
Representing and Executing Real-Time Systems

Rafael Ramirez

National University of Singapore
Information Systems and Computer Science Department

Lower Kent Ridge Road, Singapore i19260
rafael@iscs.nus.sg

Abs t r ac t . In this paper, we describe an approach to the representation,
specification and implementation of real-time systems. The approach is
based on the notion of concurrent object-oriented systems where pro-
cesses are represented as objects. In our approach, the behaviour of
an object (its safety properties and time requirements) is declaratively
stated as a set of temporal constraints among events which provides
great advantages in writing concurrent real-time systems and manipu-
lating them while preserving correctness. The temporal constraints have
a procedural interpretation that allows them to be executed, also con-
currently. Concurrency issues and time requirements are separated from
the code, minimizing dependency between application functionality and
concurrency/timing control.

1 I n t r o d u c t i o n

Parallel computers and distributed systems are becoming increasingly impor tant .
Their impressive computat ion to cost ratios offer a considerable higher perfor-
mance than that possible with sequential machines. Yet there are few commercial
applications written for them. The reason is that programming in these environ-
ments is substantially more difficult than programming for sequential machines,
in respect of both correctness (to achieve correct synchronization) and efficiency
(to minimize slow interprocess communication). While in tradit ional sequential
programming the problem is reduced to make sure that the program's final result
(if any) is correct and that the program terminates, in concurrent p rogramming
it is not necessary to obtain a final result but to ensure tha t several proper-
ties hold during program execution. These properties are classified into safety
properties, those tha t must always be true, and progress (or liveness) proper-
ties, those that must eventually be true. Part ial correctness and terminat ion are
special cases of these two properties. To make things even worse, there exists
a wide variety of parallel architectures and a corresponding variety of concur-
rent programming paradigms. For most problems, it is not possible to envisage
a general concurrent algorithm which is well suited to all parallel architectures.
Real- t ime systems are inherently concurrent systems which, in addition to usu-
Mly require synchronisation and communicat ion with both their environment
and within their own components, need to execute under t iming constraints. We

280

propose an approach which aims to reduce the inherent complexity of writing
concurrent real-time systems. Our approach consists of the following:

1. In order to incorporate the benefits of the declarative approach to concur-
rent real-time programming, it is necessary that a program describe more
than its final result. We propose a language based on classical first-order
logic in which all safety properties and time requirements of programs are
declaratively stated.

2. Programs are developed in such a way that they are not specific to any par-
ticular concurrent programming paradigm. The proposed language provides
a framework in which algorithms for a variety of paradigms can be expressed,
derived and compared.

3. Applications can be specified as objects, which provides encapsulation and
inheritance. The language object-oriented features produce structured and
understandable programs, therefore reducing the number of potential errors.

4. Concurrency issues and timing requirements are separated from the rest
of the code, minimizing dependency between application functionality and
concurrency control. In addition, concurrency issues and timing requirements
can also be independently specified. Thus, it is in general possible to test dif-
ferent synchronisation schemes without modifying the timing requirements
and vice versa. Also, a synchronisation/time scheme may be reused by several
applications. This provides great advantages in terms of program flexibility,
reuse and debugging.

2 R e l a t e d W o r k

This work is strongly related to Tempo ([8]) and Tempo++ ([17, 16]). Tempo
is a declarative concurrent programming language based on first-order logic. It
is declarative in the sense that a Tempo program is both an algorithm and a
specification of the safety properties of the algorithm. Tempo++ extends Tempo
(as presented in [8]) by adding numbers and data structures (and operations and
constraints on them), as well as supporting object-oriented programming. Both
languages explicitly described processes as partially ordered set of events. Events
are executed in the specified order, but their execution times are only implicit.
Here, we extend Tempo++ to support real-time by making event execution times
explicit as well as allowing the specification of the timing requirements in terms
of relations among these execution times.

Concurrent logic programming is also an important influence for this work.
This is because concurrent logic programming languages (e.g. Parlog [6], KL1
[22]) and their object-oriented extensions (e.g. Polka [4], Vulcan [10]) preserve
many of the benefits of the abstract logic programming model, such as the log-
ical reading of programs and the use of logical terms to represent data struc-
tures. However, although these languages preserve many benefits of the logic
programming model, and their programs explicitly specify their final result, im-
portant program properties, namely safety and progress properties, remain im-
plicit. These properties have to be preserved by using control features such as

281

modes and sequencing, producing programs with little or no declarative read-
ing [17]. In addition, traditional concurrent logic programming languages do not
provide support for real-time programming and thus, are not suitable for this
kind of applications.

Concurrent constraint programming languages [19] and their object-oriented
and real-time extensions (e.g. [21, 20]) suffer from the same problems as concur-
rent logic languages. Program safety and progress properties remMn implicit.
These properties are preserved by checking and imposing value constraints on
shared variables in the store. Also, there is no clear separation of programs con-
currency control, timing requirements and application functionMity. In addition,
the concurrent constraint model is most naturally suited for shared memory ar-
chitectures not being easily adapted to model distributed programming systems.

Our work is also related to specification languages for concurrent real-time
systems. It is closer to languages based on temporal logic, e.g. Unity [3] and TLA
[13], and real-time extensions of temporal logic, e.g. [12], than process algebras
[9, 14] and real-time extensions of state-transition formalisms [2, 5]. Unity and
TLA specifications can express the safety and progress properties of concurrent
systems but they are not executable. Both formalisms model these systems by se-
quences of actions that modify a single shared state which might be a bottleneck
if the specifications were to be executed.

Section 3 introduces the core concepts of our approach to real-time pro-
gramming, namely events, precedence constraints and real-time, and outlines a
methodology for the development of concurrent real-time systems (to make the
paper sel-contained there is a small overlap with [8] in Sections 3.1 and 3.3).
Section 4 describes how these concepts can be extended by adding practical
programming features such as data structures and operations on them as well
as supporting object-oriented programming. Finally, Section 5 summarizes our
approach and its contributions as well as some areas of future research.

3 Events, Constraints and Real-Time

3.1 Events and Precedence

Many researchers, e.g. [11,15], have proposed methods for reasoning about tem-
porM phenomena using partially ordered sets of events. Our approach to the
specification and implementation of real-time systems is based on the same gen-
eral idea. We propose a language in which processes are explicitly described as
partially ordered sets of events. The event ordering relation X < Y, read as
"X precedes Y", is the main primitive predicate in the language (there are only
two primitive predicates), its domain is the set of events, and is defined by the
following axioms (the last axiom is actually a corollary of the other three):

V X V Y V Z (X < Y A Y < Z-+ X < Z)
VXVY(t ime(Y, eternity) -+ X < Y)
V X (X < X --+ t ime(X, eternity))

282

VXVY (Y < X A time(Y, eternity) -+ t ime(X, eternity))

The meaning of predicate t ime(X, Value) is "event X is executed at t ime
Value" and eternity is interpreted as a t ime point that is later than all others.
Events are atomically executed in the specified order (as soon as its predecessors
have been executed) and no event is executed for a variable that has execution
t ime eternity. Long-lived processes (processes comprising a large or infinite set
of events) are specified allowing an event to be associated with one or more other
events: its offsprings. The offsprings of an event E are named E + 1, E + 2, etc.,
and are implicitly preceded by E, i.e. E < E + N, for all N. The first offspring
E + 1 of E is referred to by E+ . Syntactically, offsprings are allowed in queries
and bodies of constraint definitions, but not in their heads.

Long-lived processes may not terminate because body events are repeatedly
introduced. Interestingly, an infinitely-defined constraint need not cause non-
termination: a constraint, all whose arguments have time value eternity will not
be expanded. The time value of an event E can be bound to eternity (as a
consequence of the axioms defining "<") by enforcing the constraint E < E.
No offsprings of E will be executed. Their t ime values are known to be bound
to eternity since they are implicitly preceded by E and the t ime value of E is
eternity.

In the language, disjunction is specified by the disjunction operator ';' (which
has lower priority than ',' but higher than %-'). The clause H t-- C s l ; . . . ; Csn
abbreviates the set of clauses H +- Csl , ..., H +- Csn. In the absence of disjunc-
tion, a query determines a unique set of constraints. An interpreter produces any
execution sequence satisfying those constraints, it does not mat ter which one.
With disjunction, a single set of constraints must be chosen from among many
possible sets, i.e., a single alternative must be selected from each disjunction.

In the language described above, processes are explicitly described as par-
tially ordered set of events. Their behavior is specified as logical formulas which
define temporal constraints among a set of events. This logical specification of a
process has a well defined and understood semantics and allows for the possibil-
ity of employing both specification and verification techniques based on formal
logic in the development of concurrent systems.

3.2 Real-Time

Time requirements in the language may be specified by using the primitive pred-
icate t ime(X, Value). This constrains the execution t ime of event X by forcing
X to be executed at time Value. In this way, quantitative temporal requirements
(e.g. maximal, minimal and exact distance between events) can be expressed in
the language. For Instance, Maximal distance between two events E and F may
be specified by the constraint max(E, F, N), meaning "event E is followed by
event F within N time units", and defined by

max(E, F, N) 6-- E < F, time(E, Et), time(F, Ft), Ft -~ Et + N.

283

where -< is the usual less than arithmetic relationship among real numbers.
Thus, maximal distance between families of events, i.e. events and their off-
springs, can be specified by the constraint max~ (E, F, N), meaning "occurrences
of events E, E+, E + + are respectively followed by occurrences of events F,
F+ , F + +, . . . within N time units", and defined by

max, (E, F, N) +-- max(E, F, N), max, (E+, F+, N)

Minimal and exact distance between two events, as well as other common
quantitative temporal requirements, may be similarly specified.

Example 1. Consider an extension to the traditional producer and consumer
system where each product cannot be held inside the buffer longer than time t.
The system may be represented by the timed Petri net in Figure 1.

Ready to send

P r o d u ~ S e n d ~ r

(0,t)

Ready to produce

Ready to consume

R e c ~ o n s u m e

Ready to receive

Fig. 1. A producer-consumer system with timed buffer

The producer and consumer components of the system may be respectively
specified by P <*S, S <*P+ and R <*C, C <*R+, where P and S represent
occurrences of events produce and send and R and C represent occurrences of
events receive and consume (P+, S+, R+, C+, . . . represent later occurrences
of these events). The behaviour of the buffer may be specified by

tbuf(S, R, T) +-- max (S, R, T), tbuf(S+, R+, T); tbuf(S+, R, T).

where T is the longest time the buffer can hold a product.

3.3 Development of Concurrent Real-Time Systems

In our approach, the specification of the behaviour of the processes in the sys-
tem is a program, i.e. it is possible to directly execute the specification. Thus, a
program P may be transformed into a program that logically implies P (in [7]
some transformations rules that can be applied to programs are presented). The
derived program is guaranteed to have the same safety properties as the original
one, though its progress properties may differ, e.g. one may terminate and the

284

other not. The program may be incrementally strengthened by introducing tim-
ing constraints to specify the system time requirements. Finally, the program
can be turned into a concurrent one by grouping constraints into processes. This
final step affects neither the safety nor the progress properties of the algorithm,
provided that some restrictions are observed.

4 Object-Oriented Programming

Our approach to the specification and implementation of real-time systems is
based on an extension to the logic presented in the previous section. The logic is
extended by adding data structures and operations on them, by allowing values
to be assigned to events for inter process communication and by supporting
object-oriented programming. A detailed discussion of these ideas can be found
in [17].

Our language supports object-oriented programming by allowing a class to
encapsulate a set of constraints, specified by a constraint query, together with the
related constraint definitions, specified by a set of clauses, in such a way that
it describes a set of potential run-time objects. The constraint query defines
a partial order among a set of events and the timing requirements on their
execution times, and the constraint definitions provide meaning to the user-
defined constraints in the query. Both the query and definitions are local to the
class. Each of the class run-time objects corresponds to a concurrent process. The
name of a class may include variable arguments in order to distinguish different
instances of the same class. Events appearing in the constraint query of an object
implicitly belong to that object. If an event is shared between several objects
(it belongs to two or more objects), it cannot be executed until it has been
enabled by all objects that share it. In order to specify the object computat ion,
actions may be associated with events. The representation and manipulat ion of
data as well as the spawning of new objects is handled by these actions. Our
current implementation of the language assumes an action to be a definite goal.
In order to execute an event, the goal associated with it (if any) has to be solved
first. Objects communicate via shared events' values. Shared events represent
communication channels and values assigned to them represent messages.

A novel feature of the approach described here is that an object can partially
inherit another object, i.e. an object can inherit either another object 's temporal
constraints or actions. Thus, inheritance of concurrency issues and inheritance of
code are independently supported. This allows an object to have its synchroni-
sation scheme inherited from another object while defining its own code, or vice
versa, or even inherit its synchronisation scheme and code from two different
objects.

Our language appears to add to the proliferation of concurrent programming
paradigms: processes (objects) communicate via a new medium, shared events.
However, our objective is rather to simplify matters by providing a framework
in which algorithms for a variety of concurrent programming paradigms can be
expressed, derived, and compared. Among the paradigms we have considered are

285

synchronuos message passing, asynchronous message passing and shared mutable
variables.
E x e c u t i o n : Our current implementation uses a constraint set CS containing
the constraints still to be satisfied, and a try list TL containing the events that
are to be tried but have not yet been executed. The interpreter constantly takes
events from TL and checks if they are enabled, i.e. if they are not preceded by
any other event (according to CS), and the timing constraints on their execution
times are satisfiable, in which case they are executed. The order in which the
events are tryed is determined by the timing constraints in CS.

5 C o n c l u s i o n s

We have described an approach to the representation, specification and imple-
mentat ion of concurrent real-time systems. The approach is based on the notion
of concurrent object-oriented systems where processes are represented as ob-
jects. In the approach, each object is explicitly described as a partially ordered
set of events and executes its events in the specified order. The partial order is
defined by a set of temporal constraints and object synchronisation and commu-
nication are handled by shared events, object behaviour (safety properties and
time requirements) are declaratively stated which provides great advantages in
writing real-time systems and manipulating them while preserving correctness.
The specification of the behaviour of an object has a procedural interpretation
that allows it to be executed, also concurrently. Our approach can also be used
as the basis for a development methodology for concurrent systems. First, the
system can be specified in a perpicuous manner, and then this specification may
be incrementally strengthened and divided into objects that communicate using
the intended target paradigm. An object can partially inherit another object,
i.e. an object can inherit either another object 's temporal constraints, actions
or actions definitions. Thus, inheritance of concurrency issues and inheritance of
code are independently supported.
C u r r e n t s t a t u s . A prototype implementation of the complete language has
been written in Prolog, and used to test the code of a number of applications.
The discussion of these applications is out of the scope of this paper.
F u t u r e work . In the language presented, the action associated with an event
can, in principle, be specified in any programming language. Thus, different types
of languages, such as the imperative languages, should be considered and their
interaction with the model investigated.

Events are considered atomic. Instead of being atomic, they could be treated
as time intervals during which other events can occur ([1] and [11]). Such events
can be further decomposed to provide an arbitrary degree of detail. This could
be useful in deriving programs from specifications.

Object behaviour is specified as logical formulas which define temporal con-
strMnts among a set of events. This logical specification of an object has a well
defined and understood semantics and we are planning to look carefully into the

286

possibility of employing both specification and verification techniques based on
formal logic in the development of concurrent real-time systems.

References

1. Allen, J.F. 1983. Maintaining knowledge about temporal intervals. Comm. ACM
26, 11, pp.832-843.

2. Alur, R., and Dill, D.L. 1990. Automata for modeling real-time systems, in
ICALP'90: Automata, Languages and Programming, LNCS 443, pp.322-335.
SprJnger-Verlag.

3. Chandy, K.M. and Misra, J. 1988. Parallel Program Design. Addison-Wesley.
4. Davison, A. 1991. From Parlog to Polka in Two Easy Steps, in PLILP'91: 3rd Int.

Syrup. on Programming Language Implementation and LP, Springer LNCS 528,
pp.171-182, Passau, Germany, August.

5. Dill, D.L. 1989. Timing assumptions and verification of finite-state concurrent sys-
tems, in CAV'89: Automatic Verification Methods for Finite-state Systems, LNCS
407, pp. 197-212, Springer-Verlag.

6. Gregory, S. 1987. Parallel Logic Programming in PARLOG, Addison-Wesley.
7. Gregory, S. 1995. Derivation of concurrent algorithms in Tempo. In LOPSTR95:

Fifth International Workshop on Logic Program Synthesis and Transformation.
8. Gregory, S. and Ramirez, R. 1995. Tempo: a declarative concurrent programming

language. Proc.of the ICLP (Tokyo, June), MIT Press, 1995.
9. Hoare, C.A.R. 1985. Communicating Sequential Processes, Prentice Hall.

10. Kahn, K.M., Tribble, D., Miller, M.S., and Bobrow, D.G. 1987. Vulcan: Logical
Concurrent Objects, In Research Directions in Object-Oriented Programming, B.
Shriver, P. Wegner (eds.), MIT Press.

11. Kowalski R., and Sergot, M. 1986. A Logic-based Calculus of Events, New Gener-
ation Computing, 4, 1, pp.67-95.

12. Koymans, R. 1990. Specifying real-time properties with metric temporal logic, Real-
time Systems, 2, 4, pp.255-299.

13. Lamport, L. 1994. The temporal logic of actions. ACM Trans. on Programming
Languages and Systems, 16, 3, pp. 872-923.

14. Milner, R. 1989. Communication and Concurrency, Prentice Hall.
15. Pratt, V. 1986. Modeling concurrency with partial orders, International Journal of

Parallel Programming, 1(15):33-71.
16. Ramirez, R. 1995. Declarative concurrent object-oriented programming in

Tempo++. In Proceedings of the ICLP'95 Workshop on Parallel Logic Program-
ming Japan, T. Chikayama, H. Nakashima and E. Tick (Ed.).

17. Ramirez, R. 1996. A logic-based concurrent object-oriented programming language,
PhD thesis, Bristol University.

18. Ramirez, R. 1996. Concurrent object-orientedprogramming in Tempo++. In Pro-
ceedings of the Second Asian computing Science Conference (Asian'96), Singapore.
LNCS 1179, pp. 244-253. Springer-Verlag

19. Saraswat V. 1993. Concurrent constraint programming languages, PhD thesis,
Carnegie-Mellon University, 1989. Revised version appears as Concurrent con-
straint programming, MIT Press, 1993.

20. Saraswat V. 1993 et al. Programming in timed concurrent constraint languages. In
Constraint Programming - Proceedings of the 1993 NATO ACM Symposium, pp.
461-410. Springer-Verlag.

287

21. Smolka, G. 1995. The Oz programming model, Lecture Notes in Computer Science
Vol. 1000, Springer-Verlag, pp.324-243.

22. Ueda, K. and Chikayama, T. 1990. Design o] the kernel language]or the parallel
inference machine. Computer Journal 33, 6, pp.494-500.

