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Abstract. We describe adaptive attacks on several variants of the RSA 
signature scheme by de Jonge and Chaum. Moreover, we show how to 
break Boyd's scheme with an adaptive, a directed and a known signa- 
ture attack. The feasibility of the adaptive attack on Boyd's scheme is 
illustrated by a concrete example. 
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1 I n t r o d u c t i o n  

Since the invention of the RSA signature scheme [20] in 1978, many variants 
have been proposed in order to improve the security and the efficiency of the 
scheme. However, these at tempts  have not always been successful. For instance, 
Rabin [19] and Williams [22] suggested schemes whose security can be proved 
equivalent to factoring the modulus as long as the attacker is assumed to be 
passive, but which are vulnerable to so-called adaptive attacks (see [11] for a 
formal description of attacker models on signature schemes). Proposals to in- 
crease the efficiency, such as to use the same modulus for all users, have shown 
to be vulnerable ([8, 12] respectively) as well. Finally, it was suggested to use 
other group structures, such as elliptic curves or Lucas functions [14, 9, 17], but  
as was discovered recently, these variants do not provide bet ter  security than the 
basic scheme [1-3]. 

In 1986 de Jonge and Chaum suggested a generalization of the RSA signature 
scheme [13] and discussed several of its instances. In particular, they showed that  
many special cases are vulnerable to adaptive attacks [7] tha t  make use of the 
multiplicative property of the RSA scheme. They came up with a specific variant 
they claimed to be resistant against such attacks. Recently, Boyd proposed an- 
other special case of this generalized scheme [4] that  works in a relatively small 
subgroup of z~* and is therefore quite efficient. 
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Our Contribution: 
In this paper we will first point out that de Jonge-Chaum signature scheme is 
vulnerable to adaptive attacks as well. We then describe in detail an adaptive 
attack on Boyd's scheme and give an analysis of its runtime and its success 
probability. For a concrete realization of the scheme, with RIPEMD-160 [10] 
used as hash-function, we show a successful attack: if the attacker manages to 
obtain from a user the signatures on the following six messages (for instance as 
payment for an electronic service), 

"Check 
"Check 
"Check 
"Check 
"Check 
"Check 

#00000000167658: value $1.00" 
#00000000347533: value $1.00" 
#00000003719673: value $1.00" 
#00000007303360: value $1.00" 
#00000014393409: value $1.00" 
#00002271656103: value $1.00" 

he can also compute a valid signature (with respect to this user's public key) on 
the message 

"Check #00002228615476: value $1'000'000.00" . 

This attack works because the 160 bit hash-values produced by RIPEMD-160 
are quite likely to be the product of relatively short factors (in this example 
less than 32 bits). This attack is then extended to a directed and a known- 
signature attack. Finally we outline how these ideas could be used to attack a 
naive implementation of the RSA blind signature scheme. 

Organization of the Paper: 
In Section 2 we review the de Jonge-Chaum scheme and describe our attack. 
In Section 3, we focus on Boyd's scheme, describe our cryptanalysis and the 
concrete attack. Section 4 concludes the paper with a discussion of the potential 
vulnerability of a naive implementation of RSA blind signature scheme. 

2 A n  A d a p t i v e  A t t a c k  o n  t h e  d e  J o n g e - C h a u m  S c h e m e  

2.1 Rev iew of  t he  de Jonge-Chaum Scheme 

In [13], de Jonge and Chaum consider several variations of the basic RSA sig- 
nature scheme with the goal to avoid adaptive attacks. These variations can be 
characterized by the verification equation 

a $1(m'n) = ]2(m,n) (mod n) , 

where n is the signer's public modulus, m is the message, a is the signature, and 
f l ,  f2 : {0, 1}* • ~ --~ 2~ are efficiently computable functions mapping (m, n) 
to an integer. For example, the choices 

f l ( m , n )  = e and f 2 ( m , n )  -- m 
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for an integer constant e with gcd(e, ~(n))  = 1 result in the s tandard RSA 
signature scheme (without hashing). 

Since the signer knows the factorization of n he can compute the f l  (m, n)- th 
root of f 2 ( m , n )  (if it exists) which is signature a on m. 

For several choices of f l  and f2 de Jonge and Chaum show tha t  adaptive 
at tacks on the resulting signature scheme are possible and finally come up with 
a scheme they think is secure in this respect, i.e. the variant with the verification 
equation 

a 2m+1 - m (mod n) . 

They  claim explicitly that  this scheme is secure for messages of arbi t rary  length 
and tha t  messages need not contain redundancy. We will show in the next sub- 
section tha t  under these assumptions multiplicative attacks are possible. 

2.2 The Adaptive Attack 

An adaptive a t tack  on the above scheme works as follows. Assume the at tacker  
wants to construct a signature on a message m by having the signer sign two 
other messages m l  (5  m) and m2 (5  m).  He constructs ml  and m2 as follows. 

- choose an arbi t rary  integer u > 0 and compute  

(2m + 1).  (2u + 1) - 1 
m l  : ~  

2 
- compute integers k and j satisfying the equation 

2 m m l  + 2 k n  § 1 = j . (2m + 1) . 

This can be done by first comput ing 

- 2 m m l  - 1 m l  - 1 
k - 2n --- 2n (mod 2m + 1) 

(if gcd(n, 2m + 1) = 1) and then computing j accordingly. 

- finally compute m2 :-- m m l  + k n .  

The at tacker  then has the signer to issue signatures a l  and a2 on the messages 
m l  and m2, respectively. With  the values u, k, and j he is now able to construct 
a signature on m by computing 

O "  . - -  - -  

This is a valid signature on m since 

o.J.(2mq-1) 
2 

~ u + l  " 

- -  0 " 2 m m l ' k 2 k n §  - -  (7 2 m 2 " b 1  
o - 2 m + l  ___ 

O . ~ 2 u + l ) . ( 2 m + l )  - -  t~l--2ml+1 - -  m l  

m 2  
-- ---- m (mod n) . 

m l  

Note tha t  this a t tack  does not work anymore if messages must have redundancy 
or if the length of messages is limited. 
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2.3 A n  A t t a c k  on  t he  G e n e r a l i z e d  S c h e m e  

We can adapt  the attack to the general scheme with verification equation afl  (m,n) _ 
f2(m, n) (mod n) if f l ,  f2 satisfy certain conditions, e.g. an efficient function f~ 
must exist such that  f2 (S2(m,n) ,n )  = m. Here the attacker constructs ml  and 
m2 as follows. 

- He finds integers u, ml with u r 0 such that  

f l  (ml, n) :=  f l  (m, n)u, 

- computes integers k and j satisfying the equation 

f l  (S2 (f2 (m, n)f2 (ml, n) + kn, n), n) = j .  f l  (m, n) and 

- finally computes ms := ] 2 ( f 2 ( m , n ) f 2 ( m l , n )  + kn, n). 

As before, the attacker then has the signer to issue signatures al and a2 on 
the messages ml and ms, respectively. Hence a signature on m can be calculated 

by a := ~ This is a valid signature on m since a~" 

aS1 ( m , n )  - -  - -  

a~ "$'(m,n) -- a(~(m~,n) -- f 2 ( m l , n )  

_ f2(m2, n) _ f2(m, n) (mod n). 
- f2(ml ,  n) -- 

3 A t t a c k i n g  B o y d ' s  S c h e m e  

In this section we will focus on a signature scheme which was recently suggested 
by Boyd [4]. 

3.1 R e v i e w  o f  B o y d ' s  S c h e m e  

Boyd's scheme works a follows: 

- Key generation: Each user chooses two large primes p and q such that  both 
p - 1 and q - 1 have a large prime factor and then computes n := pq. He 
further chooses a prime r ~ 216~ with rl( p - 1) and a generator g of order 
r in 2~*. He keeps p, q,and r secret and publishes g and n. Moreover, a 
collision resistant hash function h is chosen. 
Remark: It was pointed out by Meijer [4] that  n can be factored if r X(q-  1), 
as g (mod q) = 1 and thus gcd(g - 1,n) = q. Moreover, it was shown by 
Mao [16] that  n - 1 is a multiple of r if r divides both p - 1 and q - 1 and 
therefore computing RSA-roots in the subgroup of order r is easy. We assume 
in the following that r is chosen such that  given the public parameters it is 
infeasible to compute a multiple of r. Hence r must be composite and of 
suitable size. 
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- Signature  generation:  To sign a message m (with h ( m )  # 0 (mod r))) the 
signer computes  d :-- h ( m )  -1 (mod r) and s := gd (mod n). Then s is a 
signature on the message m. 

- Signature verif ication: A signature s on rn can be verified by checking 
whether s h(m) = g (mod n) holds. 

It  is suggested to use a 1024-bit modulus n and a hash function h tha t  outputs  
160-bit values. With  these choices of the security the efficiency of the scheme 
compares favorably with the RSA signature scheme or the DSS scheme. 

3.2 Basic Observations 

In the above scheme, signatures are just different roots of g, where the message 
determines which root it is. Our adaptive a t tack  will make use of the following 
simple facts: 

1. If  s is an (a �9 b)-th root of g, i.e. s ab - g (rood n), then s a (mod n) and 
s b (mod n) are b-th and a-th root of g, respectively (this was already observed 
in [13]). 

2. If  s~ and sb are a- th and b-th roots of g, respectively, and if gcd(a, b) = 1, 
then it is possible to find an (a .  b)-th root of g by first computing integers u 
and v satisfying ua + vb = 1 (using extended Euclid's algorithm) and then 

v u (mod n) as ab a b v o a b u  gbv+au (mod n). computing 8ab : S a 8  b 8ab ~ 8 a o b ~-- ~-- g 

3.3 An Adapt ive  Attack 

The goal of the adapt ive  a t tack is to forge a signature on a message m by having 
the signer issue signatures on some messages m~ ~ m for i = 1 , . . . ,  k chosen by 
the attacker.  The  idea is to choose m such tha t  

h ( m )  = gl �9 g2 " . . . "  gk 

where g l , . . . , g k  are relatively small integers tha t  are pair-wise coprime. Then 
k messages m l , . . . , m k  are chosen such tha t  gi divides h ( m i )  for i --- 1 , . . . ,  k. 
Using the signatures on the messages m l , . . . ,  ma the at tacker  can derive gl-th,  
. . . ,  gk - th  roots of g (fact 1) and then compute the (gl �9 g2 �9 . . .  �9 gk)-th root of g 
(fact 2) which is the signature on m. More precisely, the adaptive a t tack works 
as follows. 

- D e t e r m i n i n g  m :  
In order to forge a signature on a message m ~, the at tacker calculates a 
similar message m (i.e. the semantic content of m and m r is the same) such 

tha t  h ( m )  = 1 rlkli=l gi for pair-wise coprime numbers  gi _< 2 b for 1 < i < k. 
- Finding r n l , . . . ,  m k :  

Let L := {} and i = 1. Repeat  the following step unless i = k + 1: The 
at tacker  picks a random message m i  and computes  h ( m i ) .  If gcd(h (mi ) ,  gi) 
1, he computes  L := L U { m i }  and i := i + 1. 
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- Obtaining signatures: 
Ask the signer for signatures s l , . . . ,  Sk to all messages in L = { m l , . . . ,  mk) 
and combine these signatures using facts 1 and 2 to obtain a signature s on 
h(m). 

We have to estimate the probability that  an arbitrary h(m) consists of pair-wise 
coprime ( b -  1)-bit factors only and to determine c such that  the probability 
that  each of these factors is a factor in one of the hash values h(ml) ,  ..., h(mc) 
for arbitrary messages m l , . . . ,  me is close to 1. 

Smoothness of a Hash Value 

We can t ry  to find a lower bound for the probability tha t  an arbi t rary output  of 
the hash function h can be fully factored into pair-wise coprime factors smaller 
than 25 (provided the hash function h is a truly random function). Let Ih(x)[ = Ib 
for a certain l > 2 and arbi t rary messages x. Some "good cases" can be described 
as follows: 

I--1 1. h(m) = z YIi=l pi, where 0 < z < 2 b-t, the pi's are prime and pairwise 
distinct, 2 b-t < Pi < 25 for 1 < i < l - 1 and 0 < t < b. 

2. h(m) = 1-It,=l pi, where the p{'s are prime and pairwise distinct, 2 b-t < Pi < 
2b for l < i < l. 

3. For 2 < j  < l  1: h(m) t - = l--[i=1 pi, where the pi's are prime and pairwise 
distinct, 0 < Pi < 2 b-t for 1 < i < j and 2 b-t < Pi < 25 for j + 1 < i < I. 

2 b 2 b ( b - t ) 2 b - b 2  b - t  
With ~r(2 b) ~ ~ ~ ~-~ and 5 = 0.7b(b-t) an approximation for the 

number of the above listed good cases r is 

b--t  J 
I--1 2 t - j  2b-tsl-1 5t ~ )  ~ 

r  (l-1)----'---~ + ~ + E - ~ : ~  
j = 2  

For concrete values b, l and t = 3 (to get an optimal result) the following 
lower bounds for the probability Pr(= r  bt) that  an arbi t rary h(m) has only 
pair-wise coprime factors smaller than 25 can be derived. 

b 1 Ih(m)l - log2(Pr)  

20 8 160 42.4 
23 7 161 36.8 
27 6 162 31.1 
32 5 160 25.3 
40 4 160 19.6 

30 8 ] 240 46.5 
i 

40 6 1240 33.9 i 1:k  010   
40 320 49.4 
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Finding Signatures with Suitable Factors 

We would like to find a value c tha t  the probabil i ty tha t  each element of L = 
{gl , . . . ,  gk} is a factor of one element in M = { h ( m l ) , . . . ,  h(mc)} is close to 1, 
i.e. find c and 

p := Pr(3( j l , . . . , jh):  Vi: gdh(mj,)l[1 < i < k, 1 <_ ji <_ c) 

such tha t  p ~ 1. We define 

p~ := Pr(3(j l , . . .  ,Jk) : Vi: g~lh(rnj,)ll 

1 < i  < k ,  1 ~_ji ~_C, ja ~ j v , 1  <_a<v<_ k) 

and obviously p _> pt. For a given gj E L 

Pr(Si: gj[h(mi)[[1 < i < c) > 1 - (1 - 2-b) c 

holds. Let us focus on the following experiment:  

- M I = M .  
- For i = 2 , . . . ,  k: Mi = Mi-1 - {d}, where d E Mi-1 and gi-1 [d ifgi-1 divides 

at least one element in Mi-1. Otherwise d is uniformly chosen in Mi-1.  
- For i - 1 , . . . ,  k: The event Xi is tha t  gi divides at least one element in Mi. 

The probabili ty tha t  all X1,..., Xk hold is a lower bound for p~. Let us show that  
Pr(X1, . . . ,Xk)  > Pr(X1). . .Pr(Xk) holds. We try to find a lower bound for 
the probabili ty Pr(X2[X1). Assume tha t  gl does not divide any element in M1. 
Hence the probabil i ty that  g2 divides at least one of the remaining c -  1 elements 
is higher than if these elements were chosen at random. Assume tha t  gl divides 
at least one element in M1. The  probabil i ty that  gl divides at least one element 
in 11/12 is slightly smaller than  if these elements were chosen at random. Hence 
the probabili ty that  g2 divides at least one element in 11//2 is slightly higher than  
if these elements were chosen at  random. Hence Pr(X2[X1) > Pr(X2) and in a 
similar way Pr(Xj[X1,. . . ,  Xj-1) > Pr(Xj) for j -- 3 , . . . ,  k can be shown. As a 
result we have 

k k 
pl > H 1 -  (1 - 2 - b ) c + l - i  > 1 - Z ( 1 -  2-b)C+l-i= 

i----1 i----1 

k ( 2b ~z (22--~bl) kq-1 _ (22-~bl) 
1 - ( 1 - 2 - 5 )  c + 1 ~ \ 2 5 _ 1 ]  = 1 - ( 1 - 2 - 5 )  c+1 2b 

i=1 ~ - 1 

1 -  ( 1 -  2-b) c+l f 2b(k+l) 2 b) = 1 - 2b(1 - 2-b) c+l ((1 - 2-b) -k 1) 

We get the following values for c such tha t  p > p~ > 0.99 using the above 
derived lower bound for p' .  Note tha t  ! < k < bl. 
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b k log 2 c 

20 8 23 
! 20 16 23 

27 6 30 
27 12 30 
32 5 35 
32 I0 35 
40 4 43 
40 8 43 

As a result we can conclude that  the choice of Ih (m) l  = 160 cannot be 
considered as secure. 

Prac t i ca l  R e s u l t s  

As was already mentioned in the introduction, we have found a concrete adaptive 
attack for a scheme using the RIPEMD-160 hash-function [10]. RIPEMD outputs  
160 bit strings which were directly interpreted as integers (where the leftmost 
bit is interpreted as the most significant bit). The  attack was implemented in 
C using the LIP long integer package [15] and executed on a SUN Enterprise 
Server. First, we tried to find a "target" message m of the form 

"Check #xxxxxxxxxxxxxx:  value $1'000'000.00" 

where "xxxxxxxxxxxxxx" is a 14-digit decimal integer that  served as a counter. 
Since factoring the resulting hash-value is quite time consuming, only those 
hash-values were factored whose most significant 20 bits were all zero and which 
therefore are more likely to contain only short factors. Factoring was done in two 
steps, first trial division with all prime factors smaller than 22~ and then Pollard's 
rho method [18] with 215 steps in the main loop (using LIP's  z p o l l a r d r h o  
function [15]) to find the remaining (small) prime factors. On a SUN Enterprise 
Server this program did run for approximately one day to find the following 
result. 

RIPEMD160("Check #00002228615476:value $1'000'000.00") = 

= 591958810961311141109102519582266871126124 

= 2 3 0 5 8 9 . 5 8 1 0 0 3 . 5 7 4 3 1 2 4 . 3 0 9 8 9 9 3 9 . 4 4 3 0 7 2 3 9 . 5 6 0 3 1 3 2 9 3 .  

Note that  the six factors are pair-wise coprime but not necessarily prime. In the 
next step we were searching six messages of the form 

"Check #xxxxxxxxxxxxxx:  value $1.00" 
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whose RIPEMD-160 hash value is divisible by the six factors of the target  mes- 
sage. Using simple trial division, this took us less than a day on the SUN En- 
terprise Server. The six messages are: 

RIPEMD16o ("Check #00000000167658: value $1.00") = 

= 230589. 3142167595787040010194856861101477257344816 

RIPEMD16o ("Check #00000000347533: value $1.0ff') = 

= 581003-492810602885113654853688380970299229084257 

RIPEMD16o ("Check #00000003719673: value $1.00") = 

= 5743124. 93987921877576599808444485864739254202422 

RIPEMDz6o("Check #00000007303360: value $1.00") = 

= 44307239. 28587659353264827273984278108092714061121 

RIPEMD16o ("Check #00000014393409: value $1.0ff') = 

= 30989939. 21093763551230032693705837318819942077090 

RIPEMD16o("Check #00002271656103: value $1.00") = 

= 560313293. 2314618093965960393631745332253120816552 

3.4  A D i r e c t e d  A t t a c k  

We can slightly modify the adaptive attack in order to get an attack for the 
weaker model of a directed attack. Here the attacker is just allowed to get sig- 
natures on all messages in a set A chosen by himself once. The aim of the attack 
is to find a signature to messages which are not in A. 

- The attacker chooses a basis B that contains the maximal prime powers 
that are smaller than a certain number, say 2 5. We denote B -- {gz,'" ", gk}, 
whereg~ =pe~, ei E ~>o,piisprimeandp e" _< 2 b _<Pe'+li foralli -- l,...,k 

and the pi's are pairwise distinct. Let D -- B ~ = {}. 

- The attacker repeats the following step until B = Bt: He picks a new random 
d, computes h(d) and finds all factors of h(d) that are in B. Thus h(d) = 

k w z �9 rI~=1 g~ ~, where z has no factors that are in B and w~ E {0, i}. If there 
is a prime power factor g~ in h(d) with gi ~ B', the attacker adds (d, gi) to 
the set D and g~ to the set B ~. 

- The attacker asks the signer to sign the message d for all pairs (d, gi) in D. 
Using fact 1 mentioned in subsection 3.2 he can get parameters si to each 
gi such that s~ ~ -- g (mod n) for all i = I,..., k. 

- In order to forge a signature on a message m t, the attacker calculates a 

similar message m (where the semantic content of m and m' is the same) 

such that  h ( m )  = [ Ik=z(p{ ' )  w' where f~ 6 ~ > o ,  0 < f i  <_ ei and wi 6 {0, 1} 
for all i = 1 , . . . ,  k. 
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- Then using the known signatures to all elements in B and by applying the 
facts 1 and 2 mentioned in subsection 3.2, the attacker can compute s such 
that  8 h(m) : g (mod n). 

Analysis 

We can apply the analysis of the adaptive attack. The probability that  an 
arbitrary hash value h(m) has only pair-wise coprime prime power factors smaller 
than 2 b with given b is the same as calculated above. We can also modify the 

2 b 1 . 4 2 . 2  b analysis of finding signatures with suitable factors. As k ~ ~ ~ - -V- -  now, we 
get the following values for the number of hash values c such that  p > p~ > 0.99 
using the lower bound for pt. 

b log 2 c 

20 24 
27 32 
32 37 
40 45 

Hence we can conclude again that  the choice of lh(m)l = 160 is to small to 
make this attack infeasible. It should be noted that  the number of signatures 

1 . 4 2 . 2  b needed for this attack is at most the size of the basis k ~ 5 

3.5 K n o w n - S i g n a t u r e  Attack 

In an even weaker attack model, the known-signature attack, the attacker may 
only collect signature-message pairs from its victim. The attack described above 
can be modified to work in this model as well with overwhelming probability, if 
the attacker collects about c (~  25+5 according to the table above) signature- 
message pairs provided they are uniformly chosen. However, the computational 
effort compared to the directed at tack increases. 

4 R e m a r k s  o n  a N a i v e  I m p l e m e n t a t i o n  o f  t h e  R S A  B l i n d  
S i g n a t u r e  S c h e m e  

Let us finally by point out, how the attack described in the last section can 
be adapted to a naive implementation of the RSA blind signature scheme [6]. 
We assume that  this attack is generally known, but to the best of the authors 
knowledge there is no description of it in the literature. 
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Let the verification equation of the RSA implementat ion be given by 

a e - h ( m )  (rood n), 

where n is the modulus, e is the public exponent,  a is the signature, h is a 
hash function tha t  outputs  at most b-bit values and b is relatively small, say 
b -- 160. Then a similar a t tack as described in the section 3.4 works as follows: 
The at tacker  chooses a basis B that  contains the all primes tha t  are smaller than 
a certain number,  say 2 b. We denote B = { P l , " "  ,Pk}.  Then he asks the signer to 
sign all p l , . . . ,  Pk using the blind signature scheme (note tha t  the signer cannot 
learn the unblinded messages and hence cannot check tha t  these messages are 
not hash values) and gets the signatures a l , . . . ,  ak. Now the at tacker can forge 
signatures on messages h(m)  that  can be totally factored over B, i.e. h(m)  = 
yi k w, ~=1 Pi for integers w, > 0, 1 < i < k. He can easily compute the signature a 

k w, (mod n). on m by a := 1-Ii=l a, 
The a t tack  can be easily prevented by using an increased value b or by suitable 

padding, e.g. m '  := al]] . . . ] ta t  with al := m and a, := h (a l l l . . . ] ]a i_ l )  for 
1 < i _< t and ]m'] = In] instead of h ( m ) .  This method of padding is used 
in the RSA based ecash T M  system [21], possibly to countermeasure the above 
mentioned a t tack as well. 
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