A SOLUTION An Exemple as requested in the problem of R. Thom, D 4c ## by F. Takens Consider in the plane \mathbb{R}^2 with euclidean metric $\mathrm{ds}^2 = \mathrm{dx}^2 + \mathrm{dy}^2$ and unit sphere $\mathrm{x}^2 + \mathrm{y}^2 = 1$ the polynomial function $\mathrm{f} = \mathrm{x}(2\mathrm{x}^2 + 3\mathrm{ty}^2)$, $\mathrm{t} > 0$, with covectorfield $\mathrm{df} = 3\left[(2\mathrm{x}^2 + \mathrm{ty}^2)\mathrm{dx} + 2\mathrm{txydy}\right]$. The set of periods at which df is linearly dependent on $\mathrm{d}(\mathrm{x}^2 + \mathrm{y}^2) = 2\left[\mathrm{xdx} + \mathrm{ydy}\right]$ is given by $(2\mathrm{x}^2 + \mathrm{ty}^2)\mathrm{y} - 2\mathrm{txy}.\mathrm{x} = \mathrm{y}\left[\mathrm{ty}^2 - 2(\mathrm{t}-1)\mathrm{x}^2\right] = 0$. Then it is easily seen that the set of points that converge to (0,0) when following the gradientline of f downwards is: for $0 < \mathrm{t} \le 1$, the half line $\{(\mathrm{x},\mathrm{y}): \mathrm{x} \ge 0, \mathrm{y} = 0\}$ and for $\mathrm{t} > 1$, the solid angle $\{(\mathrm{x},\mathrm{y}): \mathrm{x} \ge 0, \mathrm{ty}^2 - 2(\mathrm{t}-1)\mathrm{x}^2 \le 0\}$. With the substitution $\mathrm{X} = \mathrm{x}, \mathrm{Y} = \sqrt{\mathrm{t}} \mathrm{y}$ we can conclude: The set of points in the (X,Y) -plane that converge to (0,0) downwards when following the gradient lines of the function $\mathrm{X}(2\mathrm{X}^2 + 3\mathrm{Y}^2)$ with respect to the euclidean metric $\mathrm{ds}^2 = \mathrm{td}\mathrm{X}^2 + \mathrm{dy}^2$ with unit sphere $\mathrm{tX}^2 + \mathrm{y}^2 = 1$, is: for $0 < \mathrm{t} \le 1$, the half line $\{(\mathrm{X},\mathrm{Y}): \mathrm{X} \ge 0, \mathrm{Y} = 0\}$, and for $\mathrm{t} > 1$, the solid angle $\{(\mathrm{X},\mathrm{Y}): \mathrm{X} \ge 0, \mathrm{Y}^2 - 2(\mathrm{t}-1)\mathrm{X}^2 \le 0\}$. Hence the topological type of this set varies with the metric depending on t .