
Verify ing a P e r f o r m a n c e E s t i m a t o r for Paral le l
D B M S s

E W Dempster 1, N T Tomov 1, J L/i 1 , C S Pua I, M H Will iams 1, A Burger 1 , H
Taylor 1 and P Broughton 2

1 Department of Computing and Electrical Engineering, Heriot-Watt University,
Riccarton, Edinburgh, Scotland, EH14 4AS, UK

2 International Computers Limited, High Performance Technology, Wenlock Way,
West Gorton, Manchester, England, M12 5DR, UK

A b s t r a c t . Although database systems are a natural application for par-
allel machines, their uptake has been slower than anticipated. This prob-
lem can be alleviated to some extent by the development of tools to
predict the performance of parallel database systems and provide the
user with simple graphic visualisations of particular scenarios. However,
in view of the complexities of these systems, verification of such tools
can be very difficult. This paper describes how both process algebra and
simulation are being used to verify the STEADY parallel DBMS perfor-
mance estimator.

1 I n t r o d u c t i o n

Database systems are an ideal application area for parallel computers . The in-
herent parallelism in database applications can be exploited by running them
on suitable parallel platforms to enhance their performance - a fact which has
a t t rac ted significant commercial interest. A number of general purpose parallel
machines are currently available tha t support different parallel da tabase systems,
including adaptat ions of s tandard commercial DBMSs produced by vendors such
as Oracle, Informix and Ingres. For a platform based on non-shared memory,
such systems distribute their da ta (and associated query processing) amongst
the available processing elements in such a way as to balance the load [1].

However, despite the potential benefits of parallel da tabase systems, their
uptake has been Slower than expected. While information processing businesses
have a strong interest in obtaining improved performance f rom current DBMSs,
they have a substantial investment in existing database systems, running gener-
ally on mainframe computers. Such users need to. be convinced tha t the benefits
outweigh the costs of migrat ing to a parallel environment. They need assistance
to assess what parallel database p la t form configuration is required and what
improvements in performance can be achieved at what cost. They need tools
to tune the performance of their applications on a parallel da tabase p la t form
to ensure that they take best advantage of such a platform. They need help in
determining how the system should be upgraded as the load on it increases, and

127

how it should be reorganised to meet anticipated changes in usage of database
capacities.

Application sizing is the process of determining the database and machine
configuration (and hence the cost) required to meet the performance require-
ments of a particular application. Capacity planning, on the other hand, is con-
cerned with determining the impact on performance of changes to the parallel
database system or its workload. Data placement is the process of determining
how to lay out data on a distributed memory database architecture to yield good
(optimal) performance for the application.

All three activities require suitable tools to predict the performance of par-
allel database systems for the particular application. They determine whether a
given hardware/software configuration will meet a user's performance require-
ments, how performance will change as the load changes, and how the user's
data should be distributed to achieve good performance [2]. Such tools would
rely on a model of transaction throughput, response time and resource utilisation
for given system configurations, workloads and data distributions. To complicate
matters further, since a parallel machine may host several different DBMSs, such
tools should be capable of supporting models of different parallel DBMSs and
of providing facilities for describing different features of applications running on
these DBMSs.

This paper presents the results from an initial verification exercise of a par-
allel DBMS performance estimation tool called STEADY. The predictions pro-
duced by components of STEADY are compared with results from a simulation
and with those derived from a process algebra model. The rest of the paper
is organised as follows. Section 2 briefly describes STEADY. Sections 3 and 4
provide a comparison between predictions of components of STEADY and those
obtained from a simulation and a process algebra model. Section 5 provides a
summary and conclusion.

2 S T E A D Y

STEADY is designed to predict maximum transaction throughput, resource utili-
sation and response time given a transaction arrival rate. The maximum through-
put value is derived by analysing the workload and identifying the system bottle-
necks. Given a transaction arrival rate, lower than the maximum throughput, the
response time is derived using an analytical queuing model. During the process
of calculating the response time, the resource utilisation can also be obtained.

The basic STEADY system originally worked with an Ingres Cluster model,
and has been extended to model the hfformix OnLine Extended Parallel Server
(XPS) and the Oracle7 Parallel Server with the Parallel Query Option. These two
systems are representative of two different parallel DBMS architectures: shared
disk and shared nothing. The underlying hardware platform for both systems
consists of a number of processing elements (PEs) on which instances of the
DBMS are running. PEs communicate using a fast interconnecting network. The
platform which STEADY currently supports is the ICL GoldRush machine [3].

128

query trees

relation profiles

data layout &
page heat

task blocks

workload
statistics

resource
usage blocks

maximum
throughput

Jl

Query
Pre-proceseor I Profiler I I OPtool

Query
Paralleliser

Modeller
Kernel

l Cache Model
Component 1

atlorm Layer (Maximum qllroughput Esumator)

%

STEADY
Graphical User
Intedace

t
~Output Layer ~ @

(Queue Waiting ~ Resp]
(Time Estimator J ~Tlme EstimatorJ

Fig. 1. STEADY Architecture

In a shared disk DBMS (Oracle 7), each of the PEs of the parallel machine
may access and modify data residing on the disks of any of the PEs of the
configuration. In a shared nothing DBMS (Informix XPS), the disks of a PE are
not directly accessible to other PEs.

STEADY takes as input the execution plans of SQL queries, represented as
annotated query trees. The query trees capture the order in which relational
operators are executed and the method for computing each operator. Within
STEADY the annotated query trees undergo several transformations until they
reach a form - the r e s o u r c e u s a g e r e p r e s e n t a t i o n - which allows the prediction
of response time and resource utilisation. This process of transformation can be
followed in Fig. 1 which illustrates the architecture of STEADY.

In addition to the graphical user interface the system comprises four parts.
The application layer consists of the Profiler, DPTool and the Query Pre-Processot
The Profiler is a statistical tool, primarily responsible for generating base rela-

129

tion profiles and estimating the number of tuples resulting from data operations.
DPTool is used to generate data placement schemes using different strategies,
and estimates the access frequency (heat) of different pages in each relation.
DPTool provides the necessary heat information along with the generated data
layout to the Cache Model Component. Both the Profiler and DPTool make use
of the annotated query tree format of the original SQL queries.

The DBMS kernel layer consists of the Cache Model Component , the Query
Paralleliser and the Modeller Kernel. The Cache Model Component estimates
the cache hit ratio for pages from different relations [4]. The Query Paralleliser
transforms the query tree into a task block structure. Each task block represents
one or more phases in the execution of the relational operators within the query
trees. Examples of phases are the following: building a hash table in the first
phase of a hash join operator; merging two sorted streams of tuples in the last
phase of a merge-sort join operator; performing a full table scan of a relation. The
task blocks are organised as the nodes of a tree with dependencies among blocks
represented by links. The dependencies specify ordering constraints among exe-
cution phases. One form of dependency is a pipeline dependency where a sending
and a receiving block communicate tuples through a pipeline. Another form is
full dependency which requires the previous block to complete before the next
one can start. In addition, the task block tree structure captures the inter- and
intra-operator parallelism within the query. The Query Paralleliser is able to
construct the tree based on knowledge of the parallelisation techniques and the
load balancing mechanism employed by the parallel DBMS.

The Modeller Kernel takes as input the relation profiles, da ta layout, esti-
mated cache hit ratios and the task block profile of the query, produced by the
Query Paralleliser. It produces workload profiles in terms of the numbers of basic
operations which are to be executed on each PE in the course of a transaction.
This results in a set of workload statistics. Together with this, the Modeller
Kernel fills in the details of the task blocks by expanding each execution phase
within the block into a corresponding sequence of basic operations. For example,
a full table scan of a relation is an execution phase process which is represented
by the following sequence of operations: wait for a page lock; obtain the page
lock; read the page; select tuples from the page; send selected tuples to the
next phase. This sequence will be executed once for each page of the relation.
The obtained locks are released within the body of a different task block which
represents the commit phase of the transaction the query belongs to.

The platform layer consists of the Evaluator and the Builder. The task block
profiles of the queries are mapped by the Evaluator into sequences of resource
usages. The Evaluator contains a hardware platform model which is generated
by the Builder from a set of analytical formulae. This enables the Evaluator to
map each basic operation into the appropriate sequence of resource usages. For
example, a basic page read operation may be mapped to the following sequence,
which makes explicit the order of usage and time consumption associated with
the read:

130

cpu 32ps;
disk3 150ms;
cpu 50ps

Apart from producing these resource usage profiles, the evaluator also gives
an initial estimation of the maximum throughput value.

A resource usage representation is then produced which captures the pat tern
of resource consumption of the original query by mapping the task blocks to
resource blocks. The Queue Waiting Time Estimator and the Response Time
Est imator of the output layer of STEADY work with this representation to es-
t imate individual resource utilisation and response t ime and, from these, overall
query response time. The details of these processes is the subject of a future
paper.

3 Verification by Simulation

When estimating the performance of complex systems using analytical methods,
two basic approaches are available: 1) to build a high-level abstract model and
find an exact solution for the model, or 2) to build a fairly detailed model and
find an approximate solution for it - - finding exact solutions for detailed models
is in general not feasible. In the case of STEADY, the second approach has been
adopted.

Part of the verification of STEADY is to determine the level of accuracy of
results that can be achieved using the approximation algorithm described in the
previous section. This can be achieved by finding solutions, within error bounds,
for the model using discrete event simulation and then comparing these with the
figures that are obtained using STEADY.

The simulation is based on the resource usage profiles of transactions, which
are generated by STEADY's platform layer. Transactions are implemented as
simulation processes which access shared resources according to the specifications
in these profiles. New transactions are generated according to the overall arrival
rate distribution and the respective transaction frequencies. Simulation output
includes statistics on resources (including utilisation) and transaction response
times.

A number of examples have been selected and experiments conducted to
compare the results obtained from simulation with those predicted by STEADY.
One example is given in Figure 2 which shows the average utilisation of resources
as predicted by simulation and by STEADY. By contrast Figure 3 provides a
comparison of average transaction response times. In all the experiments results
for average utilisation show very good agreement whereas those for response
t ime are more variable. This is being investigated further.

4 Verification by Process Algebra

The second way in which the STEADY approach is being "verified" is through
process algebras. A process algebra is a mathematical theory which models com-
munication and concurrent systems. In the early versions of process algebras,

131

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Uti isation A (s mulat ion) - o ~
. ut i i lsat ion A (st'elidVi -~---

Util isation B (simulatlo~ I - o - -
Utilisation B (steady) x

.. .U l i J i sa t ion G ~ s i m u M t i o n) . ~ - - - ..
U t i l i s a t i e n C (s t e a d y) - ~ . -

. ' i v

. i i

.

i " i . ,+~

, j l ; ~ , . - i

, ~ I ~ ~ J " - i

I i t I I

20 40 60 80 100 120
transact ion arrival rate (trXS/sec)

140

Fig. 2. Utilisation of resources A, B and C

o

100

90

80

70

60

SO

40

30

20

10
0

! ! ! ' T

R s s p o n s e T i m s T 2 (simutation) - o - - : ; j
" RoSpo~tSO T ime 3"2 (~tea~Y) - ~ - : ! " ~ " ~-

i i i i i ~,

20 40 60 80 100 120 140
transact ion arrival rate (trxs/sec)

Fig . 8. Mean response time of t2

132

time was abstracted away. A classical example of such an algebra is CCS (Cal-
culus of Communicating Systems) [7].

The form of process algebra which has been selected for use here is known as a
Performance Evaluation Process Algebra (PEPA) [6]. This is a stochastic process
algebra which has been developed to investigate the impact of the computational
features of process algebras upon performance modelling.

In PEPA, a system is expressed as an interaction of components, each of
which engages in some specific activity. These components correspond to the
parts of the system or the events in the behaviour of the system. The behaviour
of each component is defined by the activities in which it can engage. Every
activity has an action type and an associated duration (which is represented by
a parameter known as the activity rate), and is written as (~, r) where a is an
activity and r the activity rate.

To illustrate the PEPA approach, consider the simplest of models, comprising
a single processing element with one processing unit and one disk (see fig 4). Sup-
pose that transactions arrive at the transaction manager (TM) module, which
on receipt of a transaction passes it to the concurrency control unit (CCU). The
latter sends a message to the distributed lock manager (DLM) requesting a lock;
the DLM grants the lock and replies accordingly. The CCU sends a message to
the buffer manager (BM) which reads from disk and returns the data. Finally
the CCU releases the lock and commits the transaction.

TM CCU

BM / /

DLM

Fig. 4. Single Processing Element Configuration

This is expressed in PEPA notation as follows:

#QO = (tm2ccu,infty).(ccu2dlm,r.sgnO).QO ;
#Q1 = (dlm2ccu,infty).(lock_granted,r_sgn).Q1;

Q = OO 0 Ol;
#D = (release_lock,infty).(commit,infty).(ccu2dhn0,r_sgn0). (ccu2tm,r_sgn0).D;
P = (lock_granted,infty).P1;
#P1 = (ccu2bm,r_sgn0).(bm2ccu,infty).(release-lock,r-sgn). (commit,r_commit).P;
C C U = (Q () D) < commit, release_lock, lock_granted) P ;
#DLM0 = (ccu2dlm,infty).(dhn2ccu,r-gnt).DLM0;

133

D LM 1 = (ccu2dlm0,infty). (release,r _sgn). DLM 1;
D L M = DLM0 () DLM1;
B M = (ccu2bm,infty). (deliver,r_deliver). (bm2ccu,r_sgn0).BM;
T M 0 = (request,r_req).(tm2ccu,r_sgn0).TM0;
T M 1 = (ccu2tm,infty). (reply, r_reply).TM 1;
T M - TM0 0 TM1;
P E P A = (TM () BM 0 DLM)
(tm2ccu ,ccu2tm ,bm2ccu,ccu2bm ,ccu2dlm,ccu2dlm0 ,dlm2ccu) CCU;
PEPA

Here the notation (a, r).REST is the basic mechanism by which the be-
haviour of a component is expressed. It denotes the fact that the component will
carry out activity (a, r) which has action type a and a duration of mean 1/r,
followed by the rest of the behaviour (REST). The notation P(L)Q where P and
Q are components and L is a set of action types, denotes the fact that P and Q
proceed independently and concurrently with any activity whose action type is
not contained in L. However, for any activity whose action type is included in
L, components P and Q must synchronise to achieve the activity. These shared
activities will only be enabled in P(L)Q when they are enabled in both P and
Q , i.e. one component may be blocked waiting for the other component to be
ready to participate.

For this very simple configuration, a very simple benchmark has been adopted
in which a single relation with tuple size of 100 bytes is scanned by a query
performing a simple search. The page size is set to 1024 bytes and each page
is assumed to be 70% full. Each fragment of the relation is assumed to consist
of a single page. The average time to perform a disk read is taken as 41.11
milliseconds.

Results for this very simple example are given in Table 1.

Throughput (tps)
Query arrival rate data in data in data in data in

1 frag 2 frags 3 frags 4 frags
5.0 4.996 4.962 4.816 4.512
10.0 9.919 9.015 7.339 5.858
25.0 20.418 11.924 8.058 6.059
100.0 24.019 12.089 8.077 6.063

STEADY Max throughput(tps) 24.324 12.162 8.108 6.081

Table 1. System performance of PEPA model and STEADY: throughput (in tps)

In order to solve such a model, the method reduces the model to a set of
states. In the case of this very simple example, the number of states generated
is 1028. However, when one considers slightly more complex models, such as
configurations involving more than one processing element, the number of states

134

increases rapidly (approx 810000 states for two processing elements) and the
computation required to solve it becomes too large.

In order to handle such cases we are currently experimenting with the flow
equivalent aggregation method [8] to decompose the models into manageable
sub-models and find solutions to these. The results so far are encouraging al-
though no complete solution is yet available.

5 C o n c l u s i o n s

This paper has discussed the verification of an analytical model (STEADY) for
estimating the performance of parallel relational DBMSs. Two different methods
of verification were investigated. The first approach was to apply simulation to
a set of problems. The same problems were also solved using STEADY. The
results of the comparison between STEADY and the simulation were mixed,
as some compared very favourably whereas others require further investigation.
Although the simulation alone is not sufficient to verify all aspects of STEADY,
it has proved to be valuable in analysing, choosing and developing approximation
algorithms for mathematical solutions of detailed analytical models.

The second, more theoretical, method of verification that was investigated
was a process algebra system known as Performance Evaluation Process Alge-
bra (PEPA). This system was used to verify the components of STEADY which
produce both the resource usage profiles and the first estimation of maximum
system throughput. The system used to verify STEADY was a simple system
as PEPA becomes unmanageable when more complex configurations are con-
sidered. Further work on PEPA is being carried out to handle more complex
configurations, whilst keeping the system manageable.

The processes described are intended as an initial stage in the verification
of STEADY, being performed in parallel to validation against actual measured
performance.

6 A c k n o w l e d g m e n t s

The authors acknowledge the support received from the Engineering and Physi-
cal Sciences Research Council under the PSTPA programme (GR/K40345) and
from the Commission of the European Union under the Framework IV pro-
gramme, for the Mercury project (ESPRIT IV 20089). They also wish to thank
Arthur Fitzjohn of ICL and Shaoyu Zhou of Microsoft Corp. for their contribu-
tion to this work.

R e f e r e n c e s

1. K. Hua, C. Lee, and H. Young. "An efficient load balancing strategy for shared-
nothing database systems" Proceedings of DEXA '9P conference, Valencia, Spain,
September 199P, pages 469-474

135

2. M. B. Ibiza-Espiga and M. H. Williams. "Data placement strategy for a paral-
lel database system" Proceedings of Database and Expert Systems Applications 92,
Spain, 1992. Springer- Verlag~ pages ~8-5~

3. P. Watson and G. Catlow. "The architecture of the ICL GoldRush MegaSERVER"
Proceedings of the 13th British National Conference on Databases (BNCOD 13),
Manchester, U.K., July 1995, pages 250-262

4. S. Zhou, N. Tomov, M.H. Williams, A. Burger, and H. Taylor. "Cache Modelling
in a Performance Evaluator of Parallel Database Systems" Proceedings of the Fifth
International Symposium on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems, IEEE Computer Society Press, January 1997, pages
46-5o

5. L. Kleinrock. "Queueing Systems, Volume 1: Theory" John Wiley ~ Sons, Inc.,
Canada, 1975

6. J. Hilston. "A Compositional Approach for Performance Modelling", PhD Thesis,
University of Edinburgh, 199~.

7. R. Milner. "Communication and Concurrency" Prentice Hall International, UK,
1989

8. K. Kant. "Introduction to Computer System Performance Evaluation" McGraw-Hill
Inc., Singapore, 1992

