
Achieving Portability and Efficiency
Through Automatic Optimisation:

An Investigation in Parallel Image Processing

D Crookes 1, P J Morrow 2, T J Brown 1, G McAleese ~, D Roantree 2 and I T A
Spence 1

1 Department of Computer Science, The Queen's University of Belfast, Belfast BT7
1NN, UK

2 Department of Computing Science, University of Ulster at Coleraine, Coleraine,
BT52 7EQ, UK

A b s t r a c t . This paper discusses the main achievements of the EPIC
project, whose aim was to design a high level programming environ-
ment with an associated implementation for portable parallel image pro-
cessing. The project was funded as part of the EPSRC Portable Soft-
ware Tools for Parallel Architectures (PSTPA) programme. The paper
summarises new portable programming abstractions for image process-
ing, and outlines the automatically optimising implementation which
achieves portability of application code and efficiency of implementa-
tion on a closely coupled distributed memory parallel system. The pa-
per includes timings for optimised and unoptimised versions of typical
image processing algorithms; it draws the main conclusion that it is
possible to achieve portability with efficiency, for a specific application,
by adopting a high level algebraic programming model, together with
a transformation-based optimiser which reclaims the loss of efficiency
which an algebraic approach traditionally entails.

1 I n t r o d u c t i o n

The need for portabil i ty of program code for parallel systems is an impor tan t
but elusive goal. For instance, in an anecdotal keynote address to a recent Eu-
ropean conference on parallel comput ing a distinguished American visitor f rom
a major research facility recounted how the parallel supercomputers which his
laboratory uses are renewed typically every three years. After installation, some
two years is then spent modifying the suite of programs which researchers at
the laboratory use so that they will run on the new hardware. Useful comput ing
can then proceed for a period of about a year, before the machines are replaced
again by the next generation; and so the cycle of events repeats. His purpose
in relating these events was to highlight the relative difficulty in producing par-
allel software and port ing it between machines. Software for parallel computers
is often tailored to the architecture of part icular machines in order to deliver
opt imal performance, particularly in the case of distr ibuted memory machines.

103

On the other hand, this complicates the problem of constructing programs and
inhibits their portability once constructed.

The EPIC project has been undertaken to consider to what extent automatic
optimising software tools can take a high level, portable algorithm description,
and generate parallel code whose efficiency on a distributed machine rivals than
of hand-tuned parallel code. Because of the difficulty of such a problem in a
general purpose programming environment, the project has deliberately chosen
an application specific approach - in our case, the domain of image processing.
The result is the EPIC environment: a high level, portable image processing pro-
gramming environment, with an implementation which automatically generates
very efficient code running on distributed memory parallel systems[l, 2].

More specifically, the key objectives of the EPIC project were:

1. To identify a set of programming abstractions for image processing. These
abstractions constitute the core of the Extensible Parallel Image Coprocessor
(EPIC) model. In the long term, we also wished to see how far these abstrac-
tions could be pushed towards general purpose programming abstractions.

2. To construct an (object-oriented) application development environment ba-
sed on the EPIC model which enables users to construct portable image
processing applications.

3. To develop a rule based transformation system which generates parallel code,
for distributed memory machines, whose efficiency rivals that of hand tuned
parallel code.

In the rest of this paper we first summarise the new image processing pro-
gramming abstractions which were developed at the outset of the project, based
on extensions to Image Algebra[3]. We then describe the EPIC application de-
velopment environment in general, before looking at the off-line optimiser in
particular. We present performance figures illustrating the benefit which optimi-
sation brings for a number of simple algorithms and for the three architectures
on which the system has now been implemented. Finally we draw conclusions
and review the scientific insights which we have gained.

2 EPIC Programming Abstractions for Parallel Image
Processing

It is known that efficiency on distributed memory parallel architectures bene-
fits from the predictability and locality of data references. For low level image
processing applications this is readily provided by the neighbourhood based op-
erations which are typically used. For these forms of operation one can identify
easily any data communication needs associated with an updating operation
from the neighbourhood itself. Thus an application specific neighbourhood ba-
sed programming model offers an advantage over more general purpose language
notations where operations would typically be defined in terms of loop constructs
and subscripting, from which the extraction of communication requirements is
in general non-trivial.

104

Another advantage of a neighbourhood based programming model is that it
can readily be supported by the development of a high level algebraic notation.
This has been done for image processing by the development of Image Algebra[3]
whose basic operations, plus image and template data types, form the starting
point for the EPIC programming notation. Our programming abstractions for
image processing have been developed in two stages:

1. Because neighbourhood processing is particularly suited to implementation
on parallel machines (since data access patterns are predictable), the basic
operations and concepts of Image Algebra were used as the basis of our
programming abstractions, with minor extensions.

~. To continue to exploit the locality property of neighbourhood processing,
we extended considerably the concept of a neighbourhood. For instance,
we introduced sets and sequences of neighbourhoods. Together with vari-
ant neighbourhoods of Image Algebra, these novel abstractions give a very
powerful and flexible notation which is still nevertheless capable of paral-
lel implementation. As a result, we can now express various complete image
transforms such as the Hadamard transform at a high level[4], and obtain an
implementation whose performance is comparable with hand coding. We can
also express various kinds of geometric transformation, including downsam-
pling and upsampling operations of the kind used in some forms of wavelet
transform, and data permutation operations such as perfect shuffle or the bit
reversal permutation which is a component of many standard image trans-
forms such as the FFT.

Evaluation of the abstractions was carried out by re-engineering a number
of existing (sequential) systems. One large one (on calculating optical flow) has
highlighted the need for extending the abstractions to include 3-D and video
image processing applications. (The latter is currently the subject of more recent
work at QUB[5].)

In trying to extend the applicability and expressive power of the above ab-
stractions beyond the domain of image processing, we have insisted on retaining
the basic concept of neighbourhood processing (as in (2) above). We have in-
vestigated several standard numerical algebra problems, and found that, with
facilities for building new compound operators from a group of primitives, sets
and sequences, we can code algorithms for problems such as matrix multipli-
cation, LU factorisation, and finding the transitive closure of directed graphs.
This work has not yet been reported in detail, but results to date indicate that
a number of numerical problems can be expressed in terms of neighbourhood
processing, but whether or not it is natural to do so needs further investigation.

3 Implementation and the Need for Optimisation

Although the kind of high level, algebraic notation outlined above is very con-
venient as a programming notation, there are some forms of inefficiency which
necessarily arise from a straightforward library-based implementation approach.
There are two main reasons for this:

105

- The fact that special cases, in which an operands value is known and could be
exploited manually, cannot be fully exploited, because the implementations
of the high level operations must of necessity be general purpose.

- The fact that implementing expressions involving compound operations will
frequently involve replication of overheads.

As a simple example of the first problem, consider a convolution operation
between an image and a template (a weighted window used in neighbourhood
operators). This operation is normally provided as a general purpose routine
applicable to any pair of operands. However it is frequently the case that the
template may contain weights of zero or one. Using a general purpose routine
will therefore entail unnecessary arithmetic operations.

The second problem arises with any expression which involves compound
operations using image operands. Each individual operation will normally be
implemented by a routine which traverses the image domain (for example using
a double loop construct). When a compound expression is implemented this
overhead is replicated for each individual operation, leading to a significant loss
in efficiency.

Of course, a programmer interested primarily in efficiency would manually
write additional routines for all the above cases; but this would require operating
at a lower level at which the parallelism and communication would be visible,
thus reducing portability. The essence of the EPIC environment is that it auto-
matically generates these additional routines, and links them in to the runtime
environment; in this way it gives the same efficiency as a good programmer,
but allows the application developer to continue to operate at the highest level.
The environment is based on a rule based optimiser which aims to apply the
same reasoning steps which a programmer would apply manually in generating
efficient, tailored versions of the standard routines.

4 E P I C : A P o r t a b l e A p p l i c a t i o n D e v e l o p m e n t

E n v i r o n m e n t

The second objective defined above was the implementation of an object oriented
application development environment for parallel image processing based on the
programming abstractions defined within the framework of the EPIC model.
We have developed a sophisticated environment, providing C++ as the users
language, with the EPIC abstract machine provided as a range of C + + meth-
ods[6, 7]. In developing the EPIC environment, we have proposed and integrated
several ideas which we believe could have longer term benefits for the design
of future systems of this kind. The more significant ideas (or developments of
previous ideas and approaches) which appear to us to have particular relevance
and importance in this area of the project are now considered.

A n E x t e n s i b l e A b s t r a c t M a c h i n e

The traditional approach to achieving portability across architectures is to de-
fine an abstract machine with an instruction set matching the application. In our

106

case, we provide an image coprocessor with an instruction set which supports our
Image Algebra-based programming abstractions. This results in a static instruc-
tion set (like a library). However this tradit ional approach results in inefficiencies
which can sometimes make the whole approach less attractive to real applica-
tion developers. As discussed above, these inefficiencies arise typically for two
reasons:

1. Special cases of instructions are often implemented more efficiently by man-
ual programmers, and

2. The array processing overheads for compound instructions are usually cu-
mulative.

We have developed an architecture for an abstract machine in which these
inefficiencies can be avoided while retaining the elegance and portabili ty of the
abstract machine model. We have proposed the concept of an Extensible abstract
machine, in which the instruction set has two parts:

1. The basic, static instruction set, and
2. A set of additional, optimised instructions which avoid the inefficiencies men-

tioned above.

These additional instructions are program-specific, and implement special
cases and compound instructions as efficiently as manual coding. As indicated
below, these extended instructions are generated and called automatically.

A Self-Optimising Abstract Machine

To enable the programmer to continue to use the static EPIC algebraic program-
ming abstractions, and thus gain clarity, portabil i ty and conciseness, while at the
same time gain the performance benefits of the types of optimisation mentioned
above, we have developed an off-line optimiser which carries out the optimisation
and generation task which a performance-minded programmer would carry out.
The EPIC environment automatically builds new, optimised instructions which
are then linked in to the dynamic, extended part of the EPIC instruction set.
This involves the following program execution behaviour:

1. The first t ime a program is run, it does so using only the static instruction
set. But at the same time, syntax trees for compound operations and special
cases are dumped to file.

2. Off-line, these syntax trees are transformed into new, optimised routines,
and linked into the EPIC coprocessors extended instruction set.

3. On subsequent execution, the extended instructions are automatically used,
with no user input. The only visible difference will be the increase in execu-
tion speed.

To demonstrate how these ideas are provided by the EPIC environment, the
next section presents the architecture of the EPIC system itself.

107

The EPIC System Architecture

The EPIC application development environment has three principal components.
These are:

1. The C + § class library which forms the users application programming en-
vironment.

2. The parallel coprocessor which is installed on the parallel machine.
3. The off-line optimiser which is the rule-based transformation system used to

generate extended instructions from combinations of the basic programming
abstractions. The optimiser is described in more detail in the next section of
this report, but it forms an integral part of the overall system architecture.

The overall system architecture is illustrated in Figure 1 below.

Fig. 1. Overall System Architecture

The Parallel Coprocessor

The parallel coprocessor consists of a controller process and a set of worker
processes. Images are geometrically decomposed into horizontal strips or vertical
columns. Dynamic redistribution at runtime is supported.

108

The worker processes perform the actual computations on image data. Each
worker process has the internal structure illustrated in the inner box (Figure
1), with a control module, a variable table storing information about program
variables including pointers to their data, an evaluation stack, and two tables of
instructions. The first is the table of built-in instructions, and the second is the
table of extended instructions generated by the optimiser. The control logic can
handle the implementation of either form of instruction.

The coprocessor is implemented in C, using MPI for communications. In
fact, only six MPI routines are used. On the C40 system, we wrote our own MPI
routines, making sure they implement only the minimum necessary functionality
(which proved a significant performance advantage).

P o r t a b i l i t y of the S y s t e m

Our initial goal was to base the EPIC implementation on a network of Texas
Instruments C40 processors. We have not only successfully met this objective,
but we have also ported the implementation to two other parallel architectures.
These are: a quad-processor Unix workstation, and a network of Pentium PCs
running Linux. The application development environment is fully operational on
all three architectures.

5 T h e O f f - L i n e O p t i m i s e r

The EPIC environment includes a rule-based transformation system which can
generate new optimised instructions from arbitrary compositions of the built-in
instructions. This component is the off-line optimiser shown in Figure 1 and it
is in reality an integral feature of the overall system architecture.

The off-line optimiser takes the syntactic representations generated by execu-
tion of the users program on the sequential host and generates optimised parallel
code to implement the complete operation defined in each statement. The opti-
mised routine, after compilation and linking, becomes a new instruction on the
parallel coprocessor.

The optimiser is a rule driven system written in Prolog. It uses optimisation
techniques which are not in themselves new. For the most part these are loop
combining, loop unrolling and loop interchanging, along with the elimination
of redundant arithmetic. Several strategies are employed to identify the most
appropriate path to follow based on the contents of the syntax graph. This
includes trial and error approaches when an obvious course is not evident from
the nature of the syntax graph. A pattern-matching approach is used to find the
best transformation applicable.

The output is initially in the form of an object code syntax graph. A code
generation module is then used to generate C code with calls to library routines
for such purposes as border swapping. The generated optimised instructions are
independent of the number of available processors. Direct calls to MPI, which
provides the communication framework, are also embedded in the code.

109

The capabilities built into the optimiser enable it to handle any composit ion
of the operations provided within the class library, including operations nested
to any depth. Also provided is the ability to handle the syntact ic representations
of variant templates operations, including sequences of variant templates.

6 Performance of the EPIC Optimiser

As an illustrative case, consider the example program s ta tement of the form:

EdgeImage = (absconv(Im,Sv) + absconv(Im,Sh)) > Threshold)*255 ;

This performs a simple edge detection operat ion when Sv and Sh are vertical
and horizontal gradient operators such as the Sobel operators. When we execute
a s ta tement like this without optimisat ion a total of 5 of the basic instructions
will be needed, each entailing a pass over the image domain. Opt imisat ion can
produce a new instruction requiring only one traverse of the image domain to
perform the whole operation. Our initiM studies showed tha t a sequential unop-
timised version would run up to nearly 5 times slower than a hand- optimised
version for s ta tements of this level of complexity (and a factor of around 4.5 on
a parallel system).

Trials using the EPIC optimiser have now been performed on all three of
the architectures on which the EPIC system is implemented. The results are
tabulated (Table 1) for two such operations, namely a top hat filter operat ion
and the edge detector example shown above. Times are in seconds and the image
size in each case is 256*256.

Table 1. Execution times

C40 - ~ Workers
Before optimisation
After Optimisation
Improvement
C40- 2 Workers
Before optimisation
After Optimisation
Improvement
PC-Linux System
Before optimisation
After Optimisation
Improvement
Quad-Processor Workstation
Before optimisation
After Optimisation
Improvement

Top Hat Filter

0.62
0.13

4.8 fold

1.12
0.17

6.6 fold

1.83
0.75

2.44 fold

2.87
1.74

1.65 fold

Edge Detecto~

0.39
0.10

3.9 fold

0.47
0.16

2.93 fold

0.94
0.53

1.77 fold

1.95
1.36

1.43 fold

110

These are of course quite short programs but they do illustrate that on the
C40 implementation we are seeing impressive performance improvements from
the optimisation.

Measurement of the overheads incurred by the host processor (tree building,
tree matching and host-coprocessor communication) is harder to assess. However,
on a selection of tests with a (slow!) SUN host and a C40-based coprocessor, the
host overheads reduced overall system performance by between 10% and 35%.
This demonstrates another significant finding namely, the importance of a fast,
closely-coupled host to a parallel coprocessor.

It is clear from all our experiments that workstation clusters are going to
struggle in obtaining parallel efficiency for image processing, because of the com-
munication overheads and process switching times. On such systems, the EPIC
optimisation capability will probably not give sufficient speedup to make its use
worthwhile (although recent work on lightweight messaging[8] could improve the
situation somewhat). However, the C40 system gives very promising results, and
the EPIC approach definitely pays off. This is largely because the C40 system
is much more closely coupled, and because implementation of the MPI commu-
nication routines are architecture-aware. This is an important lesson for other
implementors.

7 C o n c l u s i o n s

The EPIC project has demonstrated the main thesis of our approach to achieving
portability with efficiency, namely that in this problem domain:

1. Portability over parallel architectures can be achieved by adopting an alge-
braic, application-specific programming model, and by retaining the tradi-
tional implementation concept of an abstract coprocessor machine - but in
a more sophisticated form.

2. The inherent loss of efficiency arising from a standard abstract machine-
based approach to implementing an algebraic model can be recovered, by
developing a rule-based optimiser which generates the equivalent of new
machine instructions dynamically, thus giving an extensible instruction set
for the abstract coprocessor.

As part of the project, we have therefore developed a powerful self-optimising
tool which demonstrates the feasibility of automatically generating new opera-
tions from special cases or compositions of library operations, and have provided
a transformation system for program optimisation. An efficient implementation
of EPIC has been developed for C40 networks and portabili ty has been achieved
through the use of an MPI communications layer. In addition the system has
been ported to a quad-processor Unix workstation and a PC-based Linux net-
work.

The work described in this paper has contributed to the ongoing debate on
how to achieve portabil i ty with efficiency, though very much from an application
specific viewpoint. The main contributions to this debate are:

111

- The concept of an extensible abstract machine, for obtaining both portabili ty
and efficiency.

- New sophisticated neighbourhoodobased abstractions, which are proving ca-
pable of expressing some algorithms from other application areas (e.g. nu-
merical problems), and which guarantee parallel efficiency.

- Automatic identification of extended instructions has been achieved, though
we are undecided at this stage as to whether or not it is advisable (the
programmer could identify these manually).

- The novel concept of a self-optimising machine, made possible by automatic
extension of the instruction set by the system generating, linking and calling
extended instructions on subsequent program executions.

- Portabili ty across different distributed memory platforms, using a small sub-
set of the MPI interface. For full efficiency, we recommend rewriting these
MPI routines for a specific configuration, rather than rely on a general-
purpose MPI implementation.

- For image processing applications at least, the benefits of automat ic optimi-
sation are most apparent on a closely coupled network of processors. They
are not so apparent on a loosely coupled cluster with a general purpose MPI
implementation.

- At the highest level, possibly our most significant achievement is to enable
programmers to continue to operate using a set of high level primitives - -
and hence retain application portability- by reclaiming the usual inherent
loss of efficiency through sophisticated optimising software tools. It is this
concept which should be applicable to a wide range of other application
domains.

A c k n o w l e d g e m e n t s

This work has been supported by the UK EPSRC within the framework of the
PSTPA (Portable Software Tools for Parallel Architectures) initiative. The sup-
port received from Transtech Parallel Systems is also gratefully acknowledged.

R e f e r e n c e s

1. Crookes, D., Brown, J., Dong, Y., McAleese, G.,Morrow, P.J., Roantree D. and
Spence I.: A Self-Optimising Coprocessor Model for Portable Parallel Image Pro-
cessing. Proc. EUROPAR'96. Springer-Verlag (1996) 213-216

2. Crookes, D., Brown, J., Spence, I., Morrow, P., Roantree, D. and McAleese, G.: An
Efficient, Portable Software Platform for Parallel Image Processing. Proc. PDP'98,
Madrid (1998)

3. Ritter, G.X., Wilson, J.N. and Davidson, J.L.: Image Algebra : An overview. Com-
puter Vision, Graphics and Image Processing 49 (1990) 297-331

4. Crookes, D., Spence, I.T.A. and Brown, T.J.: Efficient parallel image transforms: a
very high level approach. Proc. 1995 World Transputer Congress, lOS Press (1995)
135-143

112

5. Hill, S. J., Crookes, D. and Bouridane, A.: Abstractions for 3-D and video process-
ing. Proc. IMVIP-97, Londonderry, (1997)

6. Morrow, P.J, Crookes, D., Brown, J., Dong, Y., McAleese, G., Roantree, D. and
Spence, I.: Achieving Scalability, Portability and Efficiency in a High-Level Pro-
gramming Model for Parallel Architectures. Proc. UKPAR'96. Springer-Verlag
(1996) 29-39

7. Morrow, P., Roarltree, D., McAleese, G., Crookes, D., Spence, I., Brown, J. and
Dong, Y.: A Portable Coprocessor Model for Parallel Image Processing. European
Parallel Tools Meeting. ONERA, Chatillon, France (1996)

8. Nicole, D.A. et al. High performance message passing under chorus/Mix using
Java. Department of Electronics and Computer Science, University of Southampton
(1997")

