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Abs t r ac t .  The evaluation of spatial correspondence between binary ob- 
jects resulting from a segmentation step performed by two different ob- 
servers or methods is a critical part of the validation of a segmentation 
criterion or technique. Several global measures of correspondence have 
been previously proposed, but all of them assume a one-to-one corre- 
spondence between objects, thus failing to address local problems such 
as the splitting of an object by one of the observers. Moreover, such global 
measures do not distinguish between the reference and the observed ob- 
jects and most of them lack a solid theoretical foundation. In this paper, 
we introduce a set of spatial correspondence indices that can evaluate 
global (many-to-many), local (many-to-one) and individual (one-to-one) 
spatial correspondence between observed and reference objects and vice 
versa. The proposed measures, derived from applying information the- 
ory concepts to the problem of spatial correspondence, are shown to be 
well-behaved and suitable to be used in medical imaging applications. 

1 I n t r o d u c t i o n  

One of the central problems in the area of medical image computing is the vali- 
dation of results from a segmentation algorithm. Such validation or comparison 
always requires at certain levels of abstract ion the recognition of similarities or 
differences between two representations, one representation being considered as 
the current observation, and the other as some reference model or ground t ruth.  
Quantifying these similarities by developing suitable similarity measures is often 
quite difficult. 

The concept of pa t tern  similarity is key to many  statistical, syntactic and 
neural pa t te rn  recognition techniques [1]. Within the area of medical imaging 
various measures have been used to assess the similarity or agreement between 
segmentat ion algorithms and human observers [2] [3] [4] and between observers 
[5], but  they all have been used as global measures of similarity with some elabo- 
rated on an empirical basis without adequate theoretical justification. The spatial 
correspondence indices introduced here are based on information theory, which 
has been successfully used to register medical images by maximisat ion of mutual  
information [6] [7]. In fact, the main difference between those methods and the 
concept introduced here is that  registration methods assume tha t  the major i ty  
of the underlying objects which generated both representations were the same. 
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The methods then seek the transformation that  will maximise spatial correspon- 
dence, regardless of the actual values of the objective function. In contrast,  we 
are a t tempt ing to directly measure the spatial correspondence and utilise the 
measures to analyse details of the similarities and differences. 

Our immediate motivation is the comparison and validation of lesions seg- 
mented by two different observers or segmentation methods on the same, i.e. 
perfectly registered, magnetic resonance (MR.) brain scans of multiple sclero- 
sis (MS) patients. Such comparison must take into account the inherent differ- 
ence between identifying the presence of a lesion and the accurate placement 
of a boundary around it. Provision of global and local quanti tat ive measures of 
agreement can significantly improve the understanding of the lesion identifica- 
tion and delineation process, as well as simplify the analysis and validation of 
segmentation results in large numbers of scans. 

2 S p a t i a l  C o r r e s p o n d e n c e  

Let X be the set of objects Xk,k = 1 . . .  , K  in the reference model and Y be 
the set of objects Yj , j  = 1 , . . . ,  J in the current observation. Consider X and 
Y as two different partit ions of the same image and assume tha t  there are Q 
locations equally spaced in G,  a lattice extending over the area covered by both  
partitions. Each point in G can be identified in relation to the objects in X 
and the objects in Y.  Let fkj be the number of lattice points to be found in 

K J Xk ~ Yj with ~k=l ~j=l  ]kj = Q. Then, Pxy(k , j )  = fkj/Q is the probabil i ty 
tha t  a point in G falls in objects Xk and Yj. Similarly, P x ( k )  = fk/Q and 
Py(j) = f j /Q give the probabil i ty that  a point in G will fall in object Xk or 
object Yj, respectively. 

An object Yj present in the observation is said to correspond to the object Xk 
in the reference model if and only if the set of all lattice points {Yjl, �9 - �9 YjL } E ~j 
is the same as the set of all lattice points {xk t , . . .  ,XkM) ~ XK. As each of the 
lattice points Yjl and •km has a unique spatial location, the correspondence be- 
tween objects Yj and Xk implies not only tha t  Py(j) = Px(k), but also tha t  
the space occupied by {y j l , . . . ,Y jL}  m u s t  be the same as tha t  occupied by 
{ X k l , . . .  , XkM }. It  is only when these two conditions are met  that  both  identifi- 
cation and boundary delineation errors can be avoided. 

Of the measures used in the analysis of MS segmentations, the a r e a  e r r o r  
and the c o r r e l a t i o n  coef f ic ien t s  [4] [5] only evaluate the agreement in terms 
of the total  number of elements in each segmentation, thus making a more de- 
tailed analysis of the segmentation errors impossible. The s i m i l a r i t y  i n d e x  [2] 
and o v e r l a p  i n d e x  [3] consider the total  number of elements and the total  
overlap to give an overall measure of agreement,  but they are still global mea- 
sures and therefore not capable of discriminating between the different types of 
segmentat ion errors. 

To address local spatial correspondence we create a joint frequency distribu- 
tion based on the above definitions by means of a Correspondence matr ix  O. 
This matr ix  is similar in concept to the co-occurrence matr ix  widely used in 
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texture analysis. Assuming that  all the objects in X and Y have been uniquely 
labelled, the columns of O correspond to the objects Yj , j  = 1 , . . . ,  J in the 
observation and the rows to the objects Xk, k = 1 . . . ,  K in the reference. Each 
entry okj in O indicates the number of lattice points common to objects Xk and 
Yj, i.e. Xk ~ Yj. The background in each partition, X and Y,  is t reated as a 
separate object to allow the computation of a valid joint probability distribution 
from O. The marginal probabilities for each object, Px (k) and Py(j), can then 
be computed by adding all entries across the rows or columns. Various other 
global and local measures such as those to be introduced in the next section can 
be directly computed from O. As Pxy(k,j), Px(k) and Py(j) are dependent 
on the density of points in G, a relatively dense pat tern of points must be used 
for a reliable estimation. 

3 T h e o r e t i c a l  F r a m e w o r k  

If we interpret X as the input into a noisy discrete channel and Y as the output  
from the channel, using the information theory concepts introduced by Shannon 
[8] we know that  the information provided about the event Xk occurring at the 
source by the occurrence of event Yj at the output  is given by their mutual 
information Ixw(k, j )  = log (Pxw(k, j)/Px (k)). A special case of Ix;r is when 
knowledge of the output  uniquely determines the input, i.e. PxlY (k, j )  = 1. In 
this case Ix;y is known as the self information of Xk or Yj (denoted by Ix (k) and 
Iy(j)). This situation occurs if the discrete channel is noiseless and there is full 
agreement between Y and X .  By considering such a situation, it is possible to 
define Cjk, a measure of spatial correspondence between object Yj and object Xk, 
as the ratio of the average mutual information between the objects, I(Xk;Yj) ,  
to the average self information or entropy, H(Xk), of the reference object: 

I(Xk ; Yj) Pxy(k,j) Ix;y(k,j) (1) 
Cjk= H(Xk) = Px(k)  Ix(k) 

Similarly, if Y is considered as the reference, Ckj measures the correspondence 
between the objects Xk and Yj: 

I(Xk;Yj) Pxy(k,j) Ix;y(k,j) 
Ckj-- H(Yj) - Py(j) Iy(j) (2) 

Cjk = Ckj if Yj and Xk have the same number of elements or lattice points, 
regardless of their spatial location. 

Using the average mutual information between Ya and Xk, k = 1 , . . . ,  K it 
is also possible to compute Cj, a measure of the local spatial correspondence 
between Yj and all the objects in X .  Equally, the local spatial correspondence 
between Xk and all the objects in Y can be estimated by computing Ck: 

I(x; z(xk;Y) 
c j -  H(yd ) Ck-  H(Xk) (3) 
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From the definition of average mutual information we can deduce that  Cj 
and Ck effectively measure the degree of spatial correspondence between the 
selected object and all those objects in the alternate representation with which 
it shares at least one element. Furthermore, these measures obey the following 
relationship: 

K J 
Cj = E Ckj Ck = ~ Cjk (4) 

k = l  j = l  

The above measures estimate the spatial correspondence between an indi- 
vidual object and those with which it has common elements. A global measure 
of spatial correspondence between the observation Y and the reference X can 
be obtained by dividing the average total mutual information I (X ;  Y )  by the 
average total self information or entropy of X ,  H(X) .  

E k = l  P x y ( k , j )  gxy(k,j) I ( X ;  Y )  K g }-'~j=l �9 log _ _  P x  ( k ) P y  ( j )  Cy- H ( X )  g (5) Ek=l Px (k) log p;(k) 
Similarly, if Y is considered as the reference, C X estimates the global spatial 
correspondence between X and Y: 

~ k = l  ~ j = l  P x y ( k , j )  . log Pxy(k,j) CX I ( X ; Y )  K J __ __ P x  ( k ) P y  ( j )  (6) 
H ( Y )  E J_l Py(j)  . log p•(j) 

4 Experiments 

Three types of objects were used to study the new measures: single synthetic 2-D 
objects, multiple synthetic 2-D objects and 3-D MS lesions segmented by two 
different observers (Fig. 1). In all the experiments a complement a r e a  e r r o r  
measure (ErrA = 1-2,1b-cl / (b+e))  , the ove r l ap  i n d e x  (Over = a/ (b+c-a))  
and the s i m i l a r R y  i n d e x  (Sire = 2,  a/(b + c)) were also computed. The size of 
the objects (b,c) and the overlap (a) are expressed in number of lattice points. 

Fig. 1. Sample synthetic objects and MS lesions. Brighter areas indicate elements com- 
mort to both images. 
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4.1 S ing le  O b j e c t s  

Synthetic objects as those in Fig. 1.a were generated and individually labelled. 
The size of the objects (b,c), their overlap (a) and the size of the lattice (Q) were 
varied to observe the response of Cjk and Ckj. Fig. 2.a shows the behaviour of 
Cjk when both  objects have the same size and their degree of overlap is varied 
from 0.01% to 100%. The different curves correspond to increases in Q. For the 
bo t tom curve Q = b + c and for the top curve Q = b * c. 

4.2 M u l t i p l e  O b j e c t s  

The experiments to study the behaviour of Cj and Ck consisted of generating 
a large single object in the observation image and two small objects in the 
reference. Their  degree of overlap (a = b ~ c, e = b ~ f )  was simultaneously 
varied, keeping their size constant and using a lattice size Q = b + c + f .  Fig. 
2.b presents the response of Cj, the spatial correspondence between b and the 
objects c and f .  When segmenting MS lesions in MR scans this situation occurs 
if an observer subdivides a large lesion identified as a single lesion by the other 
observer. Because the total  area of both  segmentations is the same, Cj is an 
est imate of the boundary placement error. 

~ 

lc~J z~c~ 3 ~  4 0 ~  

OvDr~ b-r 7OOO 

/ / / / . ,. 2 s o o  
/ / / / / / /  2ooo 

/ z , ' /~ 1so0  

(a) b=c=10000 (b) b=10000,c=7500,f=2500 

Fig. 2. Behaviour of Cjk and Cj. 

4.3 M S  L e s i o n s  

To evaluate the performance of the new indices in MS, two 3-D T2-weighted MR 
brain scans from different MS patients were segmented by two observers. In both  
cases there was significant disagreement in the total  number  of lesions (Case 1: 
K = 145, J = 581; Case 2: K = 113, J = 278), but the total  lesion volume 
was significantly different in only one of the cases (Case 1: VolK = 16.49ml, 
Volj  = 25.69ml; Case 2: VolK = 13.39ml, Volj  = 14.96ml). Fig. 3 shows surface 
projections of the segmentations done by Observer-1 (Xk) and Observer-2 (Yj). 
After uniquely labelling all the lesions in each segmentation, a Correspondence 
matr ix  was formed and percentage measures of individual (one-to-one), local 
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(many-to-one) and global (all-to-all) spatial correspondences were computed. 
For simplicity, the 3-D image grid was used as the lattice G. 

Fig. 3. Surface rendering of segmented MS lesions. 

Table 1 shows the values of the individual spatial correspondence measures 
between a lesion from Case 1 segmented by Observer-2 (Y93) and all the lesions 
segmented by Observer-1 with which it overlaps (X19, X34, X45, X62, X86, X92, 
X94, X95 and Xl13). 

Observer-2 Observer-1 ]Xk N Yj] Ckj] CjklErrAlOver [ Sire] 
j Voxels k I Voxels 

19 
34 
45 
621 

93 1530 861 
92 
94 
95 

113 

521 42 2.6654.58-86.85 2.72 5.30 
28! 28 1.8365.83-92.81 1.83 3.59 

499i 349 21.75 58.23 -1.62 20.77 34.40 
34 19 1.1434.58-91.30 1.22 2.42 
20 14 0.8742.72-94.83 0.91 1.80 

422 270 16.62 51.64 -13.52 16.05 27.66 
3 3 0.1955.28-99.21 0.19 0.39 
4 4 0.26 56.45-98.95 0.26 0.52 

36 33 2.1360.97-90.80 2.15 4.21 

Table 1. Measures of spatial correspondence between individual lesions. 
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The local spatial correspondence for the above example of lesion subdivision 
is presented in Table 2, where a local o v e r l a p  i n d e x  and a local s i m i l a r i t y  
i n d e x  have been computed by adding all the individual measures. 

ILesionll cjlowrl  S~m I 
I 11931147.451 46.1180.29] 

Table  2. Measures of local spatial correspondence for lesion Y93. 

Lastly, Table 3 shows the values of the global spatial correspondence measures 
for the two cases under consideration. 

ICaseIVoxelsinXlVoxelsiny]voxelsinXnY[] Cx ICy IErrAlOwrlSiml 
1 8172 12735 5761 20.28 39.83 56.34 38.03155.11 
2 6636 7418 4927 57.07 44.37 88.87 53.98 70.11 

Table  3. Measures of global spatial correspondence. 

5 R e s u l t s  a n d  D i s c u s s i o n  

To bet ter  understand the characteristics of the new indices and the results of 
the previous experiments we can express Eq. 1, 3 and 5 in terms of the number  
of elements in Xk, Yj and Xk VI Yj: 

cjk = X k N ~  
Xk Ix(k) 

K 
cj = Z x~ fl zJ 

k=l ~J I y ( J )  

Iz;y(k,j)  

Ix;y(k,j) 

(7) 

(8) 

K J ~-~k=l ~j=l Xk ~ Yj " Ix;y(k,j)  
c z = ~ (9) 

E k = l  xk .  Ix(k) 
I t  is then possible to interpret the new indices as a weighted ratio of the 

number  of overlapping elements to the total  number of elements in the refer- 
ence object. The weighting factor is an uncertainty coefficient tha t  indicates the 
fraction of the information in the observation that  is redundant  in the reference. 
The value of this factor depends not only on the degree of overlap between the 
objects, but also on the size of the sampling lattice G. This dependence of the 
new indices on the size of the sampling lattice is clearly shown in Fig. 2.a. 

Considering G as the space of possible disagreement between the observers, 
if its size is small relative to the size of the objects, the proposed measures will 
only be greater  than  0 if the overlap between the objects is larger than  that  
expected by mere chance (Pxy(k, j)  > Px(k)Py(j)). If we let Q, the size of the 
lattice, increase arbitrarily, Equations 7, 8 and 9 are reduced to the following: 
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lim Cjk = Xk N Yj (10) 
Q--+oo Xk 

K Xk fl Y; (11) lim Cj = ~ yj  
Q--+eo k=l 

K Y 
E k = l  Z j = I  Xk, N ~J lim Cy  = ~ (12) 

Q--+ oo E k = l  Xk 
In this situation of maximum uncertainty where limQ-,oo Ix;g(k,j) = eo and 
limQ-~oo Ix(k) = 0% the new indices will always be positive as any degree of 
overlap, however small, will be larger than that  expected by mere chance. 

Regarding the size of the objects, Cjk will be equal to Caj only when both 
objects are of the same size. This non-symmetric nature manifests the intuitive 
non-reflexive relationship between a large object and a small object. 

The effect of considering the space of possible disagreement and the non- 
symmetric nature of the new indices becomes evident when comparing them 
with the more established measures. If the lattice size is small relative to the 
size of the object, the values of Cda and Ckj are well below those of the other 
measures. This is to be expected as the new indices will penalise large errors 
when the space of possible disagreement is small. As the lattice size is increased, 
Cjk and Cad tend to bound the values of the o v e r l a p  i n d e x  and the s i m i l a r i t y  
index .  If the objects are of the same size (Cjk = Ckd), then l i m Q ~  Cjk  = Sire. 
If the objects have different size and the smaller object (e.g. Yj) is fully enclosed 
by the large object (e.g. Xk), then Cjk = Over. 

Table 1 demonstrates the behaviour of the individual correspondence indices 
for various combinations of lesion size and overlap. The non-reflexive relationship 
between the larger 'inclusive' object and the smaller 'split' objects is clearly 
reflected in the different values obtained for Cjk and Ckj. The relative values 
of Cjk and Ckj are a measure of the boundary placement error. The larger the 
difference in their values, the larger the error. The absolute values of Cjk and 
Ckj, on the other hand, quantify the agreement in lesion identification. The 
larger the values, the more likely it is that  the lesions identified by the observers 
are the same. With this in mind, for the sample lesions in Table 1 it can be 
said that  there is a very large boundary placement error and that ,  apart  from 
lesions 2(45 and X92, the lesions segmented by Observer-1 should probably be 
interpreted as completely different lesions with respect to ]I93- Comparing the 
new indices with the other measures in this table, the values of Ckj are close 
to those of the ove r l ap  i n d e x  because all of the objects Xk are smaller than 
the object Yj and are partly or fully enclosed by it. Cjk, on the other hand, 
shows significantly larger values reflecting the fact that  a larger proportion of 
the elements in each of the small objects Xk is included in the large object 
Yj. The values of the s i m i l a r i t y  i n d e x  are larger than those of Ckj, but  are 
still bounded by Cjk. Regarding the complement a r e a  e r ro r ,  its values suggest 
that  it is not well suited to estimate the correspondence when there are large 
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differences in size between the objects. None of these three measures can be used 
to further s tudy the similarities and differences between the observers as is the 
case with Cjk and Ckj. 

An example of applying the local spatial correspondence measure Cj to MS 
is shown in Table 2, where par t  of the volume segmented by Observer-2 as 
lesion Y93 has been identified as nine separate lesions by Observer-1. From the 
analysis above, this can be considered as an extreme case of boundary placement 
disagreement between the observers. Cj is a measure of the local agreement 
between the observers tha t  is influenced by both the boundary  placement error 
and the lesion identification error. Large values of Cj indicate tha t  there is 
agreement between the observers as to the location and possible extent of a 
certain lesion area, even if one of the observers has subdivided the lesion area in 
various regions. The value of Cj is slightly larger than  the local o v e r l a p  i n d e x  
and much smaller than  the local s i m i l a r i t y  index ,  which seems to significantly 
overest imate the local spatial correspondence. 

Lastly, Table 3 presents the global spatial correspondence indices for both  
examples under consideration. In this case, the relative values of C X and Cy 
are related to the boundary placement and the lesion identification errors. The 
larger the difference in their values, the larger the difference in the total  number  
of lesions and the total  lesion volume segmented by the observers. The absolute 
values of C X and Cy, on the other hand, are a measure of the overall spatial 
correspondence between the observers. As expected, C X and Cy are larger for 
Case 2 (large difference in total  number of lesions, but small difference in total  
volume) t h a n  for Case 1 (large difference in total  number of lesions and in total  
volume). This is also true for the other three measures, but closer examination 
of the new indices also reveals that  in Case 1 the area common to both ob- 
servers has a greater correspondence with the segmentation done by Observer-1 
(Cy > CX) , whereas in Case 2 the area common to both observers has a greater 
correspondence with the segmentation done by Observer-2 (C X > Cy). This 
reflects an inconsistency between the observers which is not at all apparent  
from any of the other measures. Moreover, the complement a r e a  e r r o r  and the 
s i m i l a r i t y  i n d e x  tend to overestimate the spatial correspondence, whereas the 
values of the o v e r l a p  i n d e x  are once again bounded by the new indices. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this paper  we introduced the concept of a Correspondence Matrix that  can 
be used to compute measures of spatial correspondence between binary objects 
segmented by two different observers and/or  segmentation algorithms. Using 
Information Theory we then derived a set of indices to estimate individual (one- 
to-one), local (many-to-one) and global (many-to-many) spatial correspondence. 
The  main characteristics of the new indices are the implicit consideration of the 
space of possible disagreement and their non-symmetric nature. 

The behaviour of the new indices was shown to be consistent for both  syn- 
thetic and real objects regardless of their number  and size. Comparing the new 



973 

individual spatial correspondence indices with the more established measures of 
similarity illustrated the effect of considering the space of possible disagreement, 
and their ability to distinguish and quantify the boundary placement and lesion 
identification errors as a result of their non-symmetric nature. At a local level, the 
new indices showed the importance of quantifying the correspondence between 
subdivided objects and the risk of overestimating such correspondence. Globally, 
the proposed indices proved to be sensitive to the overall spatial correspondence 
as well as to more subtle inconsistencies between the observers. 

In general, the values of the new indices act as bounds to those obtained 
for the over lap index,  while the s imi lar i ty  index  seems to consistently over- 
estimate spatial correspondence and the complement area  e r ro r  is either not 
well suited or overestimates spatial correspondence. This possible overestima- 
tion and the proved lack of sensitivity of these three measures to quantify errors 
and inconsistencies make the proposed new indices highly attractive for medi- 
cal imaging applications, such as MS lesion segmentation, where validation and 
comparison of segmentation results obtained by different observers and/or au- 
tomated algorithms is vital. 

Amongst the further work under consideration is the determination of the 
optimal size of the sampling lattice G, the use of thresholds to establish the 
number of corresponding and non-corresponding lesions, and the development 
of a methodology based on the new indices to automatically quantify spatial 
correspondence and spatial dissimilarity through time or across modalities. 
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