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Abstract .  Brain surgery simulation requires a mathematical model of 
the geometric and elastic properties of the entire brain. To allow for 
realtime manipulation of the model it is necessary to differentiate the 
level of accuracy between different subparts of the brain model. A Finite 
Element Model (FEM) of the brain is presented capable of differentiating 
the spatial and temporal accuracy in different parts of the model. In a 
user defined region-of-interest around the surgical target point a dynamic 
FEM model is used to give high accuracy. The remaining parts of the 
brain is modelled by a static FEM model having less accuracy. The two 
models are integrated into one model for the entire brain using Conden- 
sation. In the context of our early version of a brain surgery simulator 
we have tested the condensed model versus a full dynamic model of the 
brain. Promising results concerning spatial error and execution time are 
shown. 

1 I n t r o d u c t i o n  

Surgery simulation [4][1][7][11] have gained growing interest in recent years. The 
reasons for this are manifold. The  success of flight simulators has shown the 
at ta inable benefits by letting a trainee practice in a virtual computer  environ- 
ment  prior to real world actions [12]. The fast development of computer  power 
now starts  to allow interactive manipulat ion of 3D models representing human 
organs [4]. 

The work presented in this paper  is motivated from practical  needs related 
to developing a surgery simulator for brain surgery. The aim is to develop a 
computer-based simulator where a trainee can practice general surgical pro- 
cedures or where a skilled surgeon can practice surgical details and plan a specific 
operat ion prior to performing the specific surgical procedure. 

The core of a surgery simulator is a 3D model of the organ of interest and 
simulation is to a large extent manipulat ions of the 3D model. One of the funda- 
mental  requirements of a surgery simulator is its ability to model deformations 
of tissue. Surgical procedures often involves pushing around tissue and cutting 
in tissue which gives rise to deformations of the tissue. 

I t  can be argued tha t  the following three requirements are impor tan t  in the 
development of deformable models of human tissue: 
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- The models should allow for cutting. 
- The models should be physically realistic. 
- Deformations should be calculated with high speed to allow for real-time 

simulations. 

If cutting should be performed the traditional surface based models can not 
be used, since these models are empty inside and a cut will not open up for 
any underlying tissue [1]. Cutting requires volumetric models of the tissue. As a 
cut is a local procedure, i.e. not effecting the entire organ, the volumetric model 
must be represented as a local mesh-based model and not as a globally oriented 
parametric model [5]. The Finite Element Method (FEM) which produces local 
mesh-based models has been used for different types of surgery simulation, i.e. 
craniofacial surgery [10], the human leg [1], the liver [4], and the gal bladder [11]. 

To obtain the most realistic simulation, the model must approximate the 
physical tissue as well as possible and the deformations should be as similar to 
deformations of real tissue as possible. We believe that  FEM Models, which are 
models capable of incorporating knowledge of measurable physical properties 
of tissue, are currently the most promising way to ensure physically realistic 
deformations. 

Real-time simulation is a very challenging requirement. It requires finding 
the right balance between model size and model accuracy. In brain surgery sim- 
ulation it is necessary to model the tissue, the blood vessels, nerves, etc. with 
very high precision, since brain surgery fundamentally is a process of manipu- 
lating the details of the brain structure. Models with such a high level of details 
can only come close to real-time performance if the models are limited in size. 
In brain surgery simulation it is, however, a problem, that  the human brain is a 
complex organ consisting of several tissue types connected in complicated struc- 
tural patterns. Surgery at any point in the brain is affected by global properties 
such as the orientation of the patient relative to the field of gravity, the mass 
of the brain, the amount of fluid around the brain, the amount of fluid in the 
internal ventricles, etc., since these properties affect the elastic properties of the 
brain tissue. Even though brain surgery is almost always performed as minim- 
ally invasive surgery, where only a very limited area of the brain is targeted, it 
is, due to the effect of the global properties, not acceptable to neurosurgeons 
only to model the area around the target  point. It is therefore necessary to de- 
velop models for the entire brain, where some parts can be modelled with high 
precision and other parts with less precision, but  still taking into account the 
elasticity of the brain. 

We have previously presented an approach where the model for the entire 
brain is constructed in order to allow a differentiation of the spatial and tem- 
poral accuracy in different parts of the model [8]. The differentiation is obtained 
by applying a dynamic FEM sub-model with high accuracy to the area around 
the target point and a static FEM sub-model with less accuracy for the remain- 
ing parts. The area with high accuracy is manually pointed out by the user as 
a special Region-of-interest, ROI. The different models are integrated into one 
FEM model for the brain using a well known technique called Condensation. In 
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this paper an overview of the approach is given, and through a line of experi- 
ments the approach is evaluated in the context of our early version of a surgery 
simulator. The experiments are focused on the spatial error and the processing 
time. 

In section 2 the FEM models are described and in section 3 integration of the 
models using condensation is described. Section 4 and 5 describe and present the 
results related to experiments conducted to show the performance of the method 
regarding time consumption and accuracy. Section 6 discusses the results and 
concludes on the work. 

2 M o d e l l i n g  b y  t h e  F i n i t e  E l e m e n t  M e t h o d  

The task of modelling a solid body of matter can be referred to as a continuum 
problem [9]. In a continuum problem the displacement variable contains an in- 
finitely number of values since it is a function of each generic point in the body. 
The finite element method reduces the problem to one of a finite number of un- 
knowns by dividing the body into elements and by expressing the displacement 
field within the element in terms of assumed approximations. Figure 1 shows 
the discretisation of a solid body into a number of finite elements in the form of 
tetrahedrons. 

T e t r a h e d r o n  

Fig. 1. Discretisation of the continuum problem into discrete 4 node tetrahedrons. 

The tetrahedrons are described by 4 nodes, where the displacement field is 
described by linear interpolation between nodes. In the finite element repres- 
entation of a problem, the nodal displacement becomes the finite number of 
unknowns. Using linear elasticity properties (Hooke's law) to define the relation 
between applied force f and the deformation u of the modelled body the equation 
for each element becomes a linear matrix system: 

Keue  -- fe (1) 

Since there are 4 nodes in an element each with 3 degrees of freedom f and 
u become vectors of [12xl], and K the stiffness matrix is a [12x12] matrix de- 
scribing the elastic properties of the element based on material and geometric 
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properties. Thus, for each element it is possible to define different element prop- 
erties and then assemble the elements into a complex model. 

The elements must be assembled in order to find the properties of the overall 
system modelled by the mesh of elements. The global matr ix equations of the 
system have the same form as the equations for an element, except the fact tha t  
they contain many more terms since they include all nodes. The assembly of the 
global stiffness matr ix  becomes, 

K = ~--~t(ge) (2) 
e 

where t 0 is a transfer function from element to global node numbers. 

2.1 S ta t i c  F i n i t e  E l e m e n t  M e t h o d  

The result of the assembly procedure is a large linear equation system which 
must be solved with respect to u. Since u is time independent this system is 
called a static finite element system 

K[3N• "U[3Nxl] ---- f[3Nxl] (3) 

where N is the number of nodes. When modelling large complex structures 
the number of nodes yields a huge equation system unsuitable for interactive 
applications [6]. Methods using explicit inversion of the stiffness matr ix in order 
to obtain interactive deformations have already been demonstrated [1]. 

2.2 D y n a m i c  F i n i t e  E l e m e n t  M e t h o d  

A dynamic model yields a more physical correct response since it describes the 
deformation in a temporal  context. The displacement vector u becomes a func- 
tion of both place and time. The dynamic system is an extension of the linear 
static system where mass and damping is added. The equation to be solved 
becomes: 

M i i ,  + Cdn + K u n  = fn (4) 

where subscript n denotes time n a t  where At  is the size of the time step. M 
is the mass matrix,  C is the damping matrix. Assuming lumped masses at the 
nodes and mass proportional damping then, 

V e 
M~i = p ~ - ,  C~ = aM~i (5) 

where p is the mass density, V e the element volume, a is a scaling factor and i 
is the element nodal number (i--1,2,3,4). M and C are assembled similar to the 
stiffness matr ix K.  

The dynamic equation is solved for u using the trapezoidal-rule method to 
calculate ii the acceleration and the velocity fi [3]. 
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3 R e g i o n - o f - i n t e r e s t  b a s e d  F i n i t e  E l e m e n t  M o d e l l i n g  

To obtain the most precise modelling of the brain for a simulation, the entire 
brain should be modelled as a dynamic system. This would involve tens of thou- 
sands of nodes in the model and for such large models real-time simulation would 
not be possible. 

The main idea behind this paper is to have a user-defined target area for the 
surgical procedure and then only model a Region-of-interest (ROI) around the 
target area as a dynamic system. For such small regions reai-time simulation is 
expected to be possible. 

As argued in the Introduction the remaining part of the brain is still very 
important for modelling the target area and can thus not be disregarded. We 
suggest to model the remaining part as a static model and then, through con- 
densation, integrate the two models into one model. 

The integration ensures that the elastic properties of the remaining part ef- 
fects the dynamic system of the ROI. This means that when pushing tissue 
around in the target area you not only sense the tissue in the small dynamic 
model, but also the resistance from tissue in the larger static model. If for ex- 
ample the static models contain non-deformable material like the skull, this will 
directly be sensed when manipulating tissue in the target area. The information 
left out to give a simpler system is related to the dynamics of the deformations. 
The static model can only tell us how the deformation will look eventually after 
the model have reached a steady state phase, not how the deformation developed 
over time. 

By speeding up of the calculation of the static model real-time simulation is 
also expected for this model, and thus for the entire condensed model. 

Condensation is a technique by which a matrix equation system can be parti- 
tioned into several subsystems allowing individual treatment of the subsystems. 
Condensation is basically done by eliminating some of the nodes from the matrix 
equation system by pre-calculations [9]. 

The ROI is described as a dynamic model marked with subscript d 

Md~id 4- Cdll d 4- KdUd : fd 

The remaining part is modelled using a static model (subscript s). 

Ksus = fs 

The complete model ordered with the ROI nodes first: 

(6) 

(7) 

(8) 

where subscript d8 and sd refer to the interaction between the two models. In 
expanded form these equations become 

Mdiid 4- Cdl:ld 4- KdUd 4- KdsUs----fd (9) 
KsdUd 4- Ksu~ = fs (10) 
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When equation (10) is solved for us and the result is substituted into (9), we 
obtain 

M d f i d  + C d f l d  + KdUd -- K d s K - l s K s d U d  = fd -- K d s K s l f s  
o r  

M d i i d  + Cdl : ld  + g u  d = 

(11) 

where I~ = Kd  -- gds"  K~ -1" Ksd and f = fd -- Kds" K s  x ' is .  The inversion of Ks 
can be done prior to the simulation and will not influence the total complexity 
of the condensed model. 

4 Experimental Design 

The experimental work is aimed to measure the spatial error introduced and the 
processing time involved in computing the deformation. 

For the experiments only a simplified model of the brain is used. The very pre- 
cise model with detailed information about  the surface structure, blood vessels, 
nerves, etc. is still under construction. The deformation used in all experiments 
is caused by two forces applied on both sides of an opening in the surface pulling 
the sides apart,  see figure 4. 

M e a s u r i n g  t h e  spa t i a l  accu racy .  Assuming that  the full dynamic system 
calculates the correct deformation, it is possible to measure the spatial error of 
the condensed model by measuring the spatial difference between the result of a 
deformation for the condensed models and the full dynamic model. The spatial 
difference is measured as the Euclidean distance between all common nodes in 
the models, i.e. the nodes in the ROI. 

As it is expected that  the spatial error is related to the dynamics of the 
system, the force has been applied to the system in three different ways. As 
shown in figure 2 the situations are ramp functions with different rise times i.e. 
0.5, 1, and 2 seconds. The applied force has been determined experimentally 
as a force giving realistic deformations of the brain models when viewed in the 
simulator. The duration of the test is 200 iterations or 10 seconds. 

1:[ 
~ 0.5[ 

0 0 

151[/1 
0.5 

0 0 

1: t ~ 
0 2 

Fig. 2. The forces are ramp functions with a risetime of 0.5, 1 and 2 seconds. 
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To determine which effect the size of the ROI will have on the accuracy and 
processing time two setups were made. The full dynamic model contains 799 
nodes, setup 1 is a condensed model of 306 nodes and setup 2 contains 228 
nodes. 

Fig. 3. The models used in the experiments. The flfll dynamic model (top), th.e con- 
densed model of setup 1 (/eft) and the condensed model of setup 2 (right). The dark 
areas illustrate the dynamic part of the model. 

M e a s u r i n g  t h e  t i m e  c o n s u m p t i o n .  The time used to calculate the deform- 
ation at each time step is measured. Based on the iteration-time a frame rate is 
calculated. 

The remaining test parameters are described in table 1. Since finite element 
modelling of brain tissue is a fairly new area, the material parameters are not 
described in literature. As an approximation the brain tissue is modelled with 
the material parameters of rubber. 

The system was implemented on a Silicon Graphics ONYX with four MIPS 
R10000 processors and a RealityEngine II graphical interface. Notice that  the 
deformations are calculated using a single processor, parallel features are only 
used to separate rendering from the actual simulation. 
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Table  1. Parameter settings used during all tests. The rubber lam~ constants ,% and 
# defining the material properties for rubber can be found in [2]. 

I ~ I ~ Ip  I~[  Timestep] 
0.4 0.0012 1.0 0.8 0.05 [ 

, 0 _ ~ 1 , 0 _ ~ 1 _ ~ 1  I sec. I 

5 Experimental  Results  

Figure 4 visualises how the deformation used in the line of experiments  develops 
over time. The cylindrical objects are representing spatulas capable of pushing 
tissue around. The t ime spent on the deformation is either 0.5, 1 or 2 seconds 
depending on the ramp functions in use (see figure 2). 

Fig. 4. This figure shows the deformation of the brain model as the forces increase 
according to the ramp function (figure 2). 

S p a t i a l  a c c u r a c y .  Figure 5 shows the mean and max. error for the condensed 
model with setup 1 compared to the full dynamic model. 

We notice that  the mean steady s tate  error (above 100 iterations) is below 
0.2 m m  for all three ramps functions. There are, however, significant differences 
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between the three ramps when looking at the errors occurring shortly after the 
force has been applied. For ramp 1 and 2 the error rapidly climbs to a peak value 
of 0.4 and 0.3 respectively. From this peak it is graduately lowered to the steady 
state error. For ramp 3 it slowly increases until it reaches its maximum value at 
the steady state error. 
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Fig. 5. The mean error and max. error for setup 1. 

The maximum error for the condensed model follows a common pattern for 
the three ramp functions. It peaks shortly after the force is applied with values of 
approximately 6 mm, 4 mm and 2 mm respectively. Within the next 50 iterations 
the max. error is lowered to less than 1 mm. 

In figure 6 the mean and max errors for the condensed model with setup 2 
are shown. Only results with ramp 2 are shown, as all three ramps followed the 



314 

same pattern represented by ramp 2. The pattern is a performance very close to 
that  of setup 1 but with a minor increase in the max. error. The most significant 
change is the duration of the time interval where the max error occurs. The max. 
error has not one but several peaks in the first 100 iterations. 
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Fig. 6. The mean error and max. error for setup 2 (ramp 2 only). 

T i m e  c o n s u m p t i o n .  The time consumption was measured as the iteration 
time, that  is, the calculations needed for each time step in order to calculate the 
new deformations. The iteration times shown in table 2 are the mean of 1000 
iterations, the frame rate tells how many times the deformations can be updated 
per second. 

Table 2. Time consumption during the tests. The second column shows the iteration 
time which is a mean of 1000 iterations. The third column shows the according frame 
rate. 

Model nodes Iteration Frame rate 
[sec.] [Hz] 

Full dynamic 799 0.440 2 
Setup 1 306 0.071 14 
Setup 2 228 0.037 27 

6 Discussion and Conclusion 

Examining the results from the test for spatial accuracy it is characteristic that  
the condensed model has a very small mean error. The mean performances of 
the condensed model and the full dynamic model are therefore very similar. The 
similarity is obtained because the condensation allows the dynamic model to 
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sense the elastic properties of the larger part of the brain modelled by the static 
model. 

Bearing in mind that real-time performance of the simulator is of interest it 
is important that the condensed model not only gives small mean errors but at 
the same time a significant reduction in processing time. 

The experiments also show where the price for the reduction is being payed. 
It is in the dynamic properties of the condensed model. The experiments show 
max errors up to 6 mm shortly after the force has been applied rapidly. These 
errors are most likely caused by a mis-match between the deformations of the 
static and the dynamic model shortly after force impact. In the dynamic model 
the deformation develops over time. In the static model the final result of the 
deformation is determined at the instant where the force is applied. The de- 
formation of the static model is therefore presented to the dynamic model prior 
to the point in time where it would have occurred, had it been modelled as a 
dynamic model. 

However, these problems are only significant for abrupt manipulations, and 
as large max. errors occur together with small mean errors, only few nodes have 
been affected by the errors. How these max. errors affect the usability of the 
condensed model in a surgery simulation needs to be further investigated. A 
preliminary evaluation by the neurosurgeon related to our surgical simulator 
team calls for no major concern when used in a realistic simulation situation. 

The experiments with the condensed model with different sized dynamic sub- 
models show that it is possible to develop condensed models with very small dy- 
namic parts and still maintain very good spatial accuracy. As the size decreases, 
the sensitivity to rapid changes in the force is increased. 

Concerning time consumption the results closely reflect the complexity of 
the models. For the very simple brain model (low node density) used in the 
experiments the condensed models comes close to real-time performance. As the 
node density for a realistic brain model is expected to be considerably higher, 
our dream of a real-time simulator can benefit from the ongoing rapid increase 
in processing power on the computer market. 

Based on the line of experiments presented in this paper it can be concluded 
that a condensed model with both dynamic and static sub-models has interesting 
properties for use in brain surgery simulation. It allows for the elastic properties 
of the entire brain to be taken into account when modelling deformation in a 
Region-of-interest around the surgical target point. The condensed model has 
a complexity significantly lower than a dynamic model for the entire brain and 
therefore the processing time is much lower and realtime performance is coming 
closer. 

The next step in developing a simulator for brain surgery is to enhance the 
physical realism of the model. Material parameters for brain tissue, blood vessels 
etc. need to be determined, and the appropriate node density must be computed. 
Once these problems are overcome, a new line of experiments can determine how 
close we are to realtime simulation with realistic models. 
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