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A b s t r a c t .  Although database systems are a natural application for par- 
allel machines, their uptake has been slower than anticipated. This prob- 
lem can be alleviated to some extent by the development of tools to 
predict the performance of parallel database systems and provide the 
user with simple graphic visualisations of particular scenarios. However, 
in view of the complexities of these systems, verification of such tools 
can be very difficult. This paper describes how both process algebra and 
simulation are being used to verify the STEADY parallel DBMS perfor- 
mance estimator. 

1 I n t r o d u c t i o n  

Database  systems are an ideal application area for parallel computers .  The in- 
herent parallelism in database  applications can be exploited by running them 
on suitable parallel platforms to enhance their performance - a fact which has 
a t t rac ted  significant commercial  interest. A number  of general purpose parallel 
machines are currently available tha t  support  different parallel da tabase  systems, 
including adaptat ions of s tandard commercial  DBMSs produced by vendors such 
as Oracle, Informix and Ingres. For a platform based on non-shared memory,  
such systems distribute their da ta  (and associated query processing) amongst  
the available processing elements in such a way as to balance the load [1]. 

However, despite  the potential  benefits of parallel da tabase  systems, their 
uptake has been Slower than expected. While information processing businesses 
have a strong interest in obtaining improved performance f rom current DBMSs, 
they have a substantial  investment in existing database  systems, running gener- 
ally on mainframe computers.  Such users need  to. be convinced tha t  the benefits 
outweigh the costs of migrat ing to a parallel environment.  They  need assistance 
to assess what parallel database  p la t form configuration is required and what  
improvements  in performance can be achieved at what  cost. They need tools 
to tune the performance of their applications on a parallel da tabase  p la t form 
to ensure that  they take best advantage of such a platform. They  need help in 
determining how the system should be upgraded as the load on it increases, and 
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how it should be reorganised to meet anticipated changes in usage of database 
capacities. 

Application sizing is the process of determining the database and machine 
configuration (and hence the cost) required to meet the performance require- 
ments of a particular application. Capacity planning, on the other hand, is con- 
cerned with determining the impact on performance of changes to the parallel 
database system or its workload. Data placement is the process of determining 
how to lay out data on a distributed memory database architecture to yield good 
(optimal) performance for the application. 

All three activities require suitable tools to predict the performance of par- 
allel database systems for the particular application. They determine whether a 
given hardware/software configuration will meet a user's performance require- 
ments, how performance will change as the load changes, and how the user's 
data should be distributed to achieve good performance [2]. Such tools would 
rely on a model of transaction throughput, response time and resource utilisation 
for given system configurations, workloads and data distributions. To complicate 
matters further, since a parallel machine may host several different DBMSs, such 
tools should be capable of supporting models of different parallel DBMSs and 
of providing facilities for describing different features of applications running on 
these DBMSs. 

This paper presents the results from an initial verification exercise of a par- 
allel DBMS performance estimation tool called STEADY. The predictions pro- 
duced by components of STEADY are compared with results from a simulation 
and with those derived from a process algebra model. The rest of the paper 
is organised as follows. Section 2 briefly describes STEADY. Sections 3 and 4 
provide a comparison between predictions of components of STEADY and those 
obtained from a simulation and a process algebra model. Section 5 provides a 
summary and conclusion. 

2 S T E A D Y  

STEADY is designed to predict maximum transaction throughput, resource utili- 
sation and response time given a transaction arrival rate. The maximum through- 
put value is derived by analysing the workload and identifying the system bottle- 
necks. Given a transaction arrival rate, lower than the maximum throughput, the 
response time is derived using an analytical queuing model. During the process 
of calculating the response time, the resource utilisation can also be obtained. 

The basic STEADY system originally worked with an Ingres Cluster model, 
and has been extended to model the hfformix OnLine Extended Parallel Server 
(XPS) and the Oracle7 Parallel Server with the Parallel Query Option. These two 
systems are representative of two different parallel DBMS architectures: shared 
disk and shared nothing. The underlying hardware platform for both systems 
consists of a number of processing elements (PEs) on which instances of the 
DBMS are running. PEs communicate using a fast interconnecting network. The 
platform which STEADY currently supports is the ICL GoldRush machine [3]. 
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Fig. 1. STEADY Architecture 

In a shared disk DBMS (Oracle 7), each of the PEs of the parallel machine 
may access and modify data  residing on the disks of any of the PEs of the 
configuration. In a shared nothing DBMS (Informix XPS), the disks of a PE are 
not directly accessible to other PEs. 

STEADY takes as input the execution plans of SQL queries, represented as 
annotated query trees. The query trees capture the order in which relational 
operators are executed and the method for computing each operator. Within 
STEADY the annotated query trees undergo several transformations until they 
reach a form - the r e s o u r c e  u s a g e  r e p r e s e n t a t i o n  - which allows the prediction 
of response time and resource utilisation. This process of transformation can be 
followed in Fig. 1 which illustrates the architecture of STEADY. 

In addition to the graphical user interface the system comprises four parts. 
The application layer consists of the Profiler, DPTool and the Query Pre-Processot 
The Profiler is a statistical tool, primarily responsible for generating base rela- 
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tion profiles and estimating the number of tuples resulting from data  operations. 
DPTool is used to generate data  placement schemes using different strategies, 
and estimates the access frequency (heat) of different pages in each relation. 
DPTool provides the necessary heat information along with the generated data  
layout to the Cache Model Component.  Both the Profiler and DPTool make use 
of the annotated query tree format  of the original SQL queries. 

The DBMS kernel layer consists of the Cache Model Component ,  the Query 
Paralleliser and the Modeller Kernel. The Cache Model Component  estimates 
the cache hit ratio for pages from different relations [4]. The Query Paralleliser 
transforms the query tree into a task block structure. Each task block represents 
one or more phases in the execution of the relational operators within the query 
trees. Examples of phases are the following: building a hash table in the first 
phase of a hash join operator; merging two sorted streams of tuples in the last 
phase of a merge-sort join operator; performing a full table scan of a relation. The 
task blocks are organised as the nodes of a tree with dependencies among blocks 
represented by links. The dependencies specify ordering constraints among exe- 
cution phases. One form of dependency is a pipeline dependency where a sending 
and a receiving block communicate tuples through a pipeline. Another form is 
full dependency which requires the previous block to complete before the next 
one can start. In addition, the task block tree structure captures the inter- and 
intra-operator parallelism within the query. The Query Paralleliser is able to 
construct the tree based on knowledge of the parallelisation techniques and the 
load balancing mechanism employed by the parallel DBMS. 

The Modeller Kernel takes as input the relation profiles, da ta  layout, esti- 
mated cache hit ratios and the task block profile of the query, produced by the 
Query Paralleliser. It produces workload profiles in terms of the numbers of basic 
operations which are to be executed on each PE in the course of a transaction. 
This results in a set of workload statistics. Together with this, the Modeller 
Kernel fills in the details of the task blocks by expanding each execution phase 
within the block into a corresponding sequence of basic operations. For example, 
a full table scan of a relation is an execution phase process which is represented 
by the following sequence of operations: wait for a page lock; obtain the page 
lock; read the page; select tuples from the page; send selected tuples to the 
next phase. This sequence will be executed once for each page of the relation. 
The obtained locks are released within the body of a different task block which 
represents the commit phase of the transaction the query belongs to. 

The platform layer consists of the Evaluator and the Builder. The task block 
profiles of the queries are mapped by the Evaluator into sequences of resource 
usages. The Evaluator contains a hardware platform model which is generated 
by the Builder from a set of analytical formulae. This enables the Evaluator to 
map each basic operation into the appropriate sequence of resource usages. For 
example, a basic page read operation may be mapped to the following sequence, 
which makes explicit the order of usage and time consumption associated with 
the read: 
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cpu 32ps; 
disk3 150ms; 
cpu 50ps 

Apart  from producing these resource usage profiles, the evaluator also gives 
an initial estimation of the maximum throughput  value. 

A resource usage representation is then produced which captures the pat tern  
of resource consumption of the original query by mapping the task blocks to 
resource blocks. The Queue Waiting Time Estimator and the Response Time 
Est imator  of the output layer of STEADY work with this representation to es- 
t imate individual resource utilisation and response t ime and, from these, overall 
query response time. The details of these processes is the subject of a future 
paper. 

3 Verification by Simulation 

When estimating the performance of complex systems using analytical methods,  
two basic approaches are available: 1) to build a high-level abstract model and 
find an exact solution for the model, or 2) to build a fairly detailed model and 
find an approximate solution for it - -  finding exact solutions for detailed models 
is in general not feasible. In the case of STEADY, the second approach has been 
adopted. 

Part  of the verification of STEADY is to determine the level of accuracy of 
results that  can be achieved using the approximation algorithm described in the 
previous section. This can be achieved by finding solutions, within error bounds, 
for the model using discrete event simulation and then comparing these with the 
figures that  are obtained using STEADY. 

The simulation is based on the resource usage profiles of transactions, which 
are generated by STEADY's platform layer. Transactions are implemented as 
simulation processes which access shared resources according to the specifications 
in these profiles. New transactions are generated according to the overall arrival 
rate distribution and the respective transaction frequencies. Simulation output  
includes statistics on resources (including utilisation) and transaction response 
times. 

A number of examples have been selected and experiments conducted to 
compare the results obtained from simulation with those predicted by STEADY. 
One example is given in Figure 2 which shows the average utilisation of resources 
as predicted by simulation and by STEADY. By contrast Figure 3 provides a 
comparison of average transaction response times. In all the experiments results 
for average utilisation show very good agreement whereas those for response 
t ime are more variable. This is being investigated further. 

4 Verification by Process Algebra 

The second way in which the STEADY approach is being "verified" is through 
process algebras. A process algebra is a mathematical  theory which models com- 
munication and concurrent systems. In the early versions of process algebras, 
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time was abstracted away. A classical example of such an algebra is CCS (Cal- 
culus of Communicating Systems) [7]. 

The form of process algebra which has been selected for use here is known as a 
Performance Evaluation Process Algebra (PEPA) [6]. This is a stochastic process 
algebra which has been developed to investigate the impact of the computational 
features of process algebras upon performance modelling. 

In PEPA, a system is expressed as an interaction of components, each of 
which engages in some specific activity. These components correspond to the 
parts of the system or the events in the behaviour of the system. The behaviour 
of each component is defined by the activities in which it can engage. Every 
activity has an action type and an associated duration (which is represented by 
a parameter known as the activity rate), and is written as (~, r) where a is an 
activity and r the activity rate. 

To illustrate the PEPA approach, consider the simplest of models, comprising 
a single processing element with one processing unit and one disk (see fig 4). Sup- 
pose that transactions arrive at the transaction manager (TM) module, which 
on receipt of a transaction passes it to the concurrency control unit (CCU). The 
latter sends a message to the distributed lock manager (DLM) requesting a lock; 
the DLM grants the lock and replies accordingly. The CCU sends a message to 
the buffer manager (BM) which reads from disk and returns the data. Finally 
the CCU releases the lock and commits the transaction. 

TM CCU 

BM / /  

DLM 

Fig. 4. Single Processing Element Configuration 

This is expressed in PEPA notation as follows: 

#QO = (tm2ccu,infty).(ccu2dlm,r.sgnO).QO ; 
#Q1 = (dlm2ccu,infty).(lock_granted,r_sgn).Q1; 

# Q  = OO 0 Ol;  
#D  = (release_lock,infty).(commit,infty).(ccu2dhn0,r_sgn0). (ccu2tm,r_sgn0).D; 
# P  = (lock_granted,infty).P1; 
#P1 = (ccu2bm,r_sgn0).(bm2ccu,infty).(release-lock,r-sgn). (commit,r_commit).P; 
# C C U  = (Q () D) < commit, release_lock, lock_granted ) P ; 
#DLM0 = (ccu2dlm,infty).(dhn2ccu,r-gnt).DLM0; 
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# D LM 1 = (ccu2dlm0,infty). (release,r _sgn). DLM 1; 
# D L M  = DLM0 () DLM1; 
# B M  = (ccu2bm,infty). (deliver,r_deliver). (bm2ccu,r_sgn0).BM; 
# T M 0  = (request,r_req).(tm2ccu,r_sgn0).TM0; 
# T M  1 = (ccu2tm,infty). (reply, r_reply).TM 1; 
# T M  - TM0 0 TM1; 
# P E P A  = (TM () BM 0 DLM) 
( tm2ccu ,ccu2tm ,bm2ccu,ccu2bm ,ccu2dlm,ccu2dlm0 ,dlm2ccu ) CCU; 
PEPA 

Here the notation (a, r).REST is the basic mechanism by which the be- 
haviour of a component is expressed. It denotes the fact that the component will 
carry out activity (a, r) which has action type a and a duration of mean 1/r, 
followed by the rest of the behaviour (REST). The notation P(L)Q where P and 
Q are components and L is a set of action types, denotes the fact that  P and Q 
proceed independently and concurrently with any activity whose action type is 
not contained in L. However, for any activity whose action type is included in 
L, components P and Q must synchronise to achieve the activity. These shared 
activities will only be enabled in P(L)Q when they are enabled in both P and 
Q , i.e. one component may be blocked waiting for the other component to be 
ready to participate. 

For this very simple configuration, a very simple benchmark has been adopted 
in which a single relation with tuple size of 100 bytes is scanned by a query 
performing a simple search. The page size is set to 1024 bytes and each page 
is assumed to be 70% full. Each fragment of the relation is assumed to consist 
of a single page. The average time to perform a disk read is taken as 41.11 
milliseconds. 

Results for this very simple example are given in Table 1. 

Throughput (tps) 
Query arrival rate data in data in data in data in 

1 frag 2 frags 3 frags 4 frags 
5.0 4.996 4.962 4.816 4.512 
10.0 9.919 9.015 7.339 5.858 
25.0 20.418 11.924 8.058 6.059 
100.0 24.019 12.089 8.077 6.063 

STEADY Max throughput(tps) 24.324 12.162 8.108 6.081 

Table 1. System performance of PEPA model and STEADY: throughput (in tps) 

In order to solve such a model, the method reduces the model to a set of 
states. In the case of this very simple example, the number of states generated 
is 1028. However, when one considers slightly more complex models, such as 
configurations involving more than one processing element, the number of states 
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increases rapidly ( approx 810000 states for two processing elements) and the 
computation required to solve it becomes too large. 

In order to handle such cases we are currently experimenting with the flow 
equivalent aggregation method [8] to decompose the models into manageable 
sub-models and find solutions to these. The results so far are encouraging al- 
though no complete solution is yet available. 

5 C o n c l u s i o n s  

This paper has discussed the verification of an analytical model (STEADY) for 
estimating the performance of parallel relational DBMSs. Two different methods 
of verification were investigated. The first approach was to apply simulation to 
a set of problems. The same problems were also solved using STEADY. The 
results of the comparison between STEADY and the simulation were mixed, 
as some compared very favourably whereas others require further investigation. 
Although the simulation alone is not sufficient to verify all aspects of STEADY, 
it has proved to be valuable in analysing, choosing and developing approximation 
algorithms for mathematical solutions of detailed analytical models. 

The second, more theoretical, method of verification that was investigated 
was a process algebra system known as Performance Evaluation Process Alge- 
bra (PEPA). This system was used to verify the components of STEADY which 
produce both the resource usage profiles and the first estimation of maximum 
system throughput. The system used to verify STEADY was a simple system 
as PEPA becomes unmanageable when more complex configurations are con- 
sidered. Further work on PEPA is being carried out to handle more complex 
configurations, whilst keeping the system manageable. 

The processes described are intended as an initial stage in the verification 
of STEADY, being performed in parallel to validation against actual measured 
performance. 
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