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Abstract .  We present a hierarchical object-based deformable atlas, a 
promising new approach for the automatic localization and quantitative 
analysis of neuroanatomy in MR images. The 3D finite element-based 
elastic atlas combines the advantages of both volumetric- and surface- 
based deformable atlases in one single unifying framework. This multi- 
resolution framework is not only capable of deforming entire volumes 
or subvolumes but can deform individual atlas objects, allowing greater 
and more effective use of object shape and local image feature infor- 
mation. Object surface representations are embedded in the volumetric 
deformable atlas and image-feature-derived forces acting on these sur- 
faces are automatically transferred to the containing 3D finite element 
lattice. Consequently, spatial relationship constraints of the atlas objects 
are maintained via the elastic lattice while an object is deformed to match 
a target boundary. Atlas objects are deformed in a hierarchical fashion, 
begining with objects exhibiting well-defined image features in the target 
scan and proceeding to objects with slightly less well-defined features. 
Experiments involving several subcortical atlas objects are presented. 

1 I n t r o d u c t i o n  

The au tomat ic  localization of neuroanatomy in MR images and the subsequent 
quanti tat ive analysis using 3D elastically deformable atlases is gaining increased 
at tention in medical imaging research [10, 11, 6, 3, 12, 5, 8, 13, 7]. These model- 
based techniques can dramatical ly decrease the t ime required for the localization 
task over interactive methods as well as improve the objectivity, reproducibil- 
ity, and, potentially, the accuracy of the localization. A fitted anatomical  atlas 
can then be used as a fundamental  component  for the assessment of structural  
brain abnormalities,  for mapping functional activation of the brain onto the 
corresponding anatomy, and for computer-assisted neurosurgery. 

There are essentially two approaches to deformable atlas matching: volumetric-  
based and surface--based. While both approaches offer a powerful s t ra tegy for 
efficient localization and analysis, they suffer from several well-known deficien- 
cies affecting the accuracy of the localization. Volumetric approaches mainta in  
the spatial  relationships of the atlas objects implicitly via the elastic medium in 
which they are embedded. However, these methods are sensitive to their initial 
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placement - if the initial rigid alignment is off by too much, parts of the atlas 
may incorrectly warp onto the boundaries of neighboring features. This problem 
is exacerbated by the fact that  volumetric methods discard the shape informa- 
tion of each atlas object and use only local intensity variations between the atlas 
and the target scan to drive the matching process. 

Surface-based methods typically manually initialize several parametrically 
defined deformable surfaces - each representing a different neuroanatomical 
structure - and subsequently elastically deform the surfaces to extract the shapes 
of the target object boundaries. Each atlas object surface and its corresponding 
deformed surface in the target scan are then matched to produce surface warp- 
ing functions. Using this surface warping information, a volumetric warp can be 
calculated via interpolation to deform the atlas material between the surfaces 
and register it with the target scan. One problem with this approach is that  
the surfaces are warped independently - the spatial relationship constraints pro- 
vided by the elastic medium in the volumetric approach are initially discarded. 
Furthermore, if generic deformable surfaces are used - -  that  do not make use 
of the known atlas object shape- -  then pieces of the object in the target scan 
could be missed by the deformable surface due to poor resolution or noise. 

In this paper, we describe a new hierarchical object-based deformable atlas 
that  combines the advantages of both the volumetric and surface based models 
in one unifying framework. The multi-resolution framework is not only capa- 
ble of deforming entire volumes or subvolumes but can deform individual atlas 
objects and make use of image feature knowledge of an object. By embedding 
smooth surface representations of atlas objects into the finite element-based vol- 
umetric deformable atlas, image-feature-derived forces acting on these surfaces 
are automatically transferred to the surrounding volumetric finite elements. The 
subsequent deformation of the elements automatically deforms the embedded 
surfaces. Consequently, we maintain the spatial relationship constraints of the 
atlas objects via the elastic "medium" while also making use of shape and inten- 
sity information of each object. The atlas is deformed in a hierarchical fashion, 
beginning with an initial rigid alignment and elastic match over the entire vol- 
ume. We then warp individual atlas objects and the surrounding volume in a 
specified neighborhood, starting with objects exhibiting well-defined image fea- 
tures in the target scan (such as the lateral ventricles), and then proceeding to 
objects with slightly less well-defined image features, and so on. 

The motivation behind our approach is that while the standard volumetric 
deformable atlas approach can provide an automatic, efficient and good "over- 
all" match of the atlas, there are still mismatches in individual atlas objects 
that  can only be corrected by adjusting the object itself. At the same time, this 
"fine-tuning" should maintain and use the correct spatial relationships of neigh- 
boring objects. In the remainder of the paper, we will first describe an initial 
implementation of our model and then present some preliminary results using 
several subcortical structures to demonstrate the potential of this promising new 
approach. 
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2 D e f o r m a b l e  A t l a s e s  

The idea behind a deformable anatomical atlas is to take the information con- 
tained in the atlas (typically a set of labeled voxels where the labels correspond to 
anatomical structures) and transfer this information onto the target dataset via 
a nonlinear warping function. To perform the warp, the atlas is typically mod- 
eled as a physical object and is given elastic properties. After an initial global 
alignment, the atlas deforms and matches itself onto corresponding regions in 
the brain image volume in response to forces derived from image features such as 
voxel similarity or image edges. To maintain the atlas topology and connectivity, 
the elastic properties of the atlas give rise to internal forces which regularize the 
deformation. The assumption underlying this approach is that at some repre- 
sentational level, normal brains have the same topological structure and differ 
only in shape details. 

The idea of modeling the atlas as an elastic object was originated by Broit 
[4]. Bajcsy and Kovacic [1] subsequently implemented a multiresolution version 
of Broit's system where the deformation of the atlas proceeds step-by-step in a 
coarse to fine strategy, improving the robustness of the technique. The elastically 
deformable volume approach has become a very active area of research [10, 11, 
6, 3, 7], and has recently been extended to a viscous fluid deformable volume [6] 
in an attempt to overcome the small deformation assumptions inherent in the 
linear elastic formulations. Although surface based deformable models have been 
widely used to segment medical images, surface-based deformable brain atlases 
are a more recent development [12, 5, 8, 13]. 

3 H i e r a r c h i c a l  O b j e c t - b a s e d  D e f o r m a b l e  A t l a s  

Our model combines the advantages of the volumetric and surface based methods 
by integrating both approaches into one framework. This hybrid model embeds 
the surface of atlas objects into the solid deformable finite element mesh or 
lattice representing the elastic atlas. The result is that the deformation of atlas 
objects can be controlled individually or in combination while automatically 
maintaining the spatial relationships of each object via the elastic lattice. The 
model also has other distinct advantages: 

- Multiple object-based image features can be used to attract an atlas object 
towards its boundary in the image. For example, known image intensity 
statistics of individual objects and neighboring objects can be used to weight 
a pressure force, driving the model towards salient boundary edges. 

- Computing forces on the object surface and distributing these forces to the 
volumetric finite elements results in an accurate deformation of the object 
without discarding the contextual knowledge of the neighboring objects. The 
displacements of the deformed object are automatically passed on to the 
neighbors through the surrounding elastic lattice, resulting in improved lo- 
calization of these objects. In addition, several neighboring objects can be 
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deformed concurrently in which case each object "competes" for the owner- 
ship of image features. 

- The atlas is initially deformed over its entire volume to provide a good ini- 
tialization of each atlas object. Atlas objects can be then deformed in a 
hierarchical fashion - from objects exhibiting very well-defined image fea- 
tures to objects with weaker features. After an object has been deformed 
we compute forces on it to maintain its equilibrium position. This acts to 
constrain the deformation of neighboring objects with adjacent boundaries 
(and less well-defined image features). 

- The material properties of the 3D finite elements can be controlled on an ob- 
ject basis. Each object can use predefined elastic properties based on knowl- 
edge of the amount of deformation that  typically will take place. If very large 
deformations are required an object can be deformed in phases, using coarse 
and rigid finite element meshes in initial phases and using finer, more flexible 
meshes in subsequent phases. 

Fig. 1. (a) Synthetic object surface, (b) surface embedded in elastic 3D lattice, (c) 
cross-sectional view of deformed lattice and surface (surface: white, lattice: black, target 
data: gray). 

3.1 M o d e l  S t r u c t u r e  

We construct our object-based elastic atlas using a deformable 3D lattice or 
grid consisting of cubical finite elements. Each finite element corresponds to a 
labeled atlas voxel (or group of voxels). To deform a specified atlas object, we 
reconstruct a smooth triangulated surface of the object from the atlas using a 
modified marching cubes algorithm (Figure l(a)).  For each surface vertex, we 
compute its containing cubical element (Figure l(b)) and the relative position of 
the vertex within the element. Image feature forces are calculated for each vertex 
and are then distributed to the nodes of the containing finite elements using the 
element basis (interpolation) functions. The elastic elements are then deformed 
and the nodal displacements calculated (Figure l(c)). The new positions of the 
surface vertices are then computed based on their relative positions within their 
containing cubical element and the displacement of the element nodes. This 
process is repeated for a specified number of iterations. 
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Fig. 2. Surface of caudate nucleus embedded in finite element mesh, (a) element size: 
S voxels, element layers: 1, (b) es: 4, el: 1, (c) es: 8, el: 2. 

The lattice of cubical elements surrounding an atlas object can be controlled 
in a number of ways (Figure 2) by varying the element size, the number of 
element layers surrounding the object, and the element material properties. 

3.2 Finite  Element  Implementat ion  

The elastically deformable lattice model is implemented using the displacement- 
based finite element method. A brief description of this method for linear elastic 
bodies is provided below. Readers are referred to [2] for complete details. 

In the displacement-based finite element method, a three dimensional body 
is located in a fixed coordinate system X = [X, Y, Z] T. The body is subjected 
to externally applied forces: 

fB = IS# s~ s~] T, fs = [s~ s~ s~] T, F' = IF., F~, p.,]T (1) 

where fB are the body forces (force per unit volume), f s  are the surface traction 
forces (force per unit area), and F i are the concentrated forces (i denotes the 
point of force application) due to attachments. The displacements of the body 
from the unloaded configuration are measured in the coordinate system X and 
are denoted by U(X,  Y, Z) = [UVW] T. The strains corresponding to V are: 

er [ou ov ow ou ov ov ow ow ou] T 
= ~-Y' o r '  o z '  o ~  + a T '  o z  + o ~ '  o---2 + -b-2 ' (2) 

the corresponding stresses are denoted r T = [rxx ryy  rzz  rxy  ryz  vzx], and 
finally the stress-strain relationship for a linear elastic body is given by ~" = De, 
where D is the stress-strain material matr ix (the elastic coefficients). 

Assuming a linear elastic continuum with zero initial stresses, the total po- 
tential energy of the body can be written as 

v V s i 
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Assuming, furthermore, a continuous displacement field U that  satisfies the dis- 
placement boundary conditions, the solution U is at the minimum of this energy 
and is found at the vanishing of the first variation o f / /  (i.e. 3/-I = 0). 

We approximate the body as an assemblage of discrete finite elements in- 
terconnected at nodal points on the element boundaries. The displacements, 
measured in a local coordinate system x, y, z within each element, are assumed 
to be a function of the displacements at the N finite element nodal points: 
uJ(z, y, z) = HJ (x, y, z )0 ,  where HJ is the displacement interpolation matrix 
of element j ,  and 0 is a vector of the three global displacement components 
U, V, W at all nodal points. Currently we use an 8-node hexahedral element in 
our implementation (higher-order elements can also be used) and the element 
interpolation functions are specified in [2]. 

One typically calculates all element matrices using only element nodal dis- 
placements and the corresponding nonzero components of H j for element j so 
that: uJ = N J f l  j ,  where fiJ and N j are the element nodal displacements and ba- 
sis functions, respectively. Using equations (2) and the stress-strain relationship, 
we can then evaluate the element strains as, eJ = BJhJ, where BJ is obtained 
by differentiating the components of N j .  Using these two equations, the po- 
tential energy (3) can be rewritten in terms of its elemental contributions and 
subsequently minimized on an element-by-element basis: 

I /  = ~ f / J  (u) = ~ l lJTBJTDJBJflJ dV 

J ~ vJ 

VJ SJ i 

(4) 

Solving for the first variation o f / /  leads to the equilbrium equation 0/IJ _ b--fi-7- 
KJfl j - f J ,  where K j and fJ are the element stiffnes and load matrices, respec- 
tively. We introduce a simple velocity-proportional damping force and rewrite 
the equibrium equations as c J ~ / - 4 - K J f l  j = fJ, where c J  is a diagonalized 
damping matrix with velocity damping coeficients 7 along the main diagonal. 
We currently integrate this equation forward through time using an explicit first- 
order Euler method on an element-by-element basis, making the model fitting 
process efficient and easily parallelizable. 

An isotropic linear elastic material is characterized by the Lam6 constants, A 
and p. These constants are also related to Young's modulus of elasticity E and 
Poisson's ratio u: 

E - # ( 2 p + 3 A )  A 
' (5) 

where E relates tension of the object and its stretch in the longitudinal direction 
and ~ is the ratio of lateral contraction to longitudinal stretch. We typically set 

to zero and allow E to range from 0.25 to 0.75, producing a range of stable 
elastic behavior from relatively stretchy to relatively rigid. 
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3.3 A p p l i e d  Forces  

As mentioned earlier, forces are computed for each of the surface vertices and 
are then distributed to the 8 nodes of the containing element using the element 
shape functions NJ. We use a weighted pressure force, where the weights are 
derived from precomputed atlas object intensity statistics, to deform the object 
surface: 

F(I(x i ) )  = +1, I/(xi) - p[ < ko', F(I(xi))  = -1 ,  [I(xi) - #[ > ka, (6) 

where # is the mean image intensity of the target object, ~r the standard deviation 
of the object intensity and k is a user defined constant. 

We also use a functional F based on intensity gradients computed along 
a surface vertex normal. It is often the ease that the intensity of an object 
varys considerably over its extent, limiting the usefulness of functionals based 
on absolute image statistics. However, the intensity gradients between an object 
and its neighbors is often fairly consistent when computed over a large enough 
surface region surrounding a surface vertex: 

F ( I ( x i )  = - 1 ,  IVI(xi)"  nil > =  C, F ( I ( x  d = +1, IVI(xi)"  nil < C, (7) 

where C is the known average difference in intensity between two objects. The 
signs are reversed in the functional if C is negative. 

4 Experiments 

The deformable atlas is based on an MR brain atlas developed in our laboratory 
[9]. To match the atlas to the target MRI scan, we first apply a rigid registration 
to the atlas followed by a generic volumetric elastic match [7] to initially deform 
the atlas and provide good initial positions of atlas objects 1. We then use the 
deformed atlas to generate smooth surfaces of objects and apply our model to 
deform the objects. 

We have used our technique in a set of preliminary experiments to deform 
several subcortical structures and match them onto a target MRI scan. Although 
the technique has not yet been validated with a large number of datasets, the 
results of our experiments are extremely promising- the model appears robust to 
noise and in regions containing sufficient image feature information, generates 
visually accurate results. In these preliminary experiments, we use a merged 
left and right lateral ventricle, the left and right caudate nucleus, the corpus 
callosum, and the left and right putamen. Two deformation phases were used 
with 30 steps in the first phase and an element size of 4 voxels and 30 steps 
in the second with an element size of 2 voxels. This unoptimized version of our 
system is still quite efficient and each deformation step takes from 1 to 10 seconds 
(depending on the number of objects deformed concurrently and the number of 
elements). In the first experiment we deform the merged lateral ventricles, the 

1 Although a separate elastic matching program is currently used to initially deform 
the atlas, we will eventually incorporate this stage into our model framework. 
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Fig. 3. (a) Manual tracing of left and right caudate nucleus and merged left and right 
lateral ventricle for slice 72, (b), (c) cross-section of initial and deformed surfaces. 

left and right caudate nucleus and the surrounding volume (4 element layers are 
used). A significant segmentation improvement  is obtained (figure 3(5, c)). In 
the second example, we deform the right putamen (Figure 4(a)(b)). The image 
intensity of the putamen varys considerably over its extent and its boundary 
is very noisy. For this reason, we integrate image feature information over a 
surface region centered at each surface vertex and then average this information 
to compute more reliable applied forces. In the final experiment we deform the 
corpus callosum (Figure 4(c)(d)). The strong edge features of this object results 
in a very accurate localization near the center of the object. 

r l g .  4. Cross-section of initial and deformed surface of (a)(b) right putamen, (c) (d) 
corpus callosum. The dashed line in (a)(b) is a manual tracing. 

5 C o n c l u s i o n  

We have created a 3D finite element-based object-oriented model to control 
the elastic deformation of a neuroanatomical  atlas. The model framework pro- 
vides us with the ability to deform not only the entire atlas or subvolumes of 
the atlas, but individual objects, separately or in combination. This ability al- 
lows us to accurately localize neuroanatomical  structures in a target  scan. The 
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model has demonstrated considerable potential  in preliminary experiments. We 
are currently applying our model to a large number  of datasets to validate its 
effectiveness. We are also exploring several model improvements with the goal of 
creating a single unified framework for the precise control of atlas deformation, 
ranging f rom the elastic deformation of deep subcortical structures, to a con- 
strained viscoelastic deformation of the cortical surface. In particular, we intend 
to replace the cubical mesh lattice with a 3D finite element mesh that  conforms 
to the geometry of each atlas object. The goal is to generate an axial-based or 
skeleton-based object parameterizat ion so that  the shape of an object can be 
constrained to maintain a feasible shape and its deformation can be controlled 
in a scheduled, global-to-local manner.  This will allow us to make opt imal  use 
of object shape, symmetry,  and image feature information. 
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