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Abst rac t .  Real-time systems often consist of a number of independent 
processes which operate under an age constraint. In such systems, the 
maximum time from the start process Li in cycle k to the end in cycle 
k+ l  must not exceed the age constraint Ai for that process. The age 
constraint can be met by using fixed priority scheduling and periods 
equal to Ai/2. However, this approach restricts the number of process 
sets which are schedulable. 
In this paper, we define a method for obtaining process periods other than 
Ai/2. The periods are calculated in such a way that the age constraints 
are met. Our approach is better in the sense that a larger number of 
process sets can be scheduled compared to using periods equal to A,/2. 

1 I n t r o d u c t i o n  

Real-time systems often consist of a number of independent periodic processes. 
These processes may handle external activities by monitoring sensors and then 
producing proper outputs within certain time intervals. A similar example is a 
process which continuously monitors certain variables in a database. When these 
variables or sensors change, the system have to produce certain outputs within 
certain time intervals. These outputs must be calculated from input values which 
are fresh, i.e. the age of the input value must not exceed certain time limits. The 
processes in these kinds of systems operate under the age constraint. 

The age constraint defines a limit on the maximum time from the point in 
time when a new input value appears to the point in time when the appropriate 
output  is produced. Figure 1 shows a scenario where a value Ei appears shortly 
after process Li has started its k:th cycle (denoted L/k). Process Li starts its 
execution by reading the sensor or variable. Consequently, Ei will not affect 
the output  in cycle k. The output  Fi corresponding to value Ei (or fresher) 
is produced at the end of cycle k + l .  The age constraint Ai is defined as the 
maximum time between the beginning of the process' execution in cycle k to the 
end of the process' execution in cycle k + l .  

A scheduling scheme can be either static or dynamic. In dynamic schemes the 
priority of a process is decided at run-time, e.g. the earliest deadline algorithm [3]. 
In static schemes, processes are assigned a fixed priority, e.g. the rate-monotone 
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algorithm [4]. Fixed priority scheduling is relatively easy to implement and it 
requires less overhead than dynamic schemes. 

Most studies in this area have looked at scenarios where the computat ion 
time and the period of a process are known. However, for age constraint processes 
the period is not known. We have instead defined a maximum time between the 
beginning of the process' execution in cycle k to the end of the process' execution 
in cycle k + l .  We would like to translate this restriction into a period for the 
process thus making it possible to use fixed priority schemes. 

The age constraint is met by specifying a process period T[ = Ai /2  (we will 
use the notation T/ for other purposes), thus obtaining a set of processes with 
known periods T~ and computat ion times Ci. For such scenarios, it is well known 
that  rate-monotone scheduling is optimal,  and a number of schedulability tests 
have been obtained [4]. Specifying a process period T[ = Ai /2  for age constraint 
processes is, however, an unnecessary strong restriction, which do not allow that  
the start  of Li in cycle k and the end in cycle k+2 may be separated by a 
time greater than 3T[, whereas the age constraint allows a separation of up to 
2A~ = 4T ' .  

In this paper we show that ,  by using rate-monotone scheduling, it is possible 
to define periods which are better  than using periods T{ : Ai/2. Our method is 
better in the sense that  we will be able to schedule a larger number of process 
sets than using T[ = Ai/2.  

C~ 

E, 

A~ 

Time 

F, 

Fig. 1. The age constraint for process Li. 

2 Calculating process periods 

Consider a set of n processes L = [L1, L2, ..., Ln], with associated age constraints 
Ai and computat ion times Ci. The priority of each process is defined by its age 
constraint Ai. The smaller the value Ai, the higher the priority of Li, i.e. the 
priority order is the same as for rate-monotone scheduling with T[ = Ai/2.  We 
assume preemptive scheduling and we order the processes in such a way that  
Ai _< Ai+l. 
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We star t  by considering L1. This  process has the highest priority, and is 
thus not interrupted by any other process. We want to select as long periods 
as possible, thus minimizing processor utilization. Obviously, the period of a 
process must  not exceed Ai - Ci. Since L1 has the highest priority, it is safe to 
set the period of L1 to A1 - C1 In order to distinguish our periods from the ones 
which are simply equal to half the age constraint Ai, we denote our periods as 
Ti, i.e. T1 = A1 - C1. 

We now consider process L2. The m a x i m u m  response t ime R2 of process L2 
is defined as the m a x i m u m  t ime from the release of L2 in cycle k to the t ime 
that  L2 completes in the same cycle. If  the execution of L2 is not interrupted 
by any other process, the response t ime is s imply equal to the computa t ion  
t ime C2, i.e. R1 = C1. However, the execution of L2 may  be interrupted by L1. 
Process n l  may  in fact interfere with as much as ~Ru/7~IC1 [3]. Consequently, 
R= = C2 + [R2/TllCz. The only unknown value in this equation is R2. The 
equation is somewhat  difficult to solve due to tile ceiling function (IR2/Tll). In 
general there could be many  values of R2 that  solve this equation. The smallest 
such value represents the worst-case response t ime for process L2. It  has been 
shown that  R2 can be obtained fi'om this equation by forming a recurrence 
relationship. The technique for doing this is shown in [3]. 

The beginning of L2 in cycle k and the end of L2 in cycle k + l  may  be 
separated with as much as T~ + R2, where T2 is the period that  we will assign 
to process L~. From the age constraint  we know tha t  Tu + R2 < A2. In order 
to minimize processor utilization we would like to select as long a period Tu as 
possible. Consequently, T2 = A2 - R2. 

In general, the m a x i m u m  response t ime of process i can be obtained f rom 
i - 1  the relation Ri = Ci + Y'~j=IIRi/TjICj [3]. When we know Ri, the cycle t ime 

for Li is set to Ti = A; - Ri. 
Figure 2 shows a set with three processes L1, L2 and La, defined by A1 = 8, 

C1 = 2, A2 = 10, C2 = 2, A3 = 12 and C3 = 2. From these values we obtain the 
period T1 = A1 - 6'1 = 8 - 2 = 6. The m a x i m u m  response t ime R2 for process 
L2 is obtained from the relation R2 = C2 + [R2/T1]C1 = 2 + [R2/612. The 
smallest value R2 which solves this equation is 4, i.e. R2 = 4. Consequently, T2 = 
A s - R 2  = 1 0 - 4  = 6. The m a x i m u m  response t ime I/3 for process L3 is obtained 
from the relation Ra = Ca + [Ra/T1]C1 + [Ra/T2]C2 = 2 + IRa /6 ]2  + [R3/612. 
The smallest value Ra which solves this equation is 6, i.e. R3 = 6. Consequently, 
T3 = A3 - R3 = 12 - 6 = 6. In figure 2, the first release of L1 is done at t ime 
2, the first release of L 2 is done at t ime 1 and the first release of L3 is done at 
t ime 0. 

In the worst-case scenario, process Li may  suffer f rom the m a x i m u m  response 
t ime Ri in two consecutive cycles, i.e. in order to meet  the age constraint we 
know that  2Ri <_ Ai. Consequently, there is no use in selecting a 5q smaller than 
Ri. However, as long as we obtain J} which are longer than or equal to Ri, the 
age constraint will be met.  Therefore, process Li can be scheduled if and only if 
Ri < Ai/2. 
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Fig.  2. A set with three processes L1, L2 and L3, defined by Aa = 8, Cl = 2, A2 = 
10, C2 = 2 ,  A3 = 1 2  andC3- - -2 .  

T h e o r e m  1. A set of processes which is schedulable using rate-monotone pri- 
ority assignment and T[ = A i /2  is also schedulable using our scheme. 

Proof. The difference between our  scheme and r a t e -mono tone  with T / = Ai /2  
is tha t  we use different periods T/. Since the process set is schedulable using the 
T '  periods we know tha t  R~ < T[(1 < i < n), where R~ denotes  the m a x i m u m  
response t ime using the 71' periods. 

By use of induction,  we show tha t  Ri 5 R~(1 < i < n). 

�9 RI=CI_<R~=C1 
�9 I f R j  < R}(1 < j < x < n), then T~ = Ay/2 <<_ A j - R j  = Tj. I f T j  < Tj, then 

~: x I T I . 

Consequently,  Ri < R~ < T~ = Ai/2,  i.e. Ri ~ Ai /2 ,  which means  tha t  
process Li(1 < i < n) can be scheduled using our scheme. 

Consider the processes in figure 2. If  we would have used the periods Ai/2,  
we would have got T~ = 4, T~ = 5 and T~ = 6. This would have resulted in a 
uti l ization of C1/T~ + C2/T~ + C3/T~ = 2 /4  + 2 /5  + 2 /6  = 1.23 > 1, i.e. the 
process set would not  have been schedulable. Consequently,  our  scheme is be t ter  
than  ra te -monotone  and T~ = Al l2  in the sense tha t  we are able to  schedule a 
larger number  of process sets. 

3 Simple analysis 

In the scheme tha t  we propose,  the period of a process depends  on the  priori ty 
of the process. The  period for a process Li gets shorter  if the  priori ty of Li 
is reduced and vice versa. This  proper ty  makes  our scheme hard  to  analyze.  
However, for the  l imited case when there are two processes, a t ho rough  analysis 
is possible. 
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T h e o r e m  2. The priori ty  ass ignment  used in our scheme is opt imal  fo r  all sets 
containing two processes. 

Proof. Consider two processes L1 and L2, such tha t  Aa < A2. Assume tha t  these 
two processes are schedulable if the priority of L-., is higher than  the priority of L 1. 
We will now show tha t  if this is the case, the two processes are also schedulable 
if La has higher priority than L2. 

If  L1 and L2 are schedulable when the priority of L2 is higher than  the 
priority of La, then R1 = Ca + [ R a / ( A 2  - C~)]C2 = Ca + kC2 < A 1 / 2  (for some 
integer k > 0). Consequently, C,. <_ A l l 2  - Ca. 

If  we consider the opposite priority assignment we know that  the schedulabil- 
ity criterion is that  R2 = C2+ [R2 / (Aa  - C a ) ] C 1  <_ A2/2 .  Since C2 <_ A ~ / 2 - C I ,  
we know that  the m a x i m u m  interference from process L1 on process L2 is Ca, 
i.e. R2 = C2 -}- Ca. Since C2 _< A 1 / 2  - C1 and R2 = C2 + C1, we know that  
tzt2 < A1/2 ,  and since A1 _< A2, we know tha t  R2 < A2/2 ,  thus proving the 
theorem. 

T h e o r e m  3. All  sets containing two processes L1 and L2 for  which C1 / (A1  - 
Ca) ---}- C2/ (A2  - C2) is less than 2 ( v ~ -  1) = 0.83 are schedulable using our 
scheme, and there are process sets containing two processes for  which C , / ( A a  - 
Cl )  + C2 / (A2  - C2) = 2 ( v ~  - 1) + e (for any e > O) which are not schedulable 
using our scheme. 

Proof. We assume that  A1 < A2, and tha t  we use our scheme for calculating 
periods and priorities. 

We want to find the min imum value C1/(A1 - Ca) + C2/ (A2  - C2), such that  
the process set is not sehedulable. We know that  as long as Ca/(A1  - Ca) _< 1, 
process L1 can be scheduled. This is a trivial observation. 

Process L2 can be scheduled if R2 _< A2/2 ,  i.e. we want to minimize Ca/(A1  - 
Ca) + C2/ (A2  - C2) under the constraint  that  R2 = C2 + [R2/(A1 - C1)]Ca > 
A2/2 .  

If  [R2/ (A~ - Ca)] -- k (for some integer k > 0), then the m i n i m u m  for 
C 1 / ( A I - C a ) + C 2 / ( A 2 - C 2 )  is obtained when R~ = k ( A I - C 1 )  = C2+ [ R ~ / ( A ~ -  
C1)]C~ = C2 + kC1 = >  C2 = k(A~ - 2C~). Consequently, we want to find the k 
which minimizes C1/(Aa - C~) + k(A1 - 2C1) / (A2  - k(Aa - 2C~)). Since, C2 = 
k(Aa - 2C~) _< A 2 / 2  we see that  A2 - k(Aa - 2Ca) > 0, and since 0 < A~ - 2C1, 
we see that  the min imum for C1/(Aa - C1) + k(Aa - 2C1) / (A2  - k(Aa - 2Ca)) 
is obtained for k = 1. Consequently, we want to minimize Ca/(A~ - C~) + (Aa - 
2C1) / (A2  - (Aa - 2Ca)), under the constraint that  Re = Aa - C1 > A2/2 .  The 
min imum is obviously obtained when A1 - Ca is as small as possible, i.e. when 
A t  - C1 = A 2 / 2  + e (for some infinitely small  positive number  e). Consequently, 
we want to minimize C 1 / ( A 2 / 2  + e) + (A2 /2  + e - C1) / (A~  - (A~/2  + e - C1)).  
Without  loss of generality we assume that  As = 2. In that  case we obtain the 
following function (disregarding e) 

f (C1)  = C1 + (1 - C1)/(1 + C1) 
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From this we obtain the derivative of f: 

. r  ( c l )  : 1 + ((1 - c l )  - (L + 61))/(1 + C1) ~ 

By setting f ' ( C j  = 0 we will find the values C1 which minimizes f .  

: o : >  i+2c,+c +I-2c  : o = >  : , / { - i  

From this we tha t  rain f ( C J  = f ( v ~ -  1) = 2(x/~ - 1) = 0.83. 

It  is interesting to note that  the sehedulability bound for C1/(A1 - C1) + 
C2/ (A2-  C2) is the same as the schedulability bound for ra te-monotone schedul- 
ing and two processors. However, in tha t  case we have C1/T~ +C2/T~ = 2C1/A1 Jr 
2C2/A2 = 0.83. At this point we do not know if it is a coincident that  the val- 
ues are the same or not. It would be interesting to examine the case with three 
processes and see if the schedulability bound for C1/(A1 - C1) Jr C2/(A2 - 
C2) Jr C3/(A3 - -  C3) = 3(~/2 - 1) : 0,78, which is the bound for ra te-monotone 
scheduling and three processes. 

4 I m p r o v i n g  t h e  s c h e m e  

In the previous sections we assumed tha t  the interference from a higher priority 
process Lj affected the m ax i m um  response t ime Rj+x for a process Lj+~ accord- 
ing to the formula  Rj+~ : Cj+~ + . . .  + [Rj+~/Tj]Q. However, if Tj+~ : kTj 
(for some integer k > 0), we can adjust the phasing of Lj and Lj+~ in such a 
way tha t  the interference of Lj on nj+~ is l imited to ([Rj+~/Tj] - 1)Cj (see 
figure 3). The phasing is adjusted in such a way that  a release of process Lj+~ 
always occurs at exactly the same t ime as a release of process L j. Consequently, 
if Tj+~ < kTj <_ Tj+~ - Cj we can extend the period of Lj+~ to kTj. In order to 
distinguish the periods obtMned when using the opt imized version of the scheme 
from the ones obtained using the unoptimized version, we denote the opt imized 
period for process Lj as tj. 

In order to obtain the optimized periods t j ,  for a set containing n processes, 
we start  with the periods 2) and we then use the following algorithm: 

tl =T1 
f o r y = 2 t o n l o o p  

$y = Ty 
f o r j : l  t o y - ] l o o p  

if ty < ktj < Ty - Cj then t u = ktj 
end loop 
y = y +  l 

end loop 

The  execution of the process set is s tar ted by releasing all processes at the 
same time. 
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F i g .  3. In scenar io  (a) t he re  are two processes  L1 a n d  L2. Process  L1 has  a pe r iod  
T1 = 2 a n d  a c o m p u t a t i o n  t ime  C1 --- 1. P rocess  L2 ha s  a pe r iod  7'2 = 3.9 a n d  a 
c o m p u t a t i o n  t ime  6'2 = 1.3. In th is  scenar io  we are  able  to mee t  the  age c o n s t r a i n t s  
A1 = 3 a n d  A2 = 7.2, i.e. A2 = 7'2 + R 2  = T2 + C 2  + 2 C 1  = 3 . 9 +  1 . 3 + 2  = 7.2. 
In scenar io  (b)  we cons ider  t he  s ame  processes,  w i t h  t h e  excep t ion  t h a t  t he  pe r iod  
of L2 has  b e e n  ex tended ,  i.e. T2 = 27"1 = 4. T h e  p h a s i n g  of LI a n d  L2 ha s  also 
been  a d j u s t e d  such t h a t  a release of Ls always coincides w i th  a release of L1. In 
th is  scenar io  we are  able  to  mee t  the  age c o n s t r a i n t s  A1 = 3 a n d  As = 6.3, i.e. 
As = Ts + Rs = Ts + Cs + C1 = 4 + 1.3 + 1 = 6.3. Consequent ly ,  by  e x t e n d i n g  the  
pe r iod  of Ls we were able  to  mee t  t o u g h e r  age cons t r a in t s .  
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T h e o r e m  4. A set of processes which is schedulable using the unoptimized pe- 
riods Ti and an arbitrary phasing of processes is also schedulable using the opti- 
mized periods ti , provided that we are able to adjust the phasing of the processes. 

Proof. Let ri denote the maximum response time for process Li using the periods 
ti and the optimized phasing. Obviously, T/ < ti. From this we conclude that  

i-1 < i-1 - T ri = Ci + ~ j = l  [ri / t j]Cj _ Ri = Ci + ~'-~j=l[Ri/ j]Cj .  Consequently, if Ri < 
Ai/2,  then ri < Ai/2.  

Figure 4 shows s process set which is sehedulable using the improved ver- 
sion of our scheme. This process set would not have been sehedulable using the 
unoptimized version of our scheme. Consequently, the improved version of the 
scheme is better in the sense that we are able to schedule a larger number of 
process sets. 

A l = 8  
L1 defined by A1 = 7  [~] [ ~  ~ ]  
and C~ = 1 from this 

4 P' 
we calculate tx ---- 6 ta --- 6 

A2 = 8  
L2 defined by A2 = 8 ~ 
and C2 = 2 from this , , 

4 D 

we calculate t2 = 6 t2 ----- 6 
A3 = 9  

L3 defined by A3 = 9 .... ~ 
and C3 = 3 from this ~ l- -i ~ E-] 
we calculate t3 = 6 t3 = 6 

I t t i i t t r t t 
0 2 4 6 8 10 12 14 16 18 

T i m e  

Fig. 4. Three processes which are schedulable using the improved scheme. 

5 C o n c l u s i o n s  

In this paper a method for scheduling age constraint processes has been pre- 
sented. An age constraint process is defined by two values: the maximum time 
between the beginning of the process' execution in cycle k to the end of the pro- 
cess' execution in cycle k + 1 (the age constraint), and the maximum computat ion 
time in each cycle, i.e. the period of each process is not explicitly defined. We 
present an algorithm for calculating process periods. Once the periods have been 
calculated the process set can be executed using preemption and fixed priority 
scheduling. The priorities are defined by the rate-monotone algorithm. 

Trivially, the age constraint can be met by using periods equal to half the 
age constraint. However, the periods obtained from our method are better in 
the sense that  they make it possible to schedule a larger ntlmber of process sets 
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than we would have been able to do if we had used periods equal to half the age 
constraint. All process sets which are schedulable using periods equal to half the 
age constraint are also schedulable using our method. 

A simple analysis of our method shows that the rate-monotone priority as- 
signment algorithm is optimal for all process sets containing two processes, using 
our process periods. We also show that  all process sets with two processes, for 
which C l / ( A 1 - C 1 ) + C ~ / ( A ~ - C ~ )  is less than 2 (~ /2 -1 )  = 0 .8a  are schedulable 
using our scheme. There are, however, process sets containing two processes for 
which Cl/ (A~ - C~) + C2/(A~ - C2) = 2 ( ~ -  1) + e (for any e > 0) which are 
not schedulable using our scheme, i.e. we provide a simple schedulability test for 
process sets containing two processes. 

We also define an improved version of our method. The improved version 
capitalizes on the fact that there is room for optimization when the period of 
one process is an integer multiple of the period of another process. The improved 
version of the method is better than the original version in the sense that we 
are able to schedule a larger number of process sets. All process sets which are 
schedulable using the original version are also schedulable using the improved 
version. 

Previous work on age constraint process have concentrated on creating cyclic 
interleavings of processes [1]. Other studies have looked at age constraint pro- 
~esses which communicate [5]. One such scenario is scheduling of age constraint 

ocesses in the context of hard reM-time database systems [2]. 
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