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Abs t rac t .  Automatic computer processing of large multi-dimensional 
images such as those produced by magnetic resonance imaging (MRI) 
is greatly aided by deformable models. A general method of deforming 
polyhedra is presented here, with two novel features. Firstly, explicit pre- 
vention of non-simple (self-intersecting) surface geometries is provided, 
unlike conventional deformable models which merely discourage such be- 
haviour. Secondly, simultaneous deformation of multiple surfaces with 
inter-surface proximity constraints provides a greater facility for incor- 
porating model-based constraints into the process of image recognition. 
These two features are used advantageously to automatically identify 
the total surface of the cerebral cortical gray matter from normal hu- 
man MR images, accurately locating the depths of the sulci even where 
under-sampling in the image obscures the visibility of sulci. A large num- 
ber of individual surfaces (N=151) are created and a spatial map of the 
mean and standard deviation of the cerebral cortex and the thickness of 
cortical gray matter are generated. Ideas for further work are outlined. 
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1 I n t r o d u c t i o n  

Digitally acquired information is increasingly being used in medical fields for 
surgery planning and intra-operative navigation, diagnosis and monitoring of 
disease, as well as in investigations of normal and pathological anatomy. In 
the realm of computat ional  neuroanatomy, large amounts  of three- and four- 
dimensional anatomical  and functional information are available in the form of 
such modalities as magnetic resonance imaging (MRI), positron emission tomog- 
raphy (PET),  and computed tomography (CT). The diverse nature  of the image 
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data, in addition to the large size of individual images, motivates researchers 
to explore automated methods of processing the data into forms more useful 
for subsequent analysis. Deformable models provide a promising technique for 
registration, segmentation, and matching tasks in computational neuroanatomy, 
by combining the bottom-up approach of edge detection with the top-down ap- 
proach of model-based geometric constraints. The active contour method of Kass 
et al. [1], commonly referred to as "SNAKES", has been the foundation upon 
which deformation methods have been based. Essentially, a two or three dimen- 
sional spline is assigned an energy function which consists of a stretching and 
smoothing term based on first and second derivatives, and an image term which 
decreases in energy as the spline moves closer to image boundaries. Numerical 
integration techniques deform the spline from a starting position to a minimum 
energy configuration, which represents a compromise between the shape con- 
straints and the image edge features. Many adaptations of deformable models in 
medical imaging have since been presented [2-6], and a survey of these methods 
is presented in [7]. Here we address two of the limitations of conventional meth- 
ods. Firstly, deformable surfaces typically use stretching and bending constraints 
for a regularization effect which penalizes but does not prevent non-simple (self- 
intersecting) surface geometries. Secondly, single surface deformation methods 
are sensitive to partial volume effects in images due to under-sampling. Some 
existing methods ([8, 9]) attempt to disambiguate the location of cerebral corti- 
cal surfaces in human MR images by combining information from both gray and 
white matter image boundaries. This idea is extended here to present a novel 
formulation of deformable polyhedra which incorporates a variety of proximity 
constraints in order to identify the entire cortical surface of the human brain from 
MR images of normal volunteers. The use of inter- and intra-surface intersection 
avoidance as well as a two-surface model of the inner and outer boundaries of 
the cortical gray mantle results in a fully automatic identification of the entire 
surface, even in deep, narrow sulci which may be confounded by partial volume 
effects. Surfaces are guaranteed not to intersect themselves or each other. The 
formulation of this method as a minimization problem is described in the next 
section. Application to a population of datasets, inter-subject averaging, and 
mapping of cortical surfaces to simpler parameter spaces is described. Finally, 
ideas for further application are presented. 

2 M e t h o d  

The essence of the method is the formulation of an objective function which when 
minimized provides a solution to an image recognition problem. The domain of 
the function is the set of vertex coordinates describing one or more polyhedra 
to be deformed, and the range is a scalar value representing a goodness of fit 
of the polyhedra to the target data. The objective function and its terms are 
described, followed by the method of minimization. 
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2.1 O b j e c t i v e  F u n c t i o n  

The objective function, O(S),  may be defined generally as a weighted sum of 
Nt terms, each of which may be thought of as a da ta  or model term, depending 
on whether it constrains the deforming polyhedra to match  image da ta  or some 
model-based a priori information: 

Nt 
o ( s )  = w Tk, 

k = l  

where Wk is a weighting factor, S is a set of Ns deforming polyhedral  surfaces, 

S = {Si : Si is a polyhedral surface, 1 < i < Ns} ,  

and S is a set of N8 model polyhedral surfaces where each Si has the same 
topology as Si. Each term, Tk, is formulated as: 

Tk(S) = W(Dk(S) ) ,  

where Dk(S) is a signed scalar measure of deviation from some ideal, and W ( x )  is 
a general weighting function. Usually this is just  a squaring function, W(x)  = x 2, 
but  the function W(x)  can be also be used as an at tenuat ion function by increas- 
ing the cost sharply when the measure of deviation passes a certain threshold. 
Each objective te rm is described here for the simple case where W(x)  is a squar- 
ing function. As a prolog, some definitions are presented: 

2v = (x, ,y~,  z~) , the 3D position of vertex v in a deforming polyhedral 
mesh, 

~ = (~v, ~ ,  2v) , the 3D position of vertex v in a static model polyhedral 
mesh, 

nv , the number  of vertices in a polyhedral  mesh. 
ne , the number  of edges in a polyhedral mesh. 
np , the number of polygons in a polyhedral  mesh. and 
my , the number of neighbours of vertex v, 
d(2, ~) , the Euclidean distance between two three dimensional 

points, 
nv,j , the j ' t h  neighbour of vertex v, and 
fi/~ , the surface normal at vertex v, defined as the unit nor- 

mal to the polygon consisting of the counterclockwise 
ordered neighbours of the vertex. 

I m a g e  T e r m  The image te rm is based on the distance from each vertex to 
the nearest image boundary in the direction of the local surface normal,  and is 
expressed as 

n v  

Tboundary_dist = E dB(2v, Nv, t) 2 
v = l  
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where dB (5~v, Nv, t) is the distance to the nearest image contour of the thresh- 
old, t, from the vertex, v, along the line defined by the surface normal, Nv. The 
explicit search in both directions along the surface normal increases the power 
of locating image boundaries that are relatively far from the current surface po- 
sition. This term may be modified to use first and second derivative information, 
or improved by over-sampling between vertices. 

S t re tching Term The stretch term increases as lengths between vertices are 
stretched or compressed relative to a user-defined model surface representing the 
ideal lengths, 

v = l  j----1 

where Lv,j, the ideal length of an edge, is defined as the corresponding length 
in the model polyhedron: 

Lv,j = d(.~v, ~n,,~ ). 
The intended effect of this term is to make distances between corresponding 
pairs of vertices on the model and deformed surface roughly equivalent, and is 
analogous to the term involving the magnitude of the first derivative of the spline 
in the original Snakes formulation. 

Bend ing  Term The bending term provides a measure of deviation from a 
model shape based on an estimate of local curvature, and is analogous to the 
second derivative term in the Snakes formulation, 

ne 2 

e ~ l  

where a(S, e) is the signed angle between the two polygons adjacent to the edge, 
e. This term is intended to be used for shape-based matching and segmentation. 

Sel f -Proximity  Term and Inter-Surface P rox imi ty  Term The previous 
three terms are found in some form in most conventional deformable models. 
Here we introduce the self-proximity term, which measures the proximity of 
pairs of non-adjacent polygons in a surface, 

np-- 1 np { ((~(P~,PJ) _di,j)2, if d(P~, Pj) < d~,j 
Ts~l/-p,~o=imi~u = ~ ~ 0, otherwise, 

i=1  j = i + l  

where d(Ti, Tj) is the smallest Euclidean distance between the i ' th polygon, Pi, 
and the j ' th  polygon, Pj, and dij  is a distance threshold. In practice, pairs of 
adjacent polygons are not included in the above equation, as their d(Pi, Pj) is a 
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constant zero value for any deformation of the polyhedra. The self-proximity 
term is used to explicitly prevent non-simple topologies by assigning a pro- 
hibitively high cost to self-intersecting topologies. The inter-surface proximity 
term, Tsurface-surface, is formulated in a similar fashion, and is used to prevent 
two surfaces from coming within a certain distance of each other. 

Ver tex-Ver tex  P rox imi ty  Cons t ra in t s  Two surfaces may be designated to 
prefer to stay a certain distance apart by defining a term constraining the desired 
distance between specific points on the two surfaces: 

T v e r t ~ - ~ t e ~  = (d(2v, Z~) - dB) 2 

where dB is the preferred distance between vertex v on one surface and vertex 
w on a second surface. This term keeps specific points of two surfaces a fixed 
distance apart, but does not explicitly prevent inter-surface intersection, which 
is achieved by the inter-surface proximity term defined previously. 

2.2 Minimization of  Objective Function 

Deformation of polyhedra is achieved by minimization of the objective func- 
tion using a conjugate gradient method, which involves iteratively computing a 
derivative direction and a line minimization along a direction computed from 
successive derivatives. In order to increase the chances of finding the global 
minimum, a multi-scale approach is employed. Deformation begins with a low- 
resolution initial guess for each of the polyhedral surfaces being deformed, which 
may be a hand-crafted model or statistically generated approximation to the 
surfaces being identified. The low-resolution surfaces are deformed to fit blurred 
image data, then resampled to contain more triangles. The resampled surfaces 
are then deformed to fit a less blurred version of the image data, and the pro- 
cess repeated until the desired resolution is achieved. Typically, triangles with 
lengths of one millimetre are sufficient to capture the surfaces in the MR data 
being segmented. 

3 S o l v i n g  P a r t i a l  V o l u m e  E f f e c t s  w i t h  a D o u b l e  S u r f a c e  
M o d e l  

One of the most interesting applications of this general deformation framework 
is the identification of deep, narrow sulci that are obscured by partial volume ef- 
fects. Figure la  illustrates a cross section through a three dimensional simulated 
brain phantom. Conventional deformable methods find the sulcus in the white 
matter (Fig. lc), but fail to find a sulcus in the gray matter (Fig. lb) due to 
partial volume effects in the image. The new deformation method successfully 
locates a reasonable approximation to the gray matter sulcus (shown in three di- 
mensions in Fig. ld), using a double surface formulation. The gray-cerebrospinal 
fluid (CSF) (Fig. le) and the gray-white (Fig. lf) surfaces are simultaneously 
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deformed to fit the image, with the constraint that the two surfaces prefer to 
be a specific distance apart. While neuroanatomical estimates of gray matter 
thickness vary from three to seven or more millimetres, it was felt that for a pre- 
liminary evaluation of this method, five millimetres was a reasonable constraint 
on the thickness, with a range of plus or minus two millimetres. The gray-CSF 
surface follows gray-white surface deep into the sulci, and self-proximity con- 
straints prevent it from intersecting itself as the two boundaries of the sulcus 
are pushed together. 

Fig. 1. a) Cross section of image representing sulcus obscured by partial volume, b) 
Cross section of apparent gray-CSF boundary, c) Cross section of apparent gray-white 
boundary, d) Results of dual-model deformation, e) Dual-model gray-CSF surface, f) 
Dual-model gray-CSF surface. 

4 A p p l i c a t i o n  t o  C o r t i c a l  S u r f a c e  S e g m e n t a t i o n  

The deformation method presented is applied to a large number of normal human 
MR images to automatically identify the total surface of the cerebral cortical gray 
matter. Tl-weighted, T2-weighted, and PD-weighted images are acquired at a 
isotropic sampling of one millimetre. The images are corrected for RF inhomo- 
geneity artifacts [10], linearly transformed into a stereotaxic coordinate system 
[11], and classified into gray matter, white matter, and CSF. The identification 
of the cortical surface is accomplished with two steps. The first step is use high 
stretching and bending weights to rigidly deform a coarse cortex mask to fit the 
classified volume, to remove non-cerebral white matter from the volume. Then 
the dual-surface deformation described previously is performed on the masked 
volume, in a multi-scale fashion. The initial surfaces contain 320 triangles, and 
after several iterations of deformation and sub-sampling the surfaces, the re- 
sulting surfaces contain about 90 000 triangles. The segmentation for a single 
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subject takes about 100 hours of time on a Silicon Graphics Origin 200 R10000 
processor running at 180 megahertz. Figure 2 shows the right view of the outer 
surface of a cerebral cortex, as well as cross sections of the surface superimposed 
on the classified volume. 

Fig. 2. a) Gray-CSF boundary automatically extracted, b) Sagittal section, c) Coronal 
section, d) Transverse section. 

Choice of Weights A drawback of most deformable methods is the necessity 
to balance the various objective terms by carefully choosing weights. Most de- 
formable methods use some sort of constraint on stretching and/or bending as 
regularization terms to avoid degenerate deformation configurations. In the ex- 
periments with the current formulation, it has been found that the self-proximity 
term provides an alternative to the conventional regularization by preventing self 
intersections, and therefore, it is possible that the stretching and bending terms 
may be discarded when shape constraints are not needed. This reduces the num- 
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ber of arbitrary weights that must be chosen, and a method of assigning the 
remaining weights has been devises. The image term is arbitrarily assigned a 
value of one, and the weighting functions for the surface proximity terms are 
constructed in such a way that geometric measures are specified, rather than 
weights. For instance, the self-proximity term is constructed so that above 0.25 
millimetres the term is 0, and below .25 millimetres, the weight increases from 
10 -1~ at 0.25 millimetres to 10 l~ at .01 millimetres. This large range of weights 
works for almost any application, and only the millimetre thresholds for prox- 
imity constraints must be chosen. 

4.1 Averaging and  Mapp ing  to Two D i m e n s i o n s  

The surfaces deformed have a topology based on a triangulation of a sphere, and 
there exists a one-to-one mapping between points on any two deformed surfaces 
or between a deformed surface and a sphere. The result is that the convoluted 
cortical surface can be mapped onto a sphere, and sets of deformed surfaces may 
be averaged into a mean surface. Figure 3a shows the average of 151 individual 
cerebral cortical surfaces automatically identified by the deformation method. 
The average curvature of the surfaces is mapped onto the average surface where 
black areas correspond to sulci, and brighter areas are gyri. Figure 3b shows the 
same curvature information mapped onto a unit sphere. Aside from the visual 
simplification aspect, it is possible that some types of analysis may be more 
easily performed in the two dimensional parameter space of the sphere or on 
the average surface. Depending on the specific analysis requirements, it may be 
necessary to perform a further step of warping within the two dimensional space, 
for instance, in order to make the mapping preserve distances, angles, or areas. 

Fig. 3. Curvature of cortex from Fig. 2a mapped onto a) the average surface, and b) 
a sphere. 
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Fig. 4. a) Right view, and b) Top View of thickness of cortex f~om Fig. 2a mapped 
onto an ellipsoid,(range: 3 mm to 7 ram). 

4.2 Cortical Thickness Map 

The thickness of the gray matter can be measured at any point on an individual 
cortical surface, using the two deformed surfaces, and averaged over the entire 
set of surfaces, shown on an ellipsoid in Fig. 4. However, the resulting thickness 
is biased towards the original proximity constraints defined in the dual-surface 
model. In order to minimize this bias, the current estimate of local cortical 
thickness should be used to define a second-generation model and the surface 
deformation process repeated for all 151 surfaces. Such refinement of the cortical 
thickness map may be repeated until a convergence is achieved. More work is 
required to determine to what extent the a priori  constraints and the deformation 
algorithm itself control the perceived thickness of the cortex. 

5 S u m m a r y  

A novel method of surface deformation for image segmentation and matching 
has been presented, with the following features: 

�9 a boundary search along the local surface normal is used to increase the 
range of attraction of edges, 

�9 the use of proximity constraints with appropriate weights guarantees avoid- 
ance of intersecting surface geometries, 

�9 proximity constraints provide an alternative to the conventional method of 
regularization by stretching and bending constraints, 

�9 intuitive geometric constraints are used in place of arbitrary weights, 
�9 multiple surfaces, models, and datasets may be combined into a single ob- 

jective function, 
�9 and finally, the application of this surface deformation method to the iden- 

tification of the total cerebral cortical surface from MR images is achieved 
with improved insensitivity to partial volume effects. 
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The ability to automatically generate surface represenations from images 
provides opportunities for sophisticated analysis of large populations of neu- 
roanatomical data. Generation of average surface models which incorporate de- 
scriptions of mean position, shape, and thickness is in progress. Future directions 
include improving the mapping of cortical surface between subjects, as well as 
sulcal recognition, and application to identification of cerebellum, brainstem, 
and other neuroanatomic structures. 
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