
Performance Analysis and Portability of the 
PLUM Load Balancing System 

Leonid Oliker l, Rupak Biswas ~, and Harold N. Gabow 3 

1 RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA 
2 MR J, NASA Ames Research Center, Moffett Field, CA 94035, USA 
3 CS Department, University of Colorado, Boulder, CO 80309, USA 

Abstract. The ability to dynamically adapt an unstructured mesh is a 
powerful tool for solving computational problems with evolving physi- 
cal features; however, an efficient parallel implementation is rather diffi- 
cult. To address this problem, we have developed PLUM, an automatic 
portable framework for performing adaptive numerical computations in 
a message-passing environment. PLUM requires that all data be glob- 
ally redistributed after each mesh adaption to achieve load balance. We 
present an algorithm for minimizing this remappingoverhead by guar- 
anteeing an optimal processor reassignment. We also show that the data 
redistribution cost can be significantly reduced by applying our heuristic 
processor reassignment algorithm to the default mapping of the parallel 
partitioner. Portability is examined by comparing performance on a SP2, 
an Origin2000, and a T3E. Results show that PLUM can be successfully 
ported to different platforms without any code modifications. 

1 I n t r o d u c t i o n  

The ability to dynamical ly  adapt  an unstructured mesh is a powerful tool for effi- 
ciently solving computa t ional  problems with evolving physical features. S tandard  
fixed-mesh numerical  methods can be made more cost-effective by locally refining 
and coarsening the mesh to capture these phenomena  of interest. Unfortunately,  
an efficient parallelization of these adaptive methods  is ra ther  difficult, pr imari ly  
due to the load imbalance created by the dynamical ly-changing nonuniform grid. 
Nonetheless, it is generally thought that  unstructured adaptive-grid techniques 
will consti tute a significant fraction of future high-performance supereomputing.  

With  this goal in mind, we have developed a novel method,  called PLUM [7], 
that  dynamical ly  balances processor workloads with a global view when perform- 
ing adaptive numerical  calculations in a parallel message-passing environment.  
The mesh is first part i t ioned and mapped  among  the available processors. Once 
an acceptable numerical solution is obtained, the mesh adapt ion procedure [8] 
is invoked. Mesh edges are targeted for coarsening or refinement based on an 
error indicator computed  from the solution. The  old mesh is then coarsened, 
resulting in a smaller grid. Since edges have already been marked for refinement, 
the new mesh can be exactly predicted before actually performing the refine- 
ment  step. P rogram control is thus passed to the load balancer at this t ime.  



308 

If the current partit ions will become load imbalanced after adaption, a repar- 
titioner is used to divide the new mesh into subgrids. The new partitions are 
then reassigned among the processors in a way that  minimizes the cost of data  
movement. If the remapping cost is compensated by the computat ional  gain that  
would be achieved with balanced partitions, all necessary da ta  is appropriately 
redistributed. Otherwise, the new parti t ioning is discarded. The computat ional  
mesh is then refined and the numerical calculation is restarted. 

2 D y n a m i c  L o a d  B a l a n c i n g  

2.1 Repartit ioning the Initial Mesh Dual  Graph 

Repeatedly using the dual of the initial computat ional  mesh for dynamic load 
balancing is one of the key features of PkUM [7]. Each dual graph vertex has a 
computational  weight, Wcomp, and a remapping weight, Wremap- These weights 
model the processing workload and the cost of moving the corresponding element 
from one processor to another. Every dual graph edge also has a weight, Wcomm, 
that models the runtirne communication. New computat ional  grids obtained by 
adaption are represented by modifying these three weights. If the dual graph 
with a new set of Wcomp is deemed unbalanced, the mesh is repartitioned. 

2.2 Processor Reass ignment  

New partitions generated by a partit ioner are mapped to processors such that  the 
data  redistribution cost is minimized. In general, the number of new partitions is 
an integer multiple F of the number of processors, and each processor is assigned 
F partitions. Allowing multiple partitions per processor reduces the volume of 
data  movement but increases the partit ioning and reassignment times [7]. 

We first generate a similarity measure M that  indicates how the remapping 
weights Wremap of the new partitions are distributed over the processors. It is 
represented as a matr ix  where entry Mij is the sum of the Wrema p values of all the 
dual graph vertices in new parti t ion j that  already reside on processor i. Various 
cost functions are usually needed to solve the processor reassignment problem 
using M for different machine architectures. We present three general metrics: 
Togalg,  MaxV, and MaxSR, which model the remapping cost on most multipro- 
cessor systems. Tota lY minimizes the total volume of data  moved among all the 
processors, Maxg minimizes the maximum flow of data  to o r  from any single pro- 
cessor, while NaxSR minimizes the sum of the maximum flow of data  to a n d  from 
any processor. Experimental  results [2] have indicated the usefulness of these 
metrics in predicting the actual remapping costs. A greedy heuristic algorithm 
to minimize the remapping overhead is also presented. 

T o t a l V  M e t r i c .  The To ta l l /  metric assumes that  by reducing network con- 
tention and the total number of elements moved, the remapping time will be 
reduced. In general, each processor cannot be assigned F unique partitions cot- 



309 

responding to their F largest weights. To minimize TotalV, each processor i must 
be assigned F partitions ji_f, f = 1, 2 , . . . ,  F, such that  the objective function 

P F 

y-- EE 
{ ~ I  f;l 

is maximized subject to the constraint 

ji_rejk-~, f o r i e k o r r e s ;  i , k = l , 2 , . . . , P ;  r , s = l , 2 , . . . , F .  
We can optimally solve this by mapping it to a network flow optimization 

problem described as follows. Let G = (17, E) be an undirected graph. G is 
bipartite if V can be parti t ioned into two sets A and B such that  every edge 
has one vertex in A and the other vertex in /3 .  A matching is a subset of edges, 
no two of which share a common vertex. A maximum-cardinality matching is 
one that  contains as many edges as possible. If G has a real-vMued cost on each 
edge, we can consider the problem of finding a maximum-cardinali ty matching 
whose totM edge cost is maximized. We refer to this as the maximally weighted 
bwartite graph (MWBG) problem (also known as the assignment problera). 

When F = l, optimally solving the Tota lV metric trivially reduces to MWBG,  
where V consists of P processors and P partitions in each set. An edge of weight 
M~j exists between vertex i of the first set and vertex j of the second set. If 
F > 1, the processor reassignment problem can be reduced to MWBG by du- 
plicating each processor and all of its incident edges F times. Each set of the 
bipartite graph then has P• vertices. After the optimal solution is obtained, 
the solutions for all F copies of a processor are combined to form a one- to-F 
mapping between the processors and the partitions. The optimal solution for 
the To~;alV metric and the corresponding processor assignment of an example 
similarity matr ix  is shown in Fig. l(a) .  

The  fastest MWBG algorithm can compute a matching in O(IVI 2 log IVI + 
IVIIEI) t ime [3], or in O(IVI1/2IEI log(IVlC)) t ime if all edge costs are integers of 
absolute value at most C [5]. We have implemented the optimal algorithm with 
a runtime of O([V[3). Since M is generally dense, [E[ ~, IV[ 2, implying that  we 
should not see a dramatic performance gain from a faster implementation. 

M a x V  M e t r i c .  The metric HaxY, unlike TotalV, considers data  redistribution 
in terms of solving a load imbalance problem, where it is more impor tant  to 
minimize the workload of the most heavily-weighted processor than to mini- 
mize the stun of all the loads. During the process of remapping, each processor 
must pack and unpack send and receive buffers, incur remote-memory latency 
time, and perform the computat ional  overhead of rebuilding internal and shared 
data  structures. By minimizing max (a x max(~.lemsSent),/~ x max(~.lerasRecd)), 
where a and/3 are machine-specific parameters,  MaxV at tempts  to reduce the to- 
tal remapping time by minimizing the execution time of the most heavily-loaded 
processor. We can solve this optimally by considering the problem of finding 
a maximum-cardinality matching whose maximum edge cost is minimum. We 
refer to this as the bottleneck maximum cardinality matching (BMCM) problem. 

To find the BMCM of the graph G correspond!ng to the similarity matrix,  
we first need to transform M into a new matr ix  M . Each entry Mi' j represents 



310 

New Partitions New Partitions New Partitions New Partitions 

New Processors 
TotalV moved = 525 
MaxV moved = 275 

MaxSR moved = 485 
(a) 

New Processors 
TotalV moved = 640 
MaxV moved = 245 

MaxSR moved = 475 
(b) 

New Processors New Processors 
TotalV moved = 570 TotalV moved = 550 
MaxV moved = 255 MaxV moved = 260 

MaxSR moved = 465 MaxSR moved = 470 
(c) (d) 

Fig. 1. Various cost metrics of a similarity matrix M for P = 4 and F = 1 using 
(a) the optimal MWBG, (b) the optimal BMCM, (c) the optimal DBMCM, and (d) our 
heuristic algorithms 

the maximum cost of sending data to or receiving data from processor i and 
partit ion j :  

P P 

y ~ l  x = l  

Currently, our framework for the Max]/metric is restricted to F = 1. 

We have implemented the BMCM algorithm of Bhat [1] which combines 
a maximmn cardinality matching Mgorithm with a binary search, and runs in 
O(IVI1/2IEI log IVI). The fastest known BMCM algorithm, proposed by Gabow 
and Tarjan [4], has a runtime of O((IV I log IV[)I/21EI). 

The new processor assignment for the similarity matrix in Fig. 1 using this 
approach with a = ,3 = 1 is shown in Fig. 1 (b). Notice that the total number of 
elements moved in Fig. l(b) is larger than the corresponding value in Fig. l(a); 
however, the maximum number of elements moved is smaller. 

M a x S R  M e t r i c .  Our third metric, MaxSR, is similar to MaxV in the sense that 
the overhead of the bottleneck processor is minimized during the remapping 
phase. MaxSR differs, however, in that  it minimizes the sum of the heaviest data  
flow from any processor and to any processor, expressed as (a •  

+ fl•  We refer to this as the double bottleneck maximum 
cardinality matching (DBMCM) problem. The MaxSR formulation allows us to 
capture the computational  overhead of packing and unpacking data, when these 
two phases are separated by a barrier synchronization. Additionally, the 14axSl~ 
metric may also approximate the many- to-many communication pattern of our 
remapping phase. Since a processor can either be sending or receiving data, the 
overhead of these two phases should be modeled as a sum of costs. 

We have developed an algorithm for computing the minimum MaxSR of the 
graph G corresponding to our similarity matrix. We first transform M to a new 

�9 l /  l /  

matrix M . Each entry Mij contains a pair of values (Send, Receive) correspond- 



311 

ing to the total cost of sending and receiving data, when partition j is mapped 
to processor i: 

P P 
t t  

. . j  : { s.j = (4 E y j) . = E Mx . x i) } 
y = l  x = l  

Currently, our algorithm for the I~axSR metric is restricted to F = 1. 
Let cq,~r2,...,~rk be the distinct Send values appearing in M", sorted in 

increasing order. Thus, ~ri < c~i+l and k _< p2. Form the bipartite graph Gi = 
(V, Ei), where V consists of processor vertices u = 1 ,2 , . . . ,  P and partition 
vertices v = 1 , 2 , . . . , P ,  and Ei contains edge (u,v) if Su~ _< ~ri; furthermore, 
edge (u, v) has weight R ~  if it is in El. 

For small values of i, graph Gi may not have a perfect matching. Let imin 
be the smallest index such that  Gim~, has a perfect matching. Obviously, Gi has 
a perfect matching for all i _> imin. Solving the BMCM problem of Gi gives a 
matching that  minimizes the maximum Receive edge weight. It gives a matching 
with llaxSR value at most ~ri+ l~axV(Gi). Defining 

MaxSR(i) = min (crj + MaxV(aj)) 
imia<j<i 

it is easy to see that  blaxSR(k) equals the correct value of MaxSR. Thus, our al- 
gorithm computes MaxSR by solving k BMCM problems on the graphs Gi and 
computing the minimum value MaxSR(k). However, we can prematurely termi- 
nate the algorithm if there exists an imp• such that  Cqm.~+X > MaxSR(i~) ,  since 
it is then guaranteed that  the llaxSR solution is MaxSR(im~x). 

Our implementation has a runtime of O(IVI1/21EI2 log IVI) since the BMCM 
algorithm is called IEI times in the worst case; however, it can be decreased to 
O(IEI~). The following is a brief sketch of this more efficient implementation. 

Suppose we have constructed a matching 3/I that  solves the BMCM problem 
of Gi for i _> imin. We solve the BMCM problem of Gi+I as follows. Initialize 
a working graph G to be Gi+l with all edges of weight greater than Maxg(Gi) 
deleted. Take the matching 3,t on G, and delete all unmatched edges of weight 
MaxV(Gd. Choose an edge (u, v) of maximum weight in 3.4. Remove edge (u, v) 
from 3,t and G, and search for an augmenting path from u to v in G. If no such 
path exists, we know that  MaxV(G~) =MaxV(G~+~). If an augmenting path is 
found, repeat this procedure by choosing a new edge (u ~, v ~) of maximum weight 
in the matching and searching for an augmenting path. After some number of 
repetitions of this procedure, the maximum weight of a matched edge will have 
decreased to the desired value MaxV(Gi+l). At this point our algorithm to solve 
the BMCM problem of Gi+l will stop, since no augmenting path will be found. 

To see that  this algorithm runs in O(IEI~), note that  each search for an 
augmenting path uses time O(IE]) and that  there are O(IEI) such searches, a 
successful search for an augmenting path for edge (u, v) permanently eliminates it 
from all future graphs, so there are at most I~:l successful searches. Furthermore, 
there are at most IEI unsuccessful searches, one for each value of i. 

The new processor assignment for the similarity matr ix in Fig. 1 using the 
DBMCM algorithm with c~ = ~ = 1 is shown in Fig. l(c). Notice that  the MaxSR 



312 

solution is minimized; however, the number of TotalV elements moved is larger 
than the corresponding value in Fig. l(a),  and more MaxV elements are moved 
than in Fig. l(b).  Also note that  the optimal similarity matr ix  solution for MaxSR 
is provably no more than twice that  of l~axV. 

H e u r i s t i c  A l g o r i t h m .  We have developed a heuristic greedy algorithm that  
gives a suboptimal solution to the WotalV metric in O(IEI) steps [7]. All par- 
titions are initially flagged as unassigned and each processor has a counter set 
to F that indicates the remaining number of partitions it needs. The non-zero 
entries of the similarity matr ix  M are then sorted in descending order. Start- 
ing from the largest entry, partitions are assigned to processors that  have less 
than F partitions until done. If necessary, the zero entries in M are also used. 
Oliker and Biswas [7] proved that  a processor assignment obtained using the 
heuristic algorithm can never result in a data  movement cost that  is more than 
twice that of the optimal TotalY assignment. In addition, experimental results 
in Sec. 3.1 demonstrate  that  our heuristic quickly finds high quality solutions 
for all three metrics. Applying this heuristic algorithm to the similarity matr ix  
in Fig. ] generates the new processor assignment shown in Fig. l(d).  

2.3 R e m a p p i n g  Cos t  M o d e l  
Once the reassignment problem is solved, a model is needed to quickly predict 
the expected redistribution cost for a given architecture. Our redistribution al- 
gorithm consists of three major  steps: first, the data  objects moving out of a 
partit ion are stripped out and placed in a buffer; next, a collective communi- 
cation distributes the data  to its destination; and finally, the received data  is 
integrated into each part i t ion and the boundary information is consistently up- 
dated. This remapping procedure closely follows the superstep model of BSP [9]. 

The expected t ime for the redistribution procedure on bandwidth-rich sys- 
tems can be expressed as 3 ~ x MaxSR + O, where MaxSR = max(ElemsSent)  + 
max(ElemsRecd), 7 is the total computat ion and communication cost to process 
each redistributed element, and O is the sum of all constant overheads [7]. This 
formulation demonstrates the need to model the MaxSR metric when performing 
processor reassignment. By minimizing MaxSR, we can guarantee a reduction in 
the computat ional  overhead of our remapping algorithm. To compute 7 and O, 
a simple least squares fit through several data  points for various redistribution 
patterns and their corresponding runtimes can be used. This procedure needs 
to be performed only once for each architecture, and the values of 7 and O can 
then be used in actual computations to estimate the redistribution cost. 

3 Experimental Results 
The 3D_TAG parallel mesh adaption procedure [8] and the PLUM global load 
balancing strategy [7] have been implemented in C and C+q-, with the parallel 
activities in MPI for portability. All experiments were performed on the wide- 
node SP2 at NASA Ames, the Origin2000 at NCSA, and the T3E at NASA 
Goddard, without any machine-specific optimizations. 



313 

The computat ional  mesh used in this paper  is one used to simulate an acous- 
tics wind-tunnel experiment of a UH-1H helicopter rotor blade [7]. Three differ- 
ent cases are studied, with varying fractions of the domain  targeted for refine- 
ment  based on an error indicator calculated directly from the flow solution. The 
strategies, called Real_l, Real_2, and Real_3, subdivided 5%, 33%, and 60% of the 
78,343 edges of the initial mesh. This  increased the number  of mesh elements 
from 60,968 to 82,489,201,780, and 321,841, respectively. 

3.1 C o m p a r i s o n  o f  R e a s s i g n m e n t  A l g o r i t h m s  

Table 1 presents a comparison of our five different processor reassignment al- 
gori thms in terms of the reassignment t ime (in secs) and the amount  of da ta  
movement .  Results are shown for the ReaI_2 strategy on the SP2 with F = 1. 
The  PMeTiS [6] case does not require any explicit processor reassignment since 
we choose the default part i t ion-to-processor mapping  given by the parti t ioner.  
The poor performance for all three metrics is expected since PMeTiS is a global 
part i t ioner that  does not a t t empt  to minimize the remapping overhead. Previous 
work [2] compared the performance of PMeTiS with other parti t ioners.  

Table  1. Comparison of reassignment algorithms for Real_2 on the SP2 with F = 1 

Algthm. 

P = 3 2  
TotalV MaxV MaxgR Reass. 
Metric Metric Metric Time 

P = 6 4  
TotaYV MaxY MaxSR Reass. 
Metric Metric Metric Time 

PMeTiS 58297 5067 7467 0.0000 67439 2667 4452 0.0000 
MWBG 34738 4410 5822 0.0177 38059 2261 3142 0.0650 
BMCM 49611 4410 5944 0.0323 52837 2261 3282 0.1327 

DBMCM 50270 4414 5733 0.0921 54896 2261 3121 1.2515 
Heuristic 35032 4410 5809 0.0017 38283 2261 3123 0.0088 

The execution times of the other four algori thms increase with the number  
of processors because of the growth in the size of the similarity matr ix;  however, 
the heuristic t ime for 64 processors is still very small and acceptable. The  total  
volume of da ta  movement  is obviously the smallest for the M W B G  algori thm 
since it opt imal ly  solves for the To ta lV metric.  In the opt imal  BMCM method,  
the m a x i m u m  of the number  of elements sent or received is explicitly minimized, 
but all the other algorithms give almost  identical results for the MaxV metric. 
In our helicopter rotor experiment,  only a few localized regions of the domain  
incur a d ramat ic  increase in the number  of grid points between refinement levels. 
These newly-refined regions must  shift a large number  of elements onto other 
processors in order to achieve a balanced load distribution. Therefore, a similar 
MaxV solution should be obtained by any reasonable reassignment algori thm. 

The DBMCM algorithm opt imal ly  reduces MaxSR, but achieves no more than 
a 5% improvement  over the other algorithms. Nonetheless, since we believe tha t  
the MaxSR metric can closely approximate  the remapping cost on many  archi- 
tectures, computing its opt imal  solution can provide useful information.  Notice 



314 

that  the minimum TotalV increases slightly as P grows from 32 to 64, while 
MaxSR is dramatically reduced by over 45%. This trend continues as the number 
of processors increases, and indicates that  PLUM will remain viable on a large 
number of processors, since the per processor workload decreases as P increases. 

Finally, observe that the heuristic algorithm does an excellent job in mini- 
mizing all three cost metrics, in a trivial amount  of time. Although theoretical 
bounds have only been established for the Tota:W metric, empirical evidence in- 
dicates that  the heuristic algorithm closely approximates both }laxV and }laxSR. 
Similar results were obtained for the other edge-marking strategies. 

3.2 P o r t a b i l i t y  A n a l y s i s  

The top three plots in Fig. 2 illustrate parallel speedup for the three edge- 
marking strategies on the SP2, Origin2000, and T3E. Two sets of results are 
presented for each machine: one when data  remapping is performed after mesh re- 
finement, and the other when remapping is done before refinement. The speedup 
numbers are almost identical on all three machines. The Real_3 case shows the 
best speedup values because it is the most computat ion intensive. Remapping 
data  before refinement has the largest relative effect for Real_l, because it has 
the smallest refinement region and predictively load balancing the refined mesh 
returns the biggest benefit. The best results are for Real_3 with remapping before 
refinement, showing an efficiency greater than 87% on 32 processors. 

60 �84 

45 
i::a. 

~ 30 

0 

SP2  
.... R e m a p  after re f inement  / 
- -  Remap  before r e f i nemeJ1J / /  

o R e a l  1 ~ ~  
o R e a l - 2  ~ . / 1 ~ /  ........ 
t, R e a l ~ ~  

...-- ...... - ..... 
�9 . . -"" . ._.E?.. .----" ... 

30 

24 

t8 

12 

6 

-* S P2 

""o.: ....... 101 

~ '  1~ 0 
16 2,4 3'2 40 4'8 5'6 64 

N u m b e r  o f  processors  

O r i g i n 2 0 0 0  

.a  y "  ..... - .... 

..--"" ..o--" ..... . ............ 

a .  .... a., O r i g i n 2 0 0 0  

'B:. o " "  

4 ~ 1'2 f6 20 2̀4 28 
N u m b e r  o f  processors  

80, 
T3E  

,601 

.... o ........... e- ........... 

101 

,1J 

T 3 E  

"~".....::~.:.....:. 

1'6 3'2 48 64 80 9'6 l i 2  128 
N u m b e r  o f  processors  

Fig. 2. Refinement speedup (top) and remapping time (bottom) within PLUM on the 
SP2, Origin2000, and T3E, when data is redistributed after or before mesh refinement 

To compare the performance on the SP2, Origin2000, and T3E more crit- 
ically, one needs to look at the actual times rather than the speedup values. 
Table 2 shows how the execution time (in sees) is spent during the refinement 
and subsequent load balancing phases for the Real_2 case when data  is remapped 



315 

Table  2. Anatomy of execution times for Real_2 on the Origin2000, SP2, and T3E 

Adaption Time Remapping Time Partitioning Time 
P 02000 SP2 T3E 02000 SP2 T3E 02000 SP2 T3E 

2 5.261 12.06 3.455 3.005 3.440 2.648 0.628 0.815 0.701 
4 2.880 6.734 1.956 3.005 3.440 1.501 0.584 0.537 0.477 
8 1.470 3.434 1.034 2.963 3.321 1.449 0.522 0.424 0.359 

16 0.794 1.846 0.568 2.346 2.173 0.880 0.396 0.377 0.301 
32 0.458 1.061 0.333 0.491 1.338 0.592 0.389 0.429 0.302 
64 0.550 0.188 0.890 0.778 0.574 0.425 

128 0.121 1.894 0.599 

before the subdivision phase. The processor reassignment times are not presented 
since they are negligible compared to other times, as is evident f rom Table 1. 
Notice tha t  the T3E adaption t imes are consistently more than  1.4 t imes faster 
than the Origin2000 and three times faster than the SP2. One reason for this 
performance difference is the disparity in the clock speeds of the three machines. 
Another reason is that  the mesh adaption code does not use the floating-point 
units on the SP2, thereby adversely affecting its overall performance.  

The  b o t t o m  three plots in Fig. 2 show the remapping t ime for each of the 
three cases on the SP2, Origin2000, and T3E. In almost  every case, a significant 
reduction in remapping t ime is observed when the adapted  mesh is load balanced 
by performing da ta  movement  prior to refinement. This  is because the mesh 
grows in size only after the data  has been redistributed. In general, the remapping 
t imes also decrease as the number of processors is increased. This is because 
even though the total  volume of da ta  movement  increases with the number  of 
processors, there are actually more processors to share the work. The remapping 
times when da ta  is moved before mesh refinement are reproduced for the Real_2 
case in Table 2 since the exact values are difficult to read off the log-scale. 

Perhaps the most  remarkable feature of these results is the peculiar behav- 
ior of the T3E  when P > 64. When using up to 32 processors, the remapping  
performance of the T3E is very similar to tha t  of the SP2 and Origin2000. It  
closely follows the redistribution cost model  given in Sec. 2.3, and achieves a 
significant runt ime improvement  when remapping  is performed prior to refine- 
ment.  However, for 64 and 128 processors, the remapping overhead on the T3E  
begins to increase and violates our cost model.  The runt ime difference when da ta  
is remapped  before and after refinement is dramat ical ly  diminished; in fact, all 
the remapping times begin to converge to a single value! This indicates tha t  the 
remapping t ime is no longer affected only by the volume of da ta  redistr ibuted 
but  also by the interprocessor communicat ion pat tern.  One way of potential ly 
improving these results is to take advantage of the T3E ' s  ability to efficiently 
perform one-sided communicat ion.  

Another surprising result is the dramat ic  reduction in remapping t imes when 
using 32 processors on the Origin2000. This  is probably  because network con- 
tention with other jobs is essentially removed when using the entire machine. 
When using up to 16 processors, the remapping t imes on the SP2 and the Ori- 



316 

gin2000 are comparable,  while the T3E is about  twice as fast. Recall that  the 
remapping phase within PLUM consists of bo th  communicat ion and computa-  
tion. Since the results in Table 2 indicate tha t  computa t ion  is faster on the 
Origin2000, it is reasonable to infer that  bulk communicat ion  is faster on the 
SP2. These results generally demonstra te  tha t  our methodology within PLUM 
is effective in significantly reducing the da ta  remapping t ime and improving the 
parallel performance of mesh refinement. 

Table 2 also presents the PMeTiS part i t ioning t imes for Real_2 on all three 
systems; the results for Real_l and Real_3 are almost  identical because the t ime to 
reparti t ion most ly  depends on the initial problem size. There is, however, some 
dependence on the number  of processors used. When there are too few proces- 
sors, repart i t ioning takes more t ime because each processor has a bigger share of 
the total  work. When there are too many  processors, an increase in the commu-  
nication cost slows down the reparti t ioner.  Table 2 demonstra tes  tha t  PMeTiS 
is fast enough to be effectively used within our framework,  and tha t  PLUM can 
be successfully ported to different plat forms without  any code modifications. 

4 C o n c l u s i o n s  

In this paper,  we verified the effectiveness of our PLUM load balancer for adap- 
tive unstructured meshes on a helicopter acoustics problem. We developed three 
generic metrics to model the reinapping cost on most  multiprocessor systems. 
Opt imal  solutions for these metrics, as well as a heuristic approach were imple- 
mented. We showed that  the data  redistribution overhead can be significantly 
reduced by applying our heuristic processor reassignment algori thm to the de- 
fault  mapping  given by the global parti t ioner.  Portabil i ty was demonst ra ted  by 
presenting results on the three vastly different architectures of the SP2, Ori- 
gin2000, and T3E, without the need for any code modifications. Results showed 
that ,  in general, PLUM will remain viable on large numbers  of processors. How- 
ever, our redistribution cost model was violated on the T3E when 64 or more 
processors were used. Future research will address the improvement  of these 
results, and the development of a more comprehensive remapping cost model.  

R e f e r e n c e s  

1. Bhat, K.: An O(n 2"5 log 2 n) time algorithm for the bottleneck assignment problems. 
AT&T Bell Laboratories Unpublished Report (1984) 

2. Biswas, R., Oliker, L.: Experiments with repartitioning and load balancing adaptive 
meshes. NASA Ames Research Center Technical Report NAS-97-021 (1997) 

3. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network 
optimization algorithms. J. ACM 34 (1987) 596-615 

4. Gabow, H., Tarjan, R.: Algorithms for two bottleneck optimization problems. J. 
of Alg. 9 (1988) 411-417 

5. Gabow, H., Tarjan, R.: Faster scaling algorithms for network problems. SlAM J. 
on Comput. 18 (1989) 1013-1036 

6. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular 
graphs. University of Minnesota Technical Report 96-036 (1996) 



317 

7. Oliker, L., Biswas, R.: PLUM: Parallel load balancing for adaptive unstructured 
meshes. NASA Ames Research Center Technical Report NAS-97-020 (1997) 

8. Oliker, L., Biswas, R., Strawn, R.: Parallel implementation of an adaptive scheme 
for 3D unstructured grids on the SP2. Springer-Verlag LNCS 1117 (1996) 35-47 

9. Valiant, L.: A bridging model for parallel computation. Comm. ACM 33 (1990) 
103-111 


