
Process Migrat ion and Fault Tolerance of B S P I i b
Programs Running on Networks of Workstat ions

Jona than M.D. Hill 1, Stephen R. Donaldson 1 and T im Lanfear 2

1 Oxford University Computing Laboratory, UK.
2 British Aerospace Sowerby Research Centre, UK.

Abs t r ac t . This paper describes a system that enables parallel programs
written using the BSPlib communications library to migrate processes
among a network of workstations. Not only does the system provide fault
tolerance of BSPlib jobs, but by utilising a load manager that maintains
an approximation of the global load of the system, it is possible to con-
tinually schedule the migration of BSP processes onto the least loaded
machines in a network. Results are provided for an industrial electro-
magnetics application that show that we can achieve similar throughput
on a publically available collection of workstations as a dedicated NOW.

1 I n t r o d u c t i o n

The Bulk Synchronous Parallel (BSP) model [14, 10] views a parallel machine
as a set of processor-memory pairs, with a global communicat ion network and
a mechanism for synchronising all processors. A BSP program consists of a se-
quence of supersteps. Each superstep involves all of the processors and consists
of three phases: (1) processor-memory pairs perform a number of computa t ions
on da ta held locally at the start of a superstep; (2) processors communicate da ta
into other processor's memories; and (3) all processors barrier synchronise. The
globally consistent state that is available after the barrier not only helps when
reasoning about parallel programs, but also suggests a p rogramming discipline in
which computa t ion (and communication) is balanced across all the processes. As
balance is so impor tan t to BSP, profiling tools have concentrated upon exposing
imbalances to the programmer so that they can be eliminated [5, 7]. However,
not all imbalances that arise during program execution are caused by the pro-
gram. In an environment where processors are not dedicated resources, the BSP
computa t ion proceeds at the speed of the slowest processor. This would suggest
that the synchronous nature of BSP is a disadvantage compared to the more lax
synchronisation regime of message passing systems such as MPI. However, most
programs written using collective communications, or scientific applications such
as the NAS parallel benchmarks [1] are highly synchronous in nature, and are
therefore limited to the performance of the slowest running process in either
BSP or MPI. Therefore, if a network user logs onto a machine tha t is par t of a
BSP job, this may have an undue effect on the entire job. This paper describes
a technique tha t ensures a p process BSP job continually adapts itself to run on
the p least loaded processors in a network consisting of P machines (p < P) .

81

Dedicated parallel machines can impose a global scheduling policy upon their
user community such that, for example, parallel jobs do not interfere with each
other in a detrimental manner. The environment that we describe is one where it
is not possible to impose some schedule on the user community. The components
of the parallel computation are invariably guests on other peoples machines
and should not impose any restrictions on them for hosting the computat ion.
Further, precisely because of this arrangement, the availability of the nodes and
the available resources at these nodes is quite erratic and unpredictable. We
adopt the philosophy that in such a situation it is reasonable to expect the
parallel job to look after itself.

We briefly describe the steps involved in migrating a BSP job, that has been
written using the BSPIib [6] communications library, among a set of machines
and the strategy used in making check-pointing and migration decisions across
all machines. The first technical challenge (Section 2) describes how we capture
the state of a UNIX process and restart it in the same state on another machine
of the same type and operating system. The simplicity of the superstep structure
of BSP programs provides a convenient point at which local checkpoints capture
the globM state of the entire BSP computation. This therefore enables process
migration and check-pointing to be achieved without any changes to the users
program. Next we describe a strategy whereby all processes simultaneously de-
cide that a different set of machines would provide a better service (Section 3).
When the BSP job decides that processes should be migrated, all processes per-
form a global checkpoint, they are then terminated and restarted on the least
loaded machines from that checkpoint. Section 4 describes a technique for de-
termining the global load of a system, and Section 5 describes an experiment
using an industrial electro-magnetic application on a network of workstations.
This demonstrates how the scientist or engineer is allowed to concentrate on the
application and not on maintaining or worrying about the choice of processors
in the network. Section 6 describes some related work and Section 7 concludes
the paper.

2 Check-Pointing and Restarting Single Processes

BSPIib provides a simple API for inter-processor communication in the context
of the BSP model. This simple interface has been implemented on four classes of
machine: (1) distributed memory machines where the implementation uses either
proprietary message passing libraries or MPI; (2) Distributed memory machines
where the implementation uses primitive one sided communication, for example
the Cray SHMEM library of the T3E; (3) shared memory multi-processors where
the implementation uses either proprietary concurrency primitives or System V
semaphores; and (4) Networks of workstations where the implementat ion uses
T C P / I P or UDP/IP . In this paper we concentrate upon check-pointing programs
running on the network of workstations version of the library. Unlike other check-
pointing schemes for message passing systems (See Section 6), by choosing to
checkpoint at the barrier synchronisation that delimits supersteps, because there

82

is a globally consistent state upon exiting the barrier (where all communication
is quiesced), the task of performing a global checkpoint reduces to the task of
check-pointing all the processes at the local process level.

All that is required to perform a local checkpoint is to save all program data
that is active. Unfortunately, because data (i.e., the state) can be arbitrarily
dispersed amongst the stack, heap and program text, capturing the state of a
running program is not as simple as it would first appear. A relatively straight-
forward solution in a UNIX environment is to capture an image of the running
process and create an executable which contains the state of the modified data
section (including any allocated heap storage) and a copy of the stack. When
the check-pointed executable is restarted the original context is restored and all
BSPIib supporting IPC connections (pipes and sockets) are re-established be-
fore the computat ion is allowed to proceed. All this activity is transparent to the
programmer as it is performed as part of the BSPIib primitives. Furthermore,
by restricting the program to the semantics of BSPlib, no program changes are
required. The process of taking a checkpoint involves making a copy of the stack
on the heap, saving the current stack pointer and frame pointer registers, and
saving any additional state information (for example, on the SPARC the register
windows need to be flushed onto the stack before it is saved, and the subroutine
return address needs to be saved as it is stored in a register; in contrast, on the
Intel X86 architecture, all necessary information is already stored on the stack).
The executable that captures this state information is built using the unexer ()
function which is distributed as part of Emacs [11]. The use of unexec () is sim-
ilar to its use (or the use of undump) in Emacs, LaTeX (which build executables
containing initialised data structures) and Condor which also performs check-
pointing [4]. However, the state saving in Condor captures the point of execution
and the stack height using the standard C functions se t j r ap () and long jmp()
which only guarantee far jumping into activation records already on the stack
and within the same process instance. Instead, we capture the additional re-
quired information based on the concrete semantics of the processor. To restart
a process and restore its context, the restart routine adjusts the stack pointer
to create enough space on the stack so that the saved stack can be copied to its
original address and restores any saved registers.

3 D e t e r m i n i n g w h e n t o M i g r a t e P r o c e s s e s

As mentioned above, our philosophy is that the executing job be sensitive to
the environment in which it is executing and it is the job, and not an external
scheduler, that makes appropriate scheduling decisions. For the job to make an
informed decision, some global resource information needs to be maintained. The
solution we have adopted is that there are daemons running on each machine
in the network which maintain local approximations to the global load. The
accuracy of these approximations is discussed in the next section. Here we assume
that each machine contains information on the entire network which is no more
than a few minutes old with a high probability.

83

When a BSP job requests a number of processes, the local daemon is queried
for a suitable list of machines on which to execute the job (the daemon responds
so that the job may be run on the least loaded machines). In order tha t the
decisions are not too fickle, the five minute load averages are used. Also, it is
a requirement tha t not too much network traffic be generated to mainta in a
reasonable global state. Since the five minute load averages are being used, it is
not too impor tan t tha t entries in the load table become slightly out of date as
the wildest swings in the load averages take a couple of minutes to register in
the five minute load average figures.

Let Gi be the approximation to the global load on machine i, then given P
machines, the true global load is G = G1 H. �9 .UGp; where t3 is used to merge the
approximations from two machines. Given a BSP job running on p processors
with machine names 1 j in the set { i l , . . . , iv), we use the approximat ion G' =
G~ 1 U. - - U G~p which is better than any of the individual approximat ions with a
high probability. G ~ is a sequence of machine names sorted in decreasing priority
order (based on load averages, number of CPUs and their speeds). If the top
set of p entries of G ~ is not { i l , . . . , ip) then an alternate and bet ter assignment
of processes to machines exists (call this predicate fn). In order not to cause
processes to thrash between machines, a measure x of the load of the job (where
0 < x < 1) is added to the load averages of all machines not involved in the BSP
computa t ion before the predicate fn is applied. This anticipates the m a x i m u m
increase in the load of a machine when a process is migrated to it. Any observed
increase in load greater than x is therefore caused by additional external load.

Our aim is to ensure that the only overhead in process migrat ion is the t ime
taken to write p instances of the check-pointed program to disk. Therefore, we
require tha t the calculation that determines when to perform process migra-
tion does not unduly impact the computa t ion or communicat ion performance
of BSP1ib. We need to solve fn(G') = fn(Gil [3... t3 G~p) either on a superstep
by superstep basis or every N supersteps. However, the result can be obtained
without first merging the global load approximations. This can be done by each
processor independently computing its load approximations Gi and checking
that it is amongst the top p after adding zj to the loads of machines not in-
volved in the current BSP job; where 0 < zj < 1 is the contribution of the BSP
process on machine j , to the load average on tha t machine. This calculation can
be performed on entry to the superstep T seconds after the last checkpoint (i.e.,
this checking does not have to be performed in synchrony). The Boolean result
f rom each of the processors is reduced with the or-operator to ensure tha t all
processors agree to checkpoint during the same superstep. In the T C P / I P and
U D P / I P implementat ions of BSPlib, this is piggy-backed onto a reduction tha t
is used to globally optimise communicat ion [3]. Therefore if a checkpoint is not
necessary, there is no substantial impact on the performance of BSP1ib.

t we distinguish between machines and processors as each machine may contain a
number of processors, each of which runs multiple processes.

84

4

Fig. 1. Markov chain considering only single direct updates

D e t e r m i n i n g t h e G l o b a l L o a d o f a S y s t e m

The load daemons use a protocol in which the locally held global load states are
periodically sent to k randomly chosen daemons running on other machines. This
update period is uniformly and randomly distributed with each machine being
independent. When a load daemon receives an update, it responds by merging
the locally held load table and sending the resultant table back to the sender.
The sender then merges the entries of the returned table with the entries of
the locally held table. For purposes of simplifying the analysis, the updates are
assumed to happen at fixed intervMs and in a lockstep fashion. We also assume
that the processors do not respond with the merged table, but merely update
their tables by merging in the update requests. The analysis that follows always
provides an upper bound for the actual protocol used.

If each processor sent out a message at the end of each interval to all the other
processors, this would require p2 messages to maintain the global state. A job
requiring p < P processes could contact P machines and arrive at an optimal
choice of processors with considerably fewer messages provided that jobs did
not start very often. However, with a large network of machines, the rate of
jobs starting and the number of machines P would quickly lengthen the delay
in scheduling a BSP job. By maintaining a global processor utilisation state at
each of the machines, starting a job only involves contacting the local daemon
when choosing a set of p processors and thus need not contribute to network
traffic. Even once the ordering of processors has been selected, the problem of
over assigning work to the least loaded machines can be avoided by having those
machines reject the workload request based on knowledge built up locally. The
algorithm then simply tries the machine with the next highest priority.

The quality of the decision for the optimal set of machines depends on the
ages of the entries in the distributed load averages tables. If each machine uni-
formly and randomly chooses a partner machine at the end of each interval and
sends its load average value to that machine, then the mean age of each entry
in a distributed load average table can be calculated by considering the discrete
time Markov chain shown in Figure 1. In this case there would only be p mes-
sages at the end of each interval, but the age distribution {~ri : i E N}, and the
mean age # are given by:

1 /p-2
; - i

85

Fig. 2. Markov chain when indirect updates are allowed
CO

- - = p - 2 (2)

i-= l

By sending out messages more frequently, or sending out k messages at the end
of each interval, the mean age can be reduced to O(p/k), but this increases the
traffic and required number of virtual circuits to pk.

By allowing each machine to exchange all their load average information
with k other machines at the end of each interval, a significant reduction in the
mean age of the entries can be achieved with pk circuits. This scheme allows
machines to choose between the most current load average figures, even if they
were indirectly obtained from other machines. Figure 2 shows the corresponding
Markov chain. In this stochastic process, transitions into state 0 can only arise
out of direct updates, that is, a machine directly updating its entry in a remote
table. The distribution, {rr~ : i E N}, of the ages of the entries in the load average
table is given by the recurrence:

f k/(p - 1), if i = 0
7ri = ~ 7r~_lP{no useful updates} + ~jr 7r}P{min age is i}, otherwise (3)

Figure 3 shows the mean table entry ages of the three strategies when k =
1, 3, 6 against P. As P is given as a log scale, it is clear from the figure that while
the first two strategies give a mean age # as O(P), the third strategy (allowing
indirect updates) gives a mean age of #~ as O(log P) .

If we replace the discrete times of the Markov chains with update intervals,
t, the distributions above give the mean age at the beginning of each of the
intervals. The figure shows that in order to bound the mean age to, say, five
minutes we must ensure that:

1
t(# + 7) < 5 minutes, or

10
t < ~ (4)

- 2 p + l

Therefore when p = 32, t should be less than or equal 3�89 minutes. The line
marked "experimental results" shows the actual bounds on the algorithm for
t = 4 minutes for all values of P. The experimental results are better than the
upper bounds of the analysis as the updates don' t occur in lock-step fashion, and
a shorter sequence of updates are therefore possible. Also the actual protocol re-
uses the established circuit to send the merged tables back to the sender daemon;

8 6

3.5

2.5

2

.E

.-~ 1.5
I -

0.5

/ I
/ /

/ /
S j f~

j~
/ / f J

j f ~
j j S~

f f~
Sj~ J~

a /

/
/

/
/

/
/

/
/

/
/

/
/

/
/

i

Direct updates k= l - -
Direct updates k=3

Indirect updates k=3 -o--
Indirect updates k=6 ..§
Experimental results -D-.-

Merged P~o entries for k=3 and p=4 - x - - -

,O.O "O'~

o . o . - o ~ ~
. r , - - ' ~ " " : = . , , . . ~ , ~ ' : ' = : : : ' - - ' ~] , ~ . - " " > ~

~."" _ ::..+ _.-.'~ "

~. -"'~':::: +-.X - ~ ' ' "

.z #<~.~.-'-

}0[':~" I l I

8 16 32
Number of machines

Fig. 3. Mean ages achieved by each of the three strategies and the merged P \ p entries

this in effect allows the system to perform twice as many updates with fewer
circuits.

As described in Section 3, by having the p processes involved in a BSP com-
putat ion merge their load average tables before choosing where to migra te the
processes, the current five minute load averages for the p processors executing
the job is obtained and the ages of the load average table entries for the other
P - p machines have a distribution {~r~ ~ : i E 1~} where

I r i = 7 r [) ~ (1 - A ~ "t , (5)
x = l t = 0

Figure 3 includes the resulting mean age from this distribution for p = 4
against the total number of machines P , and compares it with the mean derived
from the original distribution {Tr~ : i E 1~}. It is clear from the figure that as p
increases, the mean age of the da ta from the merged tables decreases until the
mean age is zero when p = P.

5 Experimental Results for an Electro-Magnetics
Application

The code EMMA T:FE3D (part of the British Aerospace EMMA electro-magnetic
software suite), uses the finite element t ime domain method for solving Maxwell 's

Table 1. Execution time in seconds for the electro-magnetics simulation

IP lYP cat order daemon order daemon order + daemon order +
forced migration selective migration

2 3255 623 841 658
4 3855 1155 1916 1092
8 2968 1161

87

equations in three dimensions. The finite element approach offers several advan-
tages over other full wave solution methods (e.g., finite difference t ime domain,
method of moments). A volume of space around the target is filled with an un-
structured mesh of tetrahedra which can conform accurately to the geometry of
the object being analysed and, because of the unstructured nature of the mesh,
many small elements can be introduced in regions where the solution has rapid
spatial variation. A time marching algorithm using a Taylor-Galerkin method is
used to advance the fields through time to simulate the propagation of a wave
through the mesh. The CFD community have developed considerable knowledge
and expertise in unstructured mesh generation and finite element solvers which
have been exploited for solving electro-magnetic problems. Applications areas for
electro-magnetic solvers in the aerospace industry include electro-magnetic scat-
tering, analysis of electro-magnetic compatibility and hazards, antenna design,
and modelling of effects of lightning strike.

Table 4 shows the results from the electro-magnetics application running on
various numbers of processors. The four columns of execution t ime show the
following: (1) a job running on a random choice of machines. These may be
highly loaded or may not have fast processors; (2) a job that is initiated on the
p best machines (i.e., the fastest least loaded machines); (3) a job that is started
on the best p machines, but is check-pointed every two minutes; and (4) a job
that is started on the best p machines and checks every two minutes whether it
is beneficial to check-point and migrate.

The first experiment is an approximation to a job that encounters poor service
during execution. As can be seen from the dramatic decrease in execution times
in the second experiment it is always beneficial to start a job on the most powerful
unloaded machines. In the situation where the chosen processors have the same
power, and the job is long running, then the second experiment will degrade
to the performance of the first. The third experiment quantifies the overhead
in check-pointing. As ten check-points were performed at p = 4 the increase
in execution time shows that a local checkpoint takes 19 seconds to write a
seven megabyte image to disc. The fourth experiment shows that there is little
overhead in checking whether a check-point is necessary.

As it costs 19p seconds to perform a migration, it is only beneficiM to migrate
in situations where the processor usage is not too erratic, thus allowing the job
to recoup the cost of the migration on the set of processors that were migrated
to. If jobs are long running and compute bound then there is a lot of potential
for regaining lost ground due to having to migrate from a loaded machine.

88

o

60

50

40

30

20

10

i

Total Mflops - -
Available Mflops -e-- .

-10 I i i I I
0 20 40 60 80 1 O0

Machines in decreasing power
Fig. 4. Moore's law: a profile of the computational power of a collection of workstations

The results shown in Table 4 are from an electro-magnetics experiment tha t
simulates a field around a sphere. As can be seen from the figure, no parallel
speedup was achieved when increasing the size of the NOW; this was due to the
dominance of communicat ion over computat ion in this small test case. Larger
realistic test cases at BAe have shown linear speedup up-to sixteen processes as
computat ion begins to dominate.

This work is based on the assumption that the available cycles on the ma-
chines changes continuously over time. However, with a large resource acquired
over time, the machines are unlikely to be homogeneous in available power.
Figure 4 shows a graph of available comput ing power on each workstat ion in
Oxford University Comput ing Laboratory against available power at a particu-
lar instance in time. We express available power by the formula (n - L)s; where
n is the number of processors in a machine, L is the load average on tha t ma-
chine and s is the Mflops/s rating of a single processor. The graph demonst ra tes
Moore's Law in the purchase of workstations over t ime, i.e., to the right of the
graph, there are a large number of low powered aging workstations, whereas
toward the left of the graph, there are few high performance machines procured
over the last six months. When choosing to schedule a p process parallel job,
either a homogeneous set of unloaded (slow) machines can be used, or the best p.
The policy we adopt is that although the unloaded machines ensure little inter-
ference, they only provide a fraction of the power of the best machines. However,
running on the popular powerful machines, can also make a job susceptible to
low throughput as the available cycles at a node can vary dramat ica l ly over t ime.

89

For example, the figure shows that the fourth machine from the left has a peak
performance of 50 Mflops/s, yet it is so loaded that there are no free cycles for
parallel jobs. In summary, the erratic, but powerful machines, to the left of the
graph are most suited to computational intensive parallel jobs, yet they are the
very machines that require process migration.

6 R e l a t e d W o r k

The process migration work described in this paper, also provides fault tolerance
if the mean time between failure is greater than the rate at which processes mi-
grate/checkpoint. Existing work in this area has tended to concentrate on fault
tolerance using redundant computation. For example Nibhanupudi and Szyman-
ski [9] minimise the slowdown of a BSP job when external loads are applied to
machines in a network by replicating computation on a number of machines.
At the end of a superstep, the results of the fastest of the replicated jobs is
used to form the global state of the system. Although their system allows the
mean time between failure to be less than ours due to the replicated jobs, their
prototype system requires user annotation of the data structures to be included
in a checkpoint, and they assume that there won't be a machine failure during
communication. In contrast, the fault tolerance in our system is transparent to
the user, and has no restrictions on when faults can occur. Also, our approach
doesn't suffer from the considerable overhead that would be incurred to imple-
ment a process replication scheme. As already noted, the only overhead we incur
is the time taken to write the p checkpoints to disk. A similar approach to ours is
that of Kaashoek et al. [8] where fault tolerance of Orca programs is provided on
top of the Amoeba distributed operating system. Their approach is complicated
by the fact that they have to determine locally when communication is quiescent
so that a stable checkpoint can be taken. Other parallel check-pointing systems
for MPI [12] and PVM [13] also suffer from this problem, as a checkpoint can only
be performed if there is no communication in transit when each process performs
a local checkpoint to capture the global state [2]. Fortunately, the check-pointing
regime described here is far simpler than any of the approaches used in message
passing systems as opportunities for a global checkpoint naturally arise out of the
superstep structure of BSP programs. The process migration facilities provided
for MPI [12] and PVM have usually been developed on top of the check-pointing
and batch scheduling facilities provided by Condor [4] and LSF[15].

7 C o n c l u s i o n s

We have shown that it is possible to perform fault tolerance and process migra-
tion of BSP programs in a transparent way on a network of workstations. By
paying careful attention to the design of a distributed load manager, it is pos-
sible to determine the global load of a system with minimal impact on network

90

traffic. This, in conjunction with the pro-active manner in which BSP jobs mi-
grate between machines, enables a system that is unobtrusive to non-BSP users,
whilst providing the best of the resource as a whole.

References

1. David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and
Maurice Yarrow. Nas parallel benchmarks 2.0. Technical Report 95-020, NAS
Applied Research Branch (RNR), December 1995.

2. R. Baldoni, J. M. H~lary, A. Mostefaoui, and M. Raynal. A communication-
induced checkpointing protocol that ensures the rollback-dependency trackability
property. In Proc. of the PTth IEEE Symposium on Fault-Tolerant Computing
Systems (FTCS}, pages 68-77, Seattle, WA, June 1997. IEEE.

3. Stephen R. Donaldson, Jonathan M. D. Hill, and David B. Skillicorn. Predictable
communication on unpredictable networks: Implementing BSP over TCP/IP. In
EuroPar'98, LNCS, Southampton, UK, September 1998. Springer-Verlag.

4. D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide
flock of condors : Load sharing among workstation clusters. Future Generations of
Computer Systems, 12, 1996.

5. Jonathan M. D. Hill, Stephen Jarvis, Constantinos Siniolakis, and Vasil P. Vasilev.
Portable and architecture independent parallel performance tuning using a call-
graph profiling tool. In 6th EuroMicro Workshop on Parallel and Distributed Pro-
cessing (PDP'98), pages 286-292. IEEE Computer Society Press, January 1998.

6. Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau,
Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob Bissel-
ing. BSPlib: The BSP Programming Library. Parallel Computing, to appear 1998.
see www.bsp-worldwide, org for more details.

7. Jonathan M.D. Hill, Stephen Jarvis, Constantinos Siniolakis, and Vasil P. Vasilev.
Analysing an sql application with a bsplib call-graph profiling tool. In EuroPar'98,
LNCS, Southampton, UK, September 1998. Springer-Verlag.

8. M. F. Kaashoek, R. Michiels, H. E. Bal, and A. S Tanenbaum. Transparent fault-
tolerance in parallel orca programs. In Proc. Syrup. on Experiences with Distributed
and Multiprocessor Systems l[I, pages 297-312, 1992.

9. Mohan V. Nibhanupudi and Boleslaw K. Szymanski. Adaptive parallelism in the
bulk synchronous parallel model. In EuroPar'96, number 1124 in Lecture Notes in
Computer Science, pages 311-318, Lyon, France, aug 1996. Springer-Verlag.

10. David Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and answers
about BSP. Scientific Programming, 6(3):249-274, Fall 1997.

11. Richard M. Stallman. Emacs: The extensible, customizable, self-documenting dis-
play editor. AI memo 519A, Artificial Intelligence Laboratory, Massachusetts In-
stitute of Technology (MIT), 1979.

12. G. Stellner. CoCheck: checkpointing and process migration for MPI. In IEEE,
editor, Proceedings of IPPS '96. The lOth International Parallel Processing Sym-
posium: Honolulu, HI, USA, 15-19 April 1996, pages 526-531, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE Computer Society Press.

13. Kasidit Chanchio Xian-He Sun. Efficient process migration for parallel processing
on non-dedicated networks of workstations. Technical Report TR-96-74, Institute
for Computer Applications in Science and Engineering, December 1996.

91

14. Leslie G. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103-111, August 1990.

15. Jingwen Wang, Songnian Zhou, Khafid Ahmed, and Weihong Long. LSBATCH:
A distributed load sharing batch system. Technical Report CSRI-286, Computer
Systems Research Institute, University of Toronto, April 1993.

