  CAS  Google Scholar 

  21. Stockmayer WH (1967) Pure Appl Chem 15: 247

    Google Scholar 

  22. Kuhn W, Kuhn H (1945) Helv Chim Acta 28: 1533

    Article  CAS  Google Scholar 

  23. Kuhn W, Kuhn H (1946) Helv Chim Acta 29: 609 830

    Article  CAS  Google Scholar 

  24. Cerf, R (1957) J Polym Sci 23: 125.

    Article  CAS  Google Scholar 

  25. Peterlin A (1967) J Polym Sci A-2 5: 179

    Article  CAS  Google Scholar 

  26. Iwata K (1971) J Chem Phys 54: 12

    Article  CAS  Google Scholar 

  27. Cerf R (1977) J Phys (Paris) 38: 357

    CAS  Google Scholar 

  28. MacInnes DA (1977) J Polym Sci, Polym Phys Ed 15: 465

    Article  CAS  Google Scholar 

  29. Bazua ER, Williams MC (1973) J Chem Phys 59: 2858

    Article  CAS  Google Scholar 

  30. deGennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca and London

    Google Scholar 

  31. Allegra G (1974) J Chem Phys 61: 4910

    Article  CAS  Google Scholar 

  32. Allegra G (1975) J Chem Phys 63: 599

    Article  Google Scholar 

  33. Allegra G (1978) J Chem Phys 68: 3600

    Article  CAS  Google Scholar 

  34. Allegra G, Ganazzoli F (1981) J Chem Phys 74: 1310

    Article  CAS  Google Scholar 

  35. Allegra G, Ganazzoli F (1981) Macromolecules 14: 1110

    Article  CAS  Google Scholar 

  36. Allegra G, Ganazzoli F (1982) J Chem Phys 76: 6354

    Article  CAS  Google Scholar 

  37. Allegra G, Higgins JS, Ganazzoli F, Lucchelli E, Bruckner S (1984) Macromolecules 17: 1253

    Article  CAS  Google Scholar 

  38. Ganazzoli F, Allegra G, Higgins JS, Roots J, BrĂĽckner S, Lucchelli E (1985) Macromolecules 18: 435

    Article  CAS  Google Scholar 

  39. Glauber RJ (1963) J Math Phys 4: 294

    Article  Google Scholar 

  40. Shore JE, Zwanzig R (1975) J Chem Phys 63: 5445

    Article  CAS  Google Scholar 

  41. Helfand EJ (1971) J Chem Phys 54: 4651

    Article  Google Scholar 

  42. Shatzki TF (1962) J Polym Sci 57: 496

    Google Scholar 

  43. Boyer RF (1963) Rubber Chem Technol 34: 1303

    Google Scholar 

  44. Monnerie L, GĂ©ny F (1970) J Polym Sci Pt C 30: 93

    Google Scholar 

  45. Valeur B, Jarry JP, GĂ©ny F, Monnerie L (1975) J Polym Sci, Polym Phys Ed 13: 667

    Article  Google Scholar 

  46. Valeur B, Monnerie L, Jarry JP (1975) J Polym Sci, Polym Phys Ed 13: 675

    Article  Google Scholar 

  47. Dubois-Violette E, GĂ©ny F, Monnerie L, Parodi O (1969) J Chim Phys (Paris) 66: 1865

    CAS  Google Scholar 

  48. Jones AA, Stockmayer WH (1977) J Polym Sci, Polym Phys Ed 15: 847

    Article  CAS  Google Scholar 

  49. Bendler JT, Yaris R (1978) Macromolecules 11: 650

    Article  CAS  Google Scholar 

  50. Hall CK, Helfand E (1982) J Chem Phys 77: 3275

    Article  CAS  Google Scholar 

  51. Orwoll RA, Stockmayer WH (1969) Adv Chem Phys 15: 305

    Google Scholar 

  52. Bozdemir S (1981) Phys Status Solidi B 13: 459

    Google Scholar 

  53. Bozdemir S (1981) Phys Status Solidi B 104: 37

    Google Scholar 

  54. Skinner JL (1983) J Chem Phys 79: 1955

    Article  CAS  Google Scholar 

  55. Moro G, Nordio PL (1985) Mol Phys 56: 255

    Article  CAS  Google Scholar 

  56. Moro G, Nordio PL (1986) Mol Phys 57: 947

    Article  Google Scholar 

  57. Moro G (1987) Chem Phys 118: 167, 181

    Article  CAS  Google Scholar 

  58. Moro G, Ferrarini A, Polimeno A, Nordio PL (1989) In: DorfmĂĽller T (ed) Reactive and flexible molecules in liquids. Kluwer Academic, Dordrecht, p 107

    Google Scholar 

  59. Moro G (1991) J Chem Phys 94: 8577

    Article  CAS  Google Scholar 

  60. Ferrarini A, Moro G, Nordio PL (1988) Mol Phys 63: 225

    Article  CAS  Google Scholar 

  61. Ferrarini A, Nordio PL, Moro RH, Crepeau RH, Freed JH (1989) J Chem Phys 91: 5307

    Article  Google Scholar 

  62. Coletta F, Moro G, Nordio PL (1987) Mol Phys 61: 1259

    Article  CAS  Google Scholar 

  63. Coletta F, Ferrarini A, Nordio PL (1988) Chem Phys 123: 397

    Article  CAS  Google Scholar 

  64. Kramers A (1940) Physica 7: 284

    Article  CAS  Google Scholar 

  65. Mashimo S (1981) J Polym Sci, Polym Phys Ed 19: 213

    Article  CAS  Google Scholar 

  66. Iwata K (1973) J Chem Phys 58: 4184

    Article  CAS  Google Scholar 

  67. Boyd RH, Breitling SM (1974) Macromolecules 7: 855

    Article  CAS  Google Scholar 

  68. Blomberg C (1979) Chemical Physics 37: 219

    Article  CAS  Google Scholar 

  69. Skolnick J, Helfand E (1980) J Chem Phys 72: 5489

    Article  CAS  Google Scholar 

  70. Roe RJ (ed) (1991) Computer simulation of polymers. Prentice Hall, Englewood Cliffs, New Jersey, p 404

    Google Scholar 

  71. Zuniga I, Bahar I, Dodge R, Mattice WL (1991) J Chem Phys 95: 5348

    Article  CAS  Google Scholar 

  72. Bahar I, Neuburger N, Mattice WL (1992) Macromolecules 25: 4619

    Article  CAS  Google Scholar 

  73. Haliloglu T, Bahar I, Erman B (1992) J Chem Phys 97: 4428

    Article  CAS  Google Scholar 

  74. Adolf DB, Ediger MD (1991) Macromolecules 24: 5834

    Article  CAS  Google Scholar 

  75. Adolf DB, Ediger MD (1992) Macromolecules 25: 1074

    Article  CAS  Google Scholar 

  76. Ediger MD, Adolf DB, in this volume

    Google Scholar 

  77. Roe RJ, in this volume

    Google Scholar 

  78. Van Kampen NG (1990) Stochastic processes in physics and chemistry. Elsevier Science Publishers, Amsterdam, North-Holland, p 419

    Google Scholar 

  79. Oppenheim I, Shuler KE, Weiss GH (1967) Adv Mol Relax Processes 1: 13

    Article  CAS  Google Scholar 

  80. Gardiner CW (1990) Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences, 2nd edn. Springer-Verlag, London, p 442

    Google Scholar 

  81. Volkenstein MV (1963) Configurational Statistics of Polymeric Chains. Wiley-Interscience, New York

    Google Scholar 

  82. Jernigan R, Szu SC (1976) J Polym Sci, Polym Symp 54: 271

    CAS  Google Scholar 

  83. Paul E, Mazo RM (1971) Macromolecules 4: 424

    Article  Google Scholar 

  84. Bahar I, Erman B, Kremer F, Fischer EW (1992) Macromolecules 25: 816

    Article  CAS  Google Scholar 

  85. Bahar I (1989) J Chem Phys 91: 6525

    Article  CAS  Google Scholar 

  86. Bahar I, Mattice WL (1990) Macromolecules 23: 2719

    Article  CAS  Google Scholar 

  87. Kramers HA, Wannier GH (1941) Phys Rev 60: 252, 263

    Article  Google Scholar 

  88. Newell GF, Montroll FW (1953) Rev Mod Phys 25: 353

    Article  Google Scholar 

  89. Lifson S (1957) J Chem Phys 26: 727

    Article  CAS  Google Scholar 

  90. Lifson S (1959) J Chem Phys 30: 964

    Article  CAS  Google Scholar 

  91. Nagai J (1959) J Chem Phys 31: 1169

    Article  CAS  Google Scholar 

  92. Birshtein TM, Ptitsyn OB (1959) J Tech Phys (USSR) 29: 1048

    CAS  Google Scholar 

  93. Williams G, Watts DC (1970) Trans Faraday Soc 66: 80

    Article  CAS  Google Scholar 

  94. Williams G (1979) Adv Polym Sci 33: 59

    Article  CAS  Google Scholar 

  95. Ngai KL, Mashimo S, Fytas G (1988) Macromolecules 21: 3030

    Article  CAS  Google Scholar 

  96. Viovy JL, Monnerie L, Brochon J (1983) Macromolecules 16: 1845

    Article  CAS  Google Scholar 

  97. Kloczkowski A, Mark JE, Bahar I, Erman B (1990) J Chem Phys 92: 4513

    Article  CAS  Google Scholar 

  98. Weber TA, Helfand E (1983) J Phys Chem 87: 2881

    Article  CAS  Google Scholar 

  99. Fixman M (1978) J Chem Phys 69: 1527

    Article  CAS  Google Scholar 

  100. Fixman M (1978) J Chem Phys 69: 1538

    Article  CAS  Google Scholar 

  101. Lang MC, Laupretre F, Noel C, Monnerie L (1979) J Chem Soc Faraday Trans 2 75: 349

    Article  CAS  Google Scholar 

  102. Liu KJ, Anderson JE (1970) Macromolecules 3: 163

    Article  CAS  Google Scholar 

  103. Hermann G, Weill G (1975) Macromolecules 8: 171

    Article  CAS  Google Scholar 

  104. Friedrich C, Laupretre F, Noel C, Monnerie L (1980) Macromolecules 13: 1625

    Article  CAS  Google Scholar 

  105. Bahar, I, Erman B (1987) Macromolecules 20: 2310

    Article  CAS  Google Scholar 

  106. Herzberg G (1945) Infrared and Raman spectra; Van Nostrand-Reinhold, New Yor

    Google Scholar 

  107. Eliel EL, Allinger NL, Angval SJ, Morrison GA (1967) Conformational Analysis. Interscience, New York

    Google Scholar 

  108. Bahar I, Erman B, Monnerie L (1990) Macromolecules 23: 3805

    Article  CAS  Google Scholar 

  109. Boese D, Kremer F (1990) Macromolecules 23: 829

    Article  CAS  Google Scholar 

  110. Mark JE (1966) J Am Chem Soc 88: 4354

    Article  CAS  Google Scholar 

  111. Abe Y, Flory PJ (1971) Macromolecules 4: 219

    Article  Google Scholar 

  112. Anderson JE (1970) J Chem Phys 52: 2821

    Article  CAS  Google Scholar 

  113. Ullman R (1968) J Chem Phys 49: 831

    Article  CAS  Google Scholar 

  114. Ullman R (1967) J Chem Phys 47: 4879

    Article  Google Scholar 

  115. Helfand E (1984) Science 226: 647

    Article  CAS  Google Scholar 

  116. Viovy JL, Frank CW, Monnerie L (1985) Macromolecules 18: 2606

    Article  CAS  Google Scholar 

  117. Jones AA (1989) In: Klafter J, Drake JM (eds) Molecular dynamics in restricted geometry, Wiley-Interscience, New York, p 247

    Google Scholar 

  118. Wefing S, Kauffman S, Spiess HW (1988) J Chem Phys 89: 1234

    Article  CAS  Google Scholar 

  119. Westermark B, Spiess HW (1988) Makromol Chem 189: 2367

    Article  CAS  Google Scholar 

  120. Schaefer D, Spiess HW, Suter UW, Fleming WW (1990) Macromolecules 23: 3431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lucien Monnerie U. W. Suter

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Bahar, I., Erman, B., Monnerie, L. (1994). Effect of molecular structure on local chain dynamics: Analytical approaches and computational methods. In: Monnerie, L., Suter, U.W. (eds) Atomistic Modeling of Physical Properties. Advances in Polymer Science, vol 116. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0080199

Download citation

  • DOI: https://doi.org/10.1007/BFb0080199

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57827-7

  • Online ISBN: 978-3-540-48352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics