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Abs t r ac t .  This paper describes a system that enables parallel programs 
written using the BSPlib communications library to migrate processes 
among a network of workstations. Not only does the system provide fault 
tolerance of BSPlib jobs, but by utilising a load manager that maintains 
an approximation of the global load of the system, it is possible to con- 
tinually schedule the migration of BSP processes onto the least loaded 
machines in a network. Results are provided for an industrial electro- 
magnetics application that show that we can achieve similar throughput 
on a publically available collection of workstations as a dedicated NOW. 

1 I n t r o d u c t i o n  

The Bulk Synchronous Parallel (BSP) model [14, 10] views a parallel machine 
as a set of processor-memory pairs, with a global communicat ion network and 
a mechanism for synchronising all processors. A BSP program consists of a se- 
quence of supersteps. Each superstep involves all of the processors and consists 
of three phases: (1) processor-memory pairs perform a number  of computa t ions  
on da ta  held locally at the start  of a superstep; (2) processors communicate  da ta  
into other processor's memories; and (3) all processors barrier synchronise. The  
globally consistent state that  is available after the barrier not only helps when 
reasoning about  parallel programs, but also suggests a p rogramming discipline in 
which computa t ion  (and communication) is balanced across all the processes. As 
balance is so impor tan t  to BSP, profiling tools have concentrated upon exposing 
imbalances to the programmer  so that  they can be eliminated [5, 7]. However, 
not all imbalances that  arise during program execution are caused by the pro- 
gram. In an environment where processors are not dedicated resources, the BSP 
computa t ion  proceeds at the speed of the slowest processor. This would suggest 
that  the synchronous nature of BSP is a disadvantage compared to the more lax 
synchronisation regime of message passing systems such as MPI. However, most  
programs written using collective communications,  or scientific applications such 
as the NAS parallel benchmarks [1] are highly synchronous in nature,  and are 
therefore limited to the performance of the slowest running process in either 
BSP or MPI. Therefore, if a network user logs onto a machine tha t  is par t  of a 
BSP job, this may  have an undue effect on the entire job. This paper  describes 
a technique tha t  ensures a p process BSP job continually adapts  itself to run on 
the p least loaded processors in a network consisting of P machines (p < P) .  
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Dedicated parallel machines can impose a global scheduling policy upon their 
user community such that,  for example, parallel jobs do not interfere with each 
other in a detrimental manner. The environment that  we describe is one where it 
is not possible to impose some schedule on the user community. The components 
of the parallel computation are invariably guests on other peoples machines 
and should not impose any restrictions on them for hosting the computat ion.  
Further, precisely because of this arrangement, the availability of the nodes and 
the available resources at these nodes is quite erratic and unpredictable. We 
adopt the philosophy that  in such a situation it is reasonable to expect the 
parallel job to look after itself. 

We briefly describe the steps involved in migrating a BSP job, that  has been 
written using the BSPIib [6] communications library, among a set of machines 
and the strategy used in making check-pointing and migration decisions across 
all machines. The first technical challenge (Section 2) describes how we capture 
the state of a UNIX process and restart it in the same state on another machine 
of the same type and operating system. The simplicity of the superstep structure 
of BSP programs provides a convenient point at which local checkpoints capture 
the globM state of the entire BSP computation.  This therefore enables process 
migration and check-pointing to be achieved without any changes to the users 
program. Next we describe a strategy whereby all processes simultaneously de- 
cide that  a different set of machines would provide a better service (Section 3). 
When the BSP job decides that  processes should be migrated, all processes per- 
form a global checkpoint, they are then terminated and restarted on the least 
loaded machines from that  checkpoint. Section 4 describes a technique for de- 
termining the global load of a system, and Section 5 describes an experiment 
using an industrial electro-magnetic application on a network of workstations. 
This demonstrates how the scientist or engineer is allowed to concentrate on the 
application and not on maintaining or worrying about the choice of processors 
in the network. Section 6 describes some related work and Section 7 concludes 
the paper. 

2 Check-Pointing and Restarting Single Processes 

BSPIib provides a simple API for inter-processor communication in the context 
of the BSP model. This simple interface has been implemented on four classes of 
machine: (1) distributed memory machines where the implementation uses either 
proprietary message passing libraries or MPI; (2) Distributed memory machines 
where the implementation uses primitive one sided communication, for example 
the Cray SHMEM library of the T3E; (3) shared memory multi-processors where 
the implementation uses either proprietary concurrency primitives or System V 
semaphores; and (4) Networks of workstations where the implementat ion uses 
T C P / I P  or UDP/IP .  In this paper we concentrate upon check-pointing programs 
running on the network of workstations version of the library. Unlike other check- 
pointing schemes for message passing systems (See Section 6), by choosing to 
checkpoint at the barrier synchronisation that  delimits supersteps, because there 
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is a globally consistent state upon exiting the barrier (where all communication 
is quiesced), the task of performing a global checkpoint reduces to the task of 
check-pointing all the processes at the local process level. 

All that  is required to perform a local checkpoint is to save all program data  
that  is active. Unfortunately, because data  (i.e., the state) can be arbitrarily 
dispersed amongst the stack, heap and program text, capturing the state of a 
running program is not as simple as it would first appear. A relatively straight- 
forward solution in a UNIX environment is to capture an image of the running 
process and create an executable which contains the state of the modified data  
section (including any allocated heap storage) and a copy of the stack. When 
the check-pointed executable is restarted the original context is restored and all 
BSPIib supporting IPC connections (pipes and sockets) are re-established be- 
fore the computat ion is allowed to proceed. All this activity is transparent to the 
programmer as it is performed as part  of the BSPIib primitives. Furthermore,  
by restricting the program to the semantics of BSPlib, no program changes are 
required. The process of taking a checkpoint involves making a copy of the stack 
on the heap, saving the current stack pointer and frame pointer registers, and 
saving any additional state information (for example, on the SPARC the register 
windows need to be flushed onto the stack before it is saved, and the subroutine 
return address needs to be saved as it is stored in a register; in contrast,  on the 
Intel X86 architecture, all necessary information is already stored on the stack). 
The executable that  captures this state information is built using the unexer () 
function which is distributed as part of Emacs [11]. The use of unexec  ()  is sim- 
ilar to its use (or the use of undump) in Emacs, LaTeX (which build executables 
containing initialised data  structures) and Condor which also performs check- 
pointing [4]. However, the state saving in Condor captures the point of execution 
and the stack height using the standard C functions se t j r ap ( )  and long jmp( )  
which only guarantee far jumping into activation records already on the stack 
and within the same process instance. Instead, we capture the additional re- 
quired information based on the concrete semantics of the processor. To restart 
a process and restore its context, the restart routine adjusts the stack pointer 
to create enough space on the stack so that  the saved stack can be copied to its 
original address and restores any saved registers. 

3 D e t e r m i n i n g  w h e n  t o  M i g r a t e  P r o c e s s e s  

As mentioned above, our philosophy is that  the executing job be sensitive to 
the environment in which it is executing and it is the job, and not an external 
scheduler, that  makes appropriate scheduling decisions. For the job to make an 
informed decision, some global resource information needs to be maintained. The 
solution we have adopted is that  there are daemons running on each machine 
in the network which maintain local approximations to the global load. The 
accuracy of these approximations is discussed in the next section. Here we assume 
that  each machine contains information on the entire network which is no more 
than a few minutes old with a high probability. 
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When a BSP job requests a number  of processes, the local daemon is queried 
for a suitable list of machines on which to execute the job (the daemon responds 
so that  the job may be run on the least loaded machines). In order tha t  the 
decisions are not too fickle, the five minute load averages are used. Also, it is 
a requirement tha t  not too much network traffic be generated to mainta in  a 
reasonable global state. Since the five minute load averages are being used, it is 
not too impor tan t  tha t  entries in the load table become slightly out of date  as 
the wildest swings in the load averages take a couple of minutes to register in 
the five minute  load average figures. 

Let Gi be the approximation to the global load on machine i, then given P 
machines, the true global load is G = G1 H. �9 .UGp; where t3 is used to merge the 
approximations from two machines. Given a BSP job running on p processors 
with machine names 1 j in the set { i l , . . . ,  iv), we use the approximat ion G' = 
G~ 1 U. - - U G~p which is better  than  any of the individual approximat ions  with a 
high probability. G ~ is a sequence of machine names sorted in decreasing priority 
order (based on load averages, number  of CPUs and their speeds). If  the top 
set of p entries of G ~ is not { i l , . . . ,  ip) then an alternate and bet ter  assignment 
of processes to machines exists (call this predicate fn). In order not to cause 
processes to thrash between machines, a measure x of the load of the job (where 
0 < x < 1) is added to the load averages of all machines not involved in the BSP 
computa t ion  before the predicate fn is applied. This anticipates the m a x i m u m  
increase in the load of a machine when a process is migrated to it. Any observed 
increase in load greater than x is therefore caused by additional external load. 

Our aim is to ensure that  the only overhead in process migrat ion is the t ime  
taken to write p instances of the check-pointed program to disk. Therefore, we 
require tha t  the calculation that  determines when to perform process migra-  
tion does not unduly impact  the computa t ion  or communicat ion performance 
of BSP1ib. We need to solve fn(G') = fn(Gil [3... t3 G~p) either on a superstep 
by superstep basis or every N supersteps. However, the result can be obtained 
without first merging the global load approximations.  This can be done by each 
processor independently computing its load approximations Gi and checking 
that  it is amongst  the top p after adding zj  to the loads of machines not in- 
volved in the current BSP job; where 0 < zj < 1 is the contribution of the BSP 
process on machine j ,  to the load average on tha t  machine. This  calculation can 
be performed on entry to the superstep T seconds after the last checkpoint (i.e., 
this checking does not have to be performed in synchrony). The Boolean result 
f rom each of the processors is reduced with the or-operator to ensure tha t  all 
processors agree to checkpoint during the same superstep. In the T C P / I P  and 
U D P / I P  implementat ions of BSPlib, this is piggy-backed onto a reduction tha t  
is used to globally optimise communicat ion [3]. Therefore if a checkpoint is not 
necessary, there is no substantial  impact  on the performance of BSP1ib. 

t we distinguish between machines and processors as each machine may contain a 
number of processors, each of which runs multiple processes. 
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4 

Fig. 1. Markov chain considering only single direct updates 

D e t e r m i n i n g  t h e  G l o b a l  L o a d  o f  a S y s t e m  

The load daemons use a protocol in which the locally held global load states are 
periodically sent to k randomly chosen daemons running on other machines. This 
update period is uniformly and randomly distributed with each machine being 
independent. When a load daemon receives an update, it responds by merging 
the locally held load table and sending the resultant table back to the sender. 
The sender then merges the entries of the returned table with the entries of 
the locally held table. For purposes of simplifying the analysis, the updates are 
assumed to happen at fixed intervMs and in a lockstep fashion. We also assume 
that the processors do not respond with the merged table, but merely update 
their tables by merging in the update requests. The analysis that follows always 
provides an upper bound for the actual protocol used. 

If each processor sent out a message at the end of each interval to all the other 
processors, this would require p2 messages to maintain the global state. A job 
requiring p < P processes could contact P machines and arrive at an optimal 
choice of processors with considerably fewer messages provided that jobs did 
not start very often. However, with a large network of machines, the rate of 
jobs starting and the number of machines P would quickly lengthen the delay 
in scheduling a BSP job. By maintaining a global processor utilisation state at 
each of the machines, starting a job only involves contacting the local daemon 
when choosing a set of p processors and thus need not contribute to network 
traffic. Even once the ordering of processors has been selected, the problem of 
over assigning work to the least loaded machines can be avoided by having those 
machines reject the workload request based on knowledge built up locally. The 
algorithm then simply tries the machine with the next highest priority. 

The quality of the decision for the optimal set of machines depends on the 
ages of the entries in the distributed load averages tables. If each machine uni- 
formly and randomly chooses a partner machine at the end of each interval and 
sends its load average value to that machine, then the mean age of each entry 
in a distributed load average table can be calculated by considering the discrete 
time Markov chain shown in Figure 1. In this case there would only be p mes- 
sages at the end of each interval, but the age distribution {~ri : i E N}, and the 
mean age # are given by: 

1 /p-2  
; -  i 
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Fig. 2. Markov chain when indirect updates are allowed 
CO 

- -  = p -  2 (2)  

i-= l 

By sending out messages more frequently, or sending out k messages at the end 
of each interval, the mean age can be reduced to O(p/k), but this increases the 
traffic and required number of virtual circuits to pk. 

By allowing each machine to exchange all their load average information 
with k other machines at the end of each interval, a significant reduction in the 
mean age of the entries can be achieved with pk circuits. This scheme allows 
machines to choose between the most current load average figures, even if they 
were indirectly obtained from other machines. Figure 2 shows the corresponding 
Markov chain. In this stochastic process, transitions into state 0 can only arise 
out of direct updates, that  is, a machine directly updating its entry in a remote 
table. The distribution, {rr~ : i E N}, of the ages of the entries in the load average 
table is given by the recurrence: 

f k/(p - 1), if i = 0 
7ri = ~ 7r~_lP{no useful updates} + ~jr 7r}P{min age is i}, otherwise (3) 

Figure 3 shows the mean table entry ages of the three strategies when k = 
1, 3, 6 against P.  As P is given as a log scale, it is clear from the figure that  while 
the first two strategies give a mean age # as O(P), the third strategy (allowing 
indirect updates) gives a mean age of #~ as O(log P) .  

If we replace the discrete times of the Markov chains with update intervals, 
t, the distributions above give the mean age at the beginning of each of the 
intervals. The figure shows that in order to bound the mean age to, say, five 
minutes we must ensure that: 

1 
t(# + 7) < 5 minutes, or 

10 
t < ~ (4) 

- 2 p + l  

Therefore when p = 32, t should be less than or equal 3�89 minutes. The line 
marked "experimental results" shows the actual bounds on the algorithm for 
t = 4 minutes for all values of P.  The experimental results are better  than the 
upper bounds of the analysis as the updates don' t  occur in lock-step fashion, and 
a shorter sequence of updates are therefore possible. Also the actual protocol re- 
uses the established circuit to send the merged tables back to the sender daemon; 
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Fig. 3. Mean ages achieved by each of the three strategies and the merged P \ p  entries 

this in effect allows the system to perform twice as many  updates  with fewer 
circuits. 

As described in Section 3, by having the p processes involved in a BSP com- 
putat ion merge their load average tables before choosing where to migra te  the 
processes, the current five minute load averages for the p processors executing 
the job is obtained and the ages of the load average table entries for the other 
P - p machines have a distribution {~r~ ~ : i E 1~} where 

I r i  = 7 r [ ) ~ ( 1  - A ~  "t ,  (5) 
x = l  t = 0  

Figure 3 includes the resulting mean age from this distribution for p = 4 
against the total  number  of machines P ,  and compares it with the mean  derived 
from the original distribution {Tr~ : i E 1~}. It  is clear from the figure that  as p 
increases, the mean age of the da ta  from the merged tables decreases until the 
mean age is zero when p = P.  

5 Experimental Results for an Electro-Magnetics 
Application 

The code EMMA T:FE3D (part of the British Aerospace EMMA electro-magnetic 
software suite), uses the finite element t ime domain method for solving Maxwell 's  



Table 1. Execution time in seconds for the electro-magnetics simulation 

IP lYP cat  order daemon order daemon order + daemon order + 
forced migration selective migration 

2 3255 623 841 658 
4 3855 1155 1916 1092 
8 2968 1161 
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equations in three dimensions. The finite element approach offers several advan- 
tages over other full wave solution methods (e.g., finite difference t ime domain, 
method of moments).  A volume of space around the target is filled with an un- 
structured mesh of tetrahedra which can conform accurately to the geometry of 
the object being analysed and, because of the unstructured nature of the mesh, 
many small elements can be introduced in regions where the solution has rapid 
spatial variation. A time marching algorithm using a Taylor-Galerkin method is 
used to advance the fields through time to simulate the propagation of a wave 
through the mesh. The CFD community have developed considerable knowledge 
and expertise in unstructured mesh generation and finite element solvers which 
have been exploited for solving electro-magnetic problems. Applications areas for 
electro-magnetic solvers in the aerospace industry include electro-magnetic scat- 
tering, analysis of electro-magnetic compatibility and hazards, antenna design, 
and modelling of effects of lightning strike. 

Table 4 shows the results from the electro-magnetics application running on 
various numbers of processors. The four columns of execution t ime show the 
following: (1) a job running on a random choice of machines. These may be 
highly loaded or may not have fast processors; (2) a job that  is initiated on the 
p best machines (i.e., the fastest least loaded machines); (3) a job that  is started 
on the best p machines, but is check-pointed every two minutes; and (4) a job 
that  is started on the best p machines and checks every two minutes whether it 
is beneficial to check-point and migrate. 

The first experiment is an approximation to a job that  encounters poor service 
during execution. As can be seen from the dramatic decrease in execution times 
in the second experiment it is always beneficial to start  a job on the most powerful 
unloaded machines. In the situation where the chosen processors have the same 
power, and the job is long running, then the second experiment will degrade 
to the performance of the first. The  third experiment quantifies the overhead 
in check-pointing. As ten check-points were performed at p = 4 the increase 
in execution time shows that a local checkpoint takes 19 seconds to write a 
seven megabyte image to disc. The fourth experiment shows that  there is little 
overhead in checking whether a check-point is necessary. 

As it costs 19p seconds to perform a migration, it is only beneficiM to migrate 
in situations where the processor usage is not too erratic, thus allowing the job 
to recoup the cost of the migration on the set of processors that  were migrated 
to. If jobs are long running and compute bound then there is a lot of potential  
for regaining lost ground due to having to migrate from a loaded machine. 
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Fig. 4. Moore's law: a profile of the computational power of a collection of workstations 

The results shown in Table 4 are from an electro-magnetics experiment  tha t  
simulates a field around a sphere. As can be seen from the figure, no parallel 
speedup was achieved when increasing the size of the NOW; this was due to the 
dominance of communicat ion over computat ion in this small test case. Larger 
realistic test cases at BAe have shown linear speedup up-to sixteen processes as 
computat ion begins to dominate.  

This work is based on the assumption that  the available cycles on the ma-  
chines changes continuously over time. However, with a large resource acquired 
over time, the machines are unlikely to be homogeneous in available power. 
Figure 4 shows a graph of available comput ing power on each workstat ion in 
Oxford University Comput ing Laboratory  against available power at a particu- 
lar instance in time. We express available power by the formula (n - L)s;  where 
n is the number  of processors in a machine, L is the load average on tha t  ma-  
chine and s is the Mflops/s rating of a single processor. The graph demonst ra tes  
Moore's Law in the purchase of workstations over t ime, i.e., to the right of the 
graph, there are a large number of low powered aging workstations, whereas 
toward the left of the graph, there are few high performance machines procured 
over the last six months. When choosing to schedule a p process parallel job, 
either a homogeneous set of unloaded (slow) machines can be used, or the best p. 
The policy we adopt  is that  although the unloaded machines ensure little inter- 
ference, they only provide a fraction of the power of the best machines. However, 
running on the popular  powerful machines, can also make a job susceptible to 
low throughput  as the available cycles at a node can vary dramat ica l ly  over t ime. 
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For example, the figure shows that the fourth machine from the left has a peak 
performance of 50 Mflops/s, yet it is so loaded that  there are no free cycles for 
parallel jobs. In summary, the erratic, but  powerful machines, to the left of the 
graph are most suited to computational intensive parallel jobs, yet they are the 
very machines that  require process migration. 

6 R e l a t e d  W o r k  

The process migration work described in this paper, also provides fault tolerance 
if the mean time between failure is greater than the rate at which processes mi- 
grate/checkpoint.  Existing work in this area has tended to concentrate on fault 
tolerance using redundant computation. For example Nibhanupudi and Szyman- 
ski [9] minimise the slowdown of a BSP job when external loads are applied to 
machines in a network by replicating computation on a number of machines. 
At the end of a superstep, the results of the fastest of the replicated jobs is 
used to form the global state of the system. Although their system allows the 
mean time between failure to be less than ours due to the replicated jobs, their 
prototype system requires user annotation of the data  structures to be included 
in a checkpoint, and they assume that  there won't be a machine failure during 
communication. In contrast, the fault tolerance in our system is transparent to 
the user, and has no restrictions on when faults can occur. Also, our approach 
doesn't  suffer from the considerable overhead that  would be incurred to imple- 
ment a process replication scheme. As already noted, the only overhead we incur 
is the time taken to write the p checkpoints to disk. A similar approach to ours is 
that  of Kaashoek et al. [8] where fault tolerance of Orca programs is provided on 
top of the Amoeba distributed operating system. Their  approach is complicated 
by the fact that  they have to determine locally when communication is quiescent 
so that  a stable checkpoint can be taken. Other parallel check-pointing systems 
for MPI [12] and PVM [13] also suffer from this problem, as a checkpoint can only 
be performed if there is no communication in transit when each process performs 
a local checkpoint to capture the global state [2]. Fortunately, the check-pointing 
regime described here is far simpler than any of the approaches used in message 
passing systems as opportunities for a global checkpoint naturally arise out of the 
superstep structure of BSP programs. The process migration facilities provided 
for MPI [12] and PVM have usually been developed on top of the check-pointing 
and batch scheduling facilities provided by Condor [4] and LSF[15]. 

7 C o n c l u s i o n s  

We have shown that  it is possible to perform fault tolerance and process migra- 
tion of BSP programs in a transparent way on a network of workstations. By 
paying careful attention to the design of a distributed load manager, it is pos- 
sible to determine the global load of a system with minimal impact on network 
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traffic. This, in conjunction with the pro-active manner in which BSP jobs mi- 
grate between machines, enables a system that is unobtrusive to non-BSP users, 
whilst providing the best of the resource as a whole. 
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