
Concurrent Zero-Knowledge:
Reducing the Need for Timing Constraints

Cynthia Dwork 1 and Amit Sahai 2

I IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120.. E-Marl:
dworkQalmaden, ibm. c o m .

2 MIT Laboratory for Computer Sdence, 545 Teclmology Square, Cmnbridge, MA
02139, USA.. E-Mail: amitsQtheory, los .mit . edu***

Abs t r ac t . An interactive proof system (or argument) (i v, V) is concur.
rent zero.knowledgeif whenever the prover engages in polynomially many
concurrent executions of (P, V), with (possibly distinct) colluding poly-
nomial time bounded verifiers ~ , . . . , ~ v (, 0 , the entire undertaking is
zero-knowledge. Dwork, Naor, and S~,ai recently showed the existence
of a large class of concurrent zero-knowledge arguments, including ar-
guments for all of NP, under a reasonable assumption on the behavior
of clocks of nor.faulty processors. In this paper, we continue the study
of concurrent zero-knowledge arguments. After observing that, without
recourse to timing, the existence of a trusted center considerably simpli-
fies the design and proof of many concurrent zero-knowledge arguments
(again including arguments for all of NP), we design a preprocessing pro-
tocol, making use of timing, to simulate the trusted center for the pur-
poses of achieving concurrent zero-knowledge. Once a particular prover
and verifier have executed the preprocessing protocol, any polynomial
number of subsequent executions of a rich class of protocols will be con-
current zero-knowledge.

1 I n t r o d u c t i o n

In order to be useful in the real world, cryptographic primitives and protocols
must remain secure even when executed concurrently with other arbitrari ly cho-
sen protocols, run by arbitrari ly chosen parties, whose identities, goals, or even
existence may not be known. Indeed, this setting, characterized in [13] as a
distributed computin9 a99regate, describes the Internet. Electronic interactions
over an aggregate, such as economic transactions, transmission of medical data,
da ta storage, and telecommuting, pose security risks inadequately addressed in
computer science research. In particular, the issue of the security of concurrent
executions is often 1 ignored.

*** Most of this work pers while at the IBM Almaden Research Center. Also
supported by a DOD NDSEG doctoral fellowship, and DARPA grant DABT-96-C-
0018.

1 but not always, e.g. [1] in a different setting

443

A zero-knowledge protocol is supposed to ensure that no information is leaked
during its execution. However, when zero knowledge interactions are executed
concurrently both parties can be at risk. Consider the case of zero knowledge
proofs: the verifier faces the possibility that the prover with which it is interacting
is actually using some concurrently running second interaction as an "oracle" to
help answer the verifier's queries - this is the classical chess master's problem.
In the case of a proof of knowledge, the interaction may not actually yield a
proof. This is an issue of potential malleability of the interactive proof system,
and is addressed in [131 . In contrast, the prover faces the risk that concurrent
executions of a protocol with many verifiers may leak information and may not
be zero-knowledge in ~oto. In this case the interaction remains a proof but may
fail to remain zero knowledge. This issue was first addressed in [16]. To overcome
this difficulty, [16] introduce the notion of an (c~, ~) constraint for some ~ ~_ 8:

For any two (possibly the same) non-faulty processors P1 and P2, if P1
measures ~ elapsed time on its local clock and P2 measures ~ elapsed
time on its local clock, and P2 begins its measurement in real time no
sooner than P1 begins, then P~ will finish after P1 does.

As [16] points out, an (~, ~) constraint is implicit in most reasonable assump-
tions on the behavior of clocks in a distributed system (e.g., the linear drift
assumption). According to the (standard) view that process clocks are under
the control of an adversarial scheduler, the (~, 8) constraint limits the choices
of the adversary to schedules that satisfy the constraints.

Under an (~, 8) constraint, [161 shows that there exist constant round con-
current zero-knowledge protocols of various kinds, for example, arguments for
any language in _NP 2. In the protocols of [161, processors make explicit use of
their local clocks in order to achieve concurrent zero-knowledge. The protocols
require that certain timing constraints be met, which limit the kinds of protocol
interleavings that can occur.
Our Con t r ibu t ion . In this work, we reduce the need for timing in achieving
concurrent zero-knowledge. Specifically, for a rich class of interactive protocols,
we are able push all use of timing into a constant round preprocessing phase;
furthermore, the real time at which the preprocessing phase between a prover P
and verifier V1 occurs need not have any relation to the real time when P and
a different verifier ~ execute the preprocessing. After this preprocessing phase,
the prover and the verifier can execute any polynomial number of a rich class of
protocols without any further timing constraints, and the whole interaction will
be concurrent zero-knowledge. We require the existence of a semantically secure
public-key encryption scheme.

By limiting the use of timing to a single initial phase for each (P, V) pair, our
methods can reduce the real execution time of protocols. This is because once
preprocessing completes the parties never deliberately introduce timing delays
in executing steps of future protocols. In contrast, in the protocols of [16] such
deliberate delays play a critical role. For many applications, where two parties

2 under verious standard computational assumptions

444

will be executing many zero-knowledge protocols, such as authentication with a
system, these repeated delays may be expensive. Moreover, as we will see, our
approach frequently yields simpler protocols that are easier to prove concurrent
zero-knowledge.

Colluding Verifiers interacting with the Prover
vl v2 . . . g .

Step 1
Step 2

Step 1
Step 2

Step 3
Step 4

Step 3
Step 4

Step 1
Step 2
Step 3
Step 4

Diawam 1. A troublesome interleaving for concurrent zero-knowledge.

Interleavings of Protocols . The difficulty in achieving concurrent zero-knowledge
is due to the existence of certain "bad" interleavings of concurrently executing
protocols. The bad interleavings revolve around the difficulty of simulating a
transcript of multiple concurrent interactions (recall that the ability to simulate
an interaction is the core of the definition of zero-knowledge). Consider the stan-
dard (computational) zero-knowledge protocol for 3-colorability s [22], which can
be based on any information-theoretic commitment scheme.

Gener ic Ze ro -Knowledge A r g u m e n t for 3-Colorabi l i ty .
1) V) P : Information-theoretic commitment to queries.
2) P) V : Commitment to graphs and colorings.
3) V) P : Open queries.
4) P) V : Open queried graphs or colorings, which V then checks are valid.

The standard simulator, having access only to V, produces transcripts of this
protocol as follows. First, it receives V's commitment in Step 1. Then, supplying
g initially with "garbage" in Step 2, the simulator discovers the queries g com-
mitted to through g ' s Step 3 response. The simulator uses this knowledge to
construct graphs and colorings which would fool these particular queries. Then

8 This is the "'parailelized" version that has negligible error while remaining zero-
knowledge.

445

the simulator "rewinds" the interaction to just after Step 1, and supplies V with
a commitment to these new graphs and colorings in Step 2. Since V is already
committed by Step 1, its Step 3 response cannot change. Thus, the simulator
can open the graphs and colorings according to the queries, and V will accept.

This simulator fails in the context of concurrent interactions because of the
rewinding. Consider the following interleaving of n colluding verifiers following
the generic four-round protocol described above.

An adversary controlling the verifiers can arrange that the Step 1 commit-
ments to queries made by verifiers ~ + 1 , . . . , V,~ can depend on messages sent by
the prover in Step 2 of its interaction with V~. It is a weU-known open problem
how to simulate transcripts with this interleaving in polynomial time; the dif~-
culty with the straightforward approach is that once the queries in the interaction
with ~ are opened (in Step 3), it becomes necessary to re-simulate Step 2 of the
interaction with ~ , and therefore the entire simulation of the interaction with
verifiers ~ + 1 , . . . , V,~ must be re-simulated. The most deeply nested transaction,
with V,~, is simulated roughly 2 '~ times.

R e m a r k on C o m m i t m e n t Schemes The literature discusses two types of bit
or string commitment: computational and information-theoretic. In computa-
tional string commitment there is only one possible way of opening the commit-
ment. Such a scheme is designed to be secure against a probabilistic polynomial
time receiver and an arbitrarily powerful sender. In information theoretic com-
mitment it is possible to open the commitment in two ways, but the assumed
computational boundedness of the sender prevents him from finding a second
way. Such a scheme is designed to be secure against an arbitrarily powerful re-
ceiver and a probabilistic polynomial time prover. See [13] for a formal definition
of computational commitment.

The commitments in Step i of the generic zero-knowledge argument must be
information-theoretic, meaning that information theoretically nothing is leaked
about the committed values. This is for soundness, rather than for zero-knowledge.
Our techniques require that the verifier only use computational commitments
(for example, as in the 6-round zero-knowledgeargument for NP of Feige and
Shamir [19], which we modify for technical reasons).

Th e T r u s t e d C e n t e r Model . Consider a model in which a trusted center gives
out signed public key, private key pairs (E, D) of some public key cryptosystem
to every user over a secure private channel. As we now explain, in this model
arguments such as the one given in [19] can be simulated without retvinding,
provided that the commitments by V are performed using the public key E given
to it by the trusted center. This is significant because, if there is no rewinding,
then interleavings such as the one described above are not problematic.

The simulator for V simulates its interaction with the trusted center as well
as with P. So, the simulator knows the private key D corresponding to the pub-
lic key E used in V's commitments. Hence, the simulator never has to rewind
to learn a committed value. We call such simulations, in which rewinding is

446

avoided, straight-line 4. In the case of straight-line zero-knowledge protocols, it is
clear that concurrent interactions pose no threat to simulability, since the simu-
lator can simulate each interaction independently in a straight-line fashion. This
trusted center model is extremely powerful, and a great many standard proto-
cols become straight-line zero-knowledge, and hence concurrent zero-knowledge,
in the trusted center model with only minor modifications. For example, aside
from arguments for NP, we also exhibit natural protocols for deniable message
authentication and coin flipping.

Although straight-line zero-knowledge implies concurrent zero-knowledge with-
out any timing constraints in the trusted center model, the notion of a trusted
center that knows everyone's private keys and communicates over secure chan-
nels is undesirable or infeasible in many contexts. The preprocessing protocol of
Section 4 uses timing to permit P and V to agree on a key Ev for V to use
for commitments in their future interactions. Intuitively, the interaction ensures
(with overwhelming probability) that V (perhaps with the collusion of other veri-
fiers, but with absolutely no help from P), "knows" the corresponding decryption
key Dr. Formally, the preprocessing protocol will ensure that subsequent inter-
actions between P and V that would have been straight-line zero-knowledge in
the trusted center model, are actually straight-line zero-knowledge in the con-
ventional model.

2 M o d e l a n d Definitions

Timing . We assume that all parties in any interaction have access to local clocks.
Furthermore, as proposed in [16], we assume that there are known constants
and/3 >_ a, for which the following (a,13) constraint holds:

For any two (possibly the same) non-faulty processors P1 and P2, if P1
measures a elapsed time on its local clock and P2 measures/3 elapsed
time on its local clock, vand P2 begins its measurement in real time no
sooner than P1 begins, then P2 will finish after Pm does.

Zero-Knowledge and Concur ren t Zero-Knowledge. In the original "black
box" forumulation of zero-knowledge proof systems [24], an interactive proof
system (P, V) for a language L is computational (or perfect) zero-lmowledge if
there exists a probabilistic, expected polynomial time oracle machine S, called
the simulator, such that for every probabilistic polynomial time verifier strategy
V*, the distributions (P, V*)(z) and S v" (z) are computationally indistinguish-
able (or identical) whenever z E L. Here, formally, the machine V* is assumed
to take as input a partial conversation transcript, along with a random tape,
and output the verifier's next response. This deflntion also holds in the case of
arguments [7], or computationally-sound proofs, where the prover and verifier
are both probabilistic polynomial time machines.

4 Note that without a trusted center or some other extra source of power, straight-
line zero-knowledge is not an interesting concept, since any language that premits a
straight-line zero-knowledge proof in the conventional sense must be in BPP - the
simulator could act as the prover.

447

Following [16], to investigate preservation of zero-knowledge in a distributed
setting, we consider a probabilistic polynomial time adversary that controls many
verifiers simultaneously. Here, we consider an adversary A that takes as input
a partial conversation transcript of a prover interacting with several verifiers
concurrently, where the transcript includes the local times on the prover's clock
when each message was sent or received by the prover. The output of A will either
be a tuple (lreceive, V, ~, t), indicating that P receives message a from V at time
t on P's local dock, or (1send, V, t), indicating that P must send a message to
V at time t on P's local clock. The adversary must output a local time for P
that is greater than all the times given in the transcript that was input to A
(the adversary cannot rewind P), and standard well-formedness conditions must
apply. If these conditions are not met, this corresponds to a non-real situation, so
such transcripts are simply discarded. Note that we assume that if the adversary
specifies a response time t for the prover that violates a timing constraint of the
protocol with V, the prover should answer with a special null response which
invalidates the remainder of the conversation with verifier V. The distribution of
transcripts generated by an adversary A interacting with a prover P on common
input z is denoted (P ++ A)(z).

We say an argument or proof system (P, V) for a language L is computational
(or perfect) concurrent zero.knowledge if there exists a probabilistic, expected
polynomial time oracle machine S such that for every probabilistic polynomial
time adversary A, the distributions (P ~-~ A)(z) and S•(z) are computationally
indistinguishable (or identical) whenever z E L.

Note that since we assume that the prover acts honestly and follows the
protocol, it does not matter if there is a single entity that is acting as the prover
for all verifiers, or if there are many entities that are acting as provers for subsets
of the verifiers, since the actions of the provers would be the same, and in our
model, the timing of events is controlled by the adversary.

NIZK. Some of our protocols make use of non-interactive zero-knowledge (NIZK)
proof constructions [5,20,2,4] for languages in NP. Note, however, that al-
though typically one considers NIZK in a model where all parties share a public
random string, we do not make any such assumptions in any model we consider.
In a NIZK proof, the prover P and verifier V have a common input z and also
share a random string ~, called the reference string, of length polynomial in the
length of z. The prover wishes to convince the verifier of the membership of z
in some fixed N P language L. To this end, the prover is allowed to send the
verifier a single message rn = P(x, ~), computed (probabilistically) as a function
of z, ~. The probabilistic polynomial time verifier must decide whether or not to
accept as a function of z, ~, and m. Such an interaction (P, V) is an NIZK proof
system for L if: (1) If z e L, for all ~, (P, V)(z, or) accepts. (2) If z ~ L, for all
P*, the probability over ~ and the random coins of P and V that (P*, V)(z, ~)
accepts is negligible. (3) There exists a probabilistic polynomial time simulator
S such that, if z E L, then the distributions S(z) and (~, P(z, a)), where in the
latter distribution ~ is chosen uniformly, are computationally indistinguishable.
We further ask that the prover be probabilistic polynomial time, but also allow

448

that in the case when z E L, the prover is given a witness w for the mem-
bership of z E L. We require, however, that the distribution (a, P(z, a, w)) be
computationally indistinguishable from S(z) no matter how the witness w is
chosen.

[20,2] show that such NIZK proof systems with effcient provers exist for
every language in N P assuming trapdoor permutations exist. Note that the
definition above gives "bounded" NIZK proof systems, i.e., a given reference
string ~ can be used to prove only one N P statement. We also require unbounded
NIZK proof systems, in which any polynomial number of N P statements can
be proven in zero-knowledge using the same reference string ~. [12, 20] have
shown that the existence of a bounded NIZK proof system for an NP-complete
language s with an efficient prover implies the existence of unbounded NIZK
proof systems with efficient provers for any language in N P . A precise definition
of unbounded NIZK can be found in [2, 4, 20].

Note that NIZK proofs are truly non-interactive only if the prover and the
verifier already agree on a random string or, which we do not assume. Further-
more, if the distribution of ~ is far from uniform, then the zero-knowledge con-
dition fails to hold. This issue motivates our concurrently sirnulable random
selection protocol, described below.
Assumpt ions . We require a probabilistic public key cryptosystem that is se-
mantically secure [23]. The encryptions must be uniquely decodable (so the
scheme must be undeniable [9]). We will use the public key cryptosystem for
computationally secure string commitment as follows: V uses an encryption key
E to commit to a string s by simply sending an encryption e of s using a random
string r. To open s, V sends s, r; the receiver checks that e = E(s, r).

3 S t r a i g h t - L i n e Z e r o - K n o w l e d g e in
T h e T r u s t e d C e n t e r M o d e l

In order to define the class of protocols for which our construction applies, we
consider a trusted center model, in which the trusted center communicates to
each participant a public key, private key pair (E, D) for a public key cryptosys-
tern, over a secure private channel. More formally, we assume the existence of a
trusted center with which any party can interact using a secure private channel.
In our model, before any protocol (P, V) begins, first V receives a public key and
private key pair (E, D) from the trusted center over a secure channel, whereas
P receives only E from the trusted center. Then the interaction takes place as
in the normal model. Also in our trusted center model, we modify the definition
of zero-knowledge to require the simulator to also simulate the interaction with
the trusted center, which in particular means that the simulator produces the
public key E and private key D given to any verifier.

We use the trusted center model only for definitional purposes; our protocols
do not assume a trusted center. In particular, we will define the class of protocols
that are straight-line zero-knowledge in the trusted center model and argue that
any protocol in this class is concurrent zero-knowledge. We will show that this

449

class is rich, and, in the next section, show how to use timing to replace the role
of the trusted center by means of a preprocessing phase.

As noted above, the trusted center model is extremely powerful; in particular,
in this model Rackoff and Simon were able to define and construct noninteractive
zero-knowledge proofs of knowledge [27]. These noninteractive proofs could then
be used to prove "plaintext awareness" of encrypted messages (intuitively, that
the sender "knows" what he is sending), resulting in a cryptosystem secure
against the most general chosen ciphertext attacks (called chosen ciphertezt in
~he post-processing mode in [13]; the construction of the cryptosystem in [27]
also requires the trusted center to establish a digital signature scheme). This is
equivalent to non-malleable security against a post-processing chosen ciphertext
attack [13].

The trusted center model also proves useful in the context of concurrent
zero-knowledge. In particular, if the protocol requires that commitments be made
using the key E chosen by the trusted center, then the construction of concurrent
zero-knowledge protocols becomes a simpler task: the simulator simulates each
party's interaction with the trusted center, and hence knows the secret key D
for each public key E later used in the protocol.

We will prove concurrent zero-knowledge in the trusted center model by es-
tablishing an even stronger property, straight-line zero-lmowledge. Intuitively, a
protocol is straight-line zero-knowledge if there exists a simulator that does no
"re-winding" in order to produce its transcript. Formally, a zero-knowledge in-
teractive protocol (P, V) is straight-line zero-~owledge if the simulator S for
the protocol is of a special form. Recall S is in general an expected polynomial
time machine that uses a verifier strategy V* as an oracle, giving it partial
transcripts and obtaining the verifier's next message as its response. Define
O(S v ' (z ; r)) - (ql,q~.,..., qm) to be the ordered sequence of oracle queries
(partial transcripts) given by S to V*, on input z and using random bits r. We
require for every V*, z, and r, letting O(Sv'(z; r)) - (ql, q2,-. . , q,~), that the
transcript q~ is a prefix of q~+l for 1 < i < m - 1. Such a simulator S is called a
s~raight-line simulator.

It is immediate that a straight-line zero-knowledge protocol is also concur-
rent zero-knowledge, since interaction with many verifiers simultaneously can
be simulated by simply simulating the interaction with each verifier separately
using the straight-line simulator.

Note that, in the conventional framework for zero-knowledge proofs, straight-
line zero-knowledge proofs can only exist for languages in BPP, since the poly-
nomial time simulator can act as the prover. In the trusted center model, this
need not concern us, since the real prover cannot impersonate the trusted center,
whereas the simulator can.

3.1 Examples

The class of protocols with straight-line simulators in the trusted center model
is rich.
Gener i c NP. The generic argument for membership in an NP language, de-
scribed in Section 1 requires information-theoretic commitments on the part of

450

the verifier, and therefore does not fit our model. The 6-round protocol of Feige
and Shamir [19], which can be based on any one-way function, can be modified
to be straight-line zero-knowledge in the trusted center model provided that the
verifier's commitments are made using the key received from the trusted center.
The modification involves using an information-theoretic commitment scheme
for an additional initial commitment by the prover (details are omitted for lack
of space). Thus, there is a constant round straight-line zero-knowledge argument
in the trusted center model for every language in NP based only on the existence
of semantically secure public-key encryption and information-theoretic commit-
ment schemes. However, there is a simpler, four round scheme, based on the
existence of trapdoor permutations, which we present below.
R a n d o m St r ing Selection. We next describe a random string selection (coin-
flipping) protocol, by which two parties P and V can select a random string
which will be random as long as one of the parties is honest. The random selec-
tion protocol has the following extremely useful property: in the trusted center
model, the simulator can force any desired string as the outcome of the protocol;
moreover, the distribution of simulated transcripts is identical to the distribu-
tion on actual transcripts, conditioned on any given output. In the sequel, let E
denote the public key assigned to the verifier by the trusted center. The natural
cryptographic protocol for random selection of strings of length k, due to [3],
can be made straight-line simulable as followsS:

1) V ~ P : E (r v) : r v e R { 0 , 1 } k
2) P ~ V : rp : rp eR {0,1} k
3) V) P : Reveal coins used to generate E(rv).
The output of the protocol is rv @ rp.

Since E(rv) is a computationally secret commitment to any party that does
not know D, it is clear that this protocol achieves the desired random selection
properties. Here, the simulator, on input ~ E ~0, 1} k, (after having simulated
the trusted center, i.e., having supplied V with a public key, private key pair
(E,D)), receives the verifier's Step 1 message. Using D, it recovers rv. The
simulator then supplies V* with the Step 2 message x @ rv. In Step 3, V* must
decommit to rv, and so the output of the protocol is x. If the input ~ is chosen
uniformly at random, then the simulator's Step 2 message, x @ rv will also be
uniformly random. Hence, the simulator's distribution will actually be identical
to the distribution of actual transcripts.
A l t e rna t ive NP. We can use the random string selection protocol to give a 4-
round alternative to the straight-line zero-knowledge argument system for N P
that is also straight-line zero-knowledge in the trusted center model, if we make
the stronger assumption that trapdoor permutations exist. By [20, 2], assuming
trapdoor permutations exist, there are efficient prover NIZK proofs for N P .
Recall that NIZK proofs require a random string to be shared by the parties P
and V. We will use the random selection protocol above to select this shared

5 It is interesting that if the roles of P and 1/" are reversed, P's new role in the protocol
is no longer known to be simulable.

451

randomness. The following protocol is therefore an argument proving z E L for
any language L E N P :

1) V ~ P : E(rv) : rv Ea {0, 1}P ~

2) P ") V : rp : 7'p 6R {0, i} p~
3) V) P : Reveal coins used to generate E(rv) .
4) P) V : NIZK proof that z E L using reference string ~ = r v ~9 r p .

Note that Step 4 can later be repeated any (polynomial) number of times to
prove different statements in N P once the reference string has been established
(using an unbounded NIZK proof system such as the one given in [20]).

A straight-line simulator proceeds as follows. First, it calls the simulator
SNZZK (z) of the NIZK proof system, which produces a reference string ~ and an
NIZK proof p. The straight-line simulator given above for the random selection
protocol is then invoked to produce a transcript for Steps 1-3 that force rv (9
rp = ~. The simulator then outputs p as the prover's Step 4 message, and
terminates the simulation. Since the distribution SN~ZK(Z) is computationally
indistinguishable from the distribution (~, p) where ~ is truly random, and p
is generated by the NIZK prover's algorithm, we have that the distribution of
our straight-line simulator will be computationally indistinguishable from the
distribution of actual conversation transcripts of this protocol.
D e n i a b l e M e s s a ge A u t h e n t i c a t i o n . NIZK proofs can also be useful for con-
structing straight-line zero-knowledge protocols for other applications. Consider
the problem of deniable message authentication [13,15, 16]. Here, the prover
wishes to authenticate a message m to the verifier, in such a way that no other
party can verify the authentication. In particular, we require that verifiers can-
not prove to anyone else that the prover authenticated rn. It suffices that the
protocol be concurrent zero-knowledge, since if the verifiers could generate the
transcript of their conversations with the prover on their own, then certainly
it will not be possible to prove that the prover authenticated rn to any other
party. We exhibit a very natural protocol for this task, with a slight modifica-
tion to make it straight-line zero-knowledge. For this protocol, we will require a
non-malleable public key encryption scheme. Note that the encryption scheme
must be non-malleable in the conventional model, not just in the trusted center
model! Let the prover's public non-malleable encryption key be Ep, for which it
alone knows the private key.

i) V) P : E(rv), where rv 62 {0, i} p~
9.) p) V : rp , where rv 6 a {0, 1} p~
3) V > P : Reveal coins used to generate E(rv) . Choose r 6 a {0, 1} k.

Send Ep(ra o r), y = E(r) , and an NIZK proof that
the two encryptions sent are consistent with some r E {0, 1} k
using reference string ~ = rv ~ rp.

4) P > V : r

Note that the first two steps can be omitted if there is some other source of
a random string to use as the reference string for the NIZK proof. Such a string

452

could, for example, be found as part of the public key for the prover's encryption
scheme, as it is in the construction of [13]. The straight-line simulator simulates
the first 2 steps trivially. In Step 3, after checking the NIZK, the simulator uses
D to decrypt y, yielding rs. Note that if the NIZK proof was accepted, then the
decryption will correctly give rs = r with all but negligible probability. Hence,
the simulator simply outputs rs as the prover's final message, and terminates.
The simulator will thus fail with no more than a negligible probability.

These examples illustrate not only that the class of straight-line zero-knowledge
protocols in the trusted center model is rich, but also that it is not difficult to
construct proofs that fit this definition. In the next section, we show how to
eliminate the trusted center for the purpose of concurrent zero-knowledge using
a preprocessing protocol based on timing constraints.

4 The Preprocessing Protocol

In this section, we show how to how to achieve concurrent zero-knowledge with-
out the trusted center for all protocols that are straight-line zero-knowledge in
the trusted center model. This is accomplished by replacing the trusted center
with a preprocessing protocol that employs timing constraints. This eliminates
the trusted center for the purpose of maintaining concurrent zero-knowledge.

Let G be the generator for a public-key cryptosystem which requires t(n)
random bits. We will write G(1 '~, ~) - (E, D) to mean that G, when given secu-
rity parameter n and random bits ~ E {0, 1} z('0, produces the public encryption
algorithm E and private decryption algorithm D. Let C be a secure commitment
scheme, such as the elegant scheme of [26]. The protocol uses the Basic Commit
with Knowledge protocol (BCK) of [13].

1. V
2. P
3. V
4. V(

P r e p r o c e s s i n g P ro toco l :
1 2 ,,,n ,,,1 ~2 0. V : Generates random strings ~r, r0, r0 , 0 , "1, "1 , . . . , r~ E {0, 1} L('~)

V runs G(1 '~, ~) to produce E and D, and sets up the scheme C.
P : E, C(,) , CCr0~), CCro~),..., CCr~), C(r~), cCr~), . . . , C(r~).

.) V : Random bits bl, b2,. . . , bn.
, P : For each i, opens C(r~.) and sends r~l_b.) • o'.

P : Verifier gives a ZK argument (e.g. [19]) of consistency of the Step
1-3 messages above with some a such that G(1 n, q) produces E.

5. P > V : If Step 4 is accepted, send "READY."

Timing Constraints: (1) P requires the Step 3 message to be received before time
a has elapsed on its local clock since the Step 1 message was sent. If a verifier
V fails to respond in this allotted time, we say V has timed out.
(2) P does not send the Step 5 signal until time/3 has elapsed on its local clock
since Step 1.

For zero-knowledge, we assume that the adversary is constrained by an (a,/3)-
constraint. For completeness we must also assume that V can send its Step 3
message in the real time required for time a to elapse on P 's local clock.

453

The following theorem shows that these timing constraints effectively elimi-
nate all problematic interleavings.

T h e o r e m 1. Assuming that a semantically secure public-key cryptosystem ez-
ists, the Preprocessing Protocol, followed by any polynomial number of protocols
that are straight-line zero-knowledge in the trusted center model, is (computa-
tional) concurrent zero-knowledge.

Furthermore, using the Preprocessing Protocol does not give the Prover any
advantage it would not have in the original protocol. In particular, using the
Preprocessing Protocol does not endanger the soundness of any protocol that
was sound in the trusted center model.

Theorem 2. Let Ir = (P, V) be any protocol in the trusted center model, and let
Ir I __ (pi, W) be the Preprocessing Protocol followed by Ir in the normal model.
Then, for any probabilistic polynomial time prover P*, there exists another
prover P** such that the distribution of transcripts from (P*, V') (not including
the transcript of the Preprocessing Protocol) is computationally indistinguish-
able from the distribution of transcripts from (P**, V) (not including the initial
interaction with the trusted center).

Proof (of Theorem ~). Theorem 2 follows from the fact that the verifier's role
in the Preprocessing Protocol is simulable without knowing D or a ~ such that
G(1 n, ~) = (E, D). P** behaves as follows: First it simulates the Preprocessing-
protocol with P*, and then it simply behaves as P* does afterwards.

From the trusted center, it first receives E. Then it generates random strings
r0 r0 ...i .2 0,-I, "i,..., r~ E {0, 1} L(n), and sets up the commitment scheme

C with P*. It sends E, C(~r), C(r01), C(r~),..., C(r~*), C(r~), C(r~),..., C(r~) to
P*, who responds with some random bits bl, b2,..., bn. P** then for each i, opens
C(r~,) and sends r~1_b,) ~ ~. Note that all this time cr had absolutely nothing
to do with E. However, by the zero-knowledge property of the argument of Step
4, P** can simulate Step 4 as if G(in,a) = (E,D). By this zero-knowledge
condition, the transcript of all steps so far is computationally indistinguishable
from a partial transcript of a real interaction of W and P*. Since the state of P*
at the end of Step 4 (i.e. the beginning of ~r) is computationally indistinguishable
from its state at this point in a real interaction with W, the theorem follows.

Proof (of Theorem 1, using the proof techniques of[16].). First, we observe that
the timing constraints yield the following interleaving contraint:

Interleaving Constraint: While any verifier is in Steps i-3 and has not timed
out, no new interaction can be started and complete Step 5.

Note that this remains true by the (a,~)-constraint even ff there are many
provers with different local clocks, since the time between Steps 1-3 must always
be less in real time than the minimum delay in real time between Steps 1-5.

454

Note also that in all steps the prover needs no special information to carry out
her side of the protocol. Hence, for any particular verifier, all steps in the Prepro-
cessing protocol are trivial to simulate (perfectly) in a straight-line fashion. To
be able to simulate any subsequent protocol that is straight-line zero-knowledge
in the trusted center model, we appeal to the following Lemma:

L e m m a 1. For any verifier V, i f the simulator has Step 3 responses for two
different Step 2 queries (for the same Step 1 message), then the simulator can
simulate all subsequent ezecutions of protocols with V that are straight-line zero-
knowledge in the trusted center model (computationaUy) in a straight-line fashion
with all but negligible probability.

Proof. Since the Step 2 queries were different, there exists an i such that V
opened both r~ and r~, and (supposedly) supplied both a = r~ ~ and b = r~e~.
The simulator can test both a @ r~ and b ~ r~ by running G with these inputs. If
G produces V's encryption key E, then we know that the decryption key D pro-
duced must be V's secret key. If this is the case, the simulator has V's secret key
and can simulate all future protocols that are straight-line zero-knowledge in the
trusted center model (computationally) in a straight-line fashion, by assumption.

If not, for any future simulation of V, when the simulator obtains a Step 3
response ~/from V, it again checks with the responses it already has to see if this
new response will yield a valid secret key for V. If this is not the case, then the
simulator has proof that ~f is inconsistent with the commitments in V's Step 1
message. Hence with all but negligible probability, V will not pass Step 4 of
the protocol, by the soundness of the ZK Argument. Note that the soundness
condition for ZK Arguments requires that no PPT prover can succeed in proving
a false statement with more than negligible probability. The interaction of the
PPT A and the PPT simulator together certainly still comprise a PPT system,
and hence cannot prove the false statement with more than negligible probability.
Thus with all but negligible probability, l/" never makes it past Step 4, and the
Lemma follows.

We now describle a subroutine of the simulator called Extract . The sub-
routine takes two arguments, the name of a verifier l~, and a partial starting
transcript T that includes the Step 1 message of l~. Extract(V~,T) is only
called if the simulator already has obtained one Step 3 response from V~. The
purpose of calling Ex t rac t on ~ is to create for ~ the situation required by the
Lemma.

In E x t r a c t (~ , T) the simulator repeats the following procedure as many
times as needed to obtain another Step 3 response from V.

- Starting with partial transcript T, begin a simulation until either 1~ gives a
Step 3 response or more than time a has passed since Step 1 of ~ . During
this simulation:

�9 For any verifiers introduced after the Step 1 message of V/, by the Inter-
leaving Constraint, we know these verifiers will never proceed past Step 5
in the time allotted, so simulate the interaction with them perfectly.

455

�9 If any verifier ~ which was introduced before the Step 1 message of V~
gives a Step 3 response:

* If the simulator has already obtained two Step 3 responses from ~ ,
by the Lemma all interaction with ~ can be simulated in a straight-
line fashion.

* If not, the simulator executes Ext rac t (~ , T) .

Thus, we are guaranteed that after executing Extract(Vi, T) we have re-
ceived two Step 3 responses from ~ . If the two responses received are the same,
the simulator fails. This can only happen if the random bits chosen by the sim-
ulator in Step 2 were identical, an event with exponentially small probability.
We will later argue that the simulator is expected polynomial time. Hence the
simulator only gets an expected polynomial number of chances to fail in this
manner, and so its probability of failure in this way is negligible. If the two
Step 3 responses are different, such a verifier that has satisfied the conditions of
the Lemma is called neutralized.

Now, to generate its output transcript the simulator begins a straight-line
simulation with the adversary. Whenever a verifier V that has not already been
neutralized gives a Step 3 response, the simlator calls Extract(V, T) , where T
is the partial transcript up to and including the Step 1 message of V. When
Ext rac t terminates, V has been neutralized and thus, by the Lemma, all future
interaction with V can be simulated in a straight-line fashion. This continues
until the simulation is concluded.

By construction, the distribution of transcripts produced by such a simu-
lation is computationally indistinguishable from those arising from an actual
interaction with the adversary, since the transcript is produced in a straight-line
manner.

We must confirm that the expected running time of the simulator is poly-
nomially bounded. Each trial within Extract, not counting time taken by recur-
sive function calls, certainly takes polynomial time, say O(nC). Let us analyze the
expected running time of a function call to Extract. Now, conditioned on some
partial transcript T, let Xi denote the random variable for the time to complete
Extract(~, T). Let p~ denote the probability over simulations starting at T that
Vi will give its Step 3 response during a simulation trial. If V1 is the first verifier
appearing in T, then during Extract(V1, T), no recursive calls can be made for
other verifiers. Hence, X1 < O (n c)(1 + pz + (1 - pl)(1 + X1)), and so by linearity
of expectation, (Xl) _< More generally, if is the i'th verifier

i - 1

pearing in the transcript T, then X~ < O(nC)(l+ ~ pjXj + p i + (1 - p i) (l + X ~)) ,
j = l

and a simple induction shows that E(X~) < O(nC~ ~. Now, in the simulation, - - ~ J P l

conditioned on a partial transcript T, the probability that Extract(~, T) will be
called (from outside Extrac 0 is exactly p~. Thus, the expected amount of time the
simulation will spend on Extract(~, T) is O(n c) �9 2i. Since this does not depend
on T, we can remove the conditioning and conclude that the expected amount
of time the simulation will spend in Ext rac t for V~ will be O(n c) �9 2i. We note
that the total number of verifiers that can be present in the final transcript is

456

bounded by the amount of time the adversary runs for. Hence, if the sxlversaxy's
expected running time is t(n), the expected amount of time the simulation will
spend in Extract for all of the verifiers is O(net(n)2). The rest of the simulation
will certainly take no more than expected O(nr time, and so we conclude
that the expected running time is polynomial in n.

5 Addit ional Remarks and Future Research

Recently, Kilian, Petrank and Rackoff [25] have shown that any 4-round nontriv-
ial zero-knowledge interactive proof is not black-box simulatable under concur-
rent executions. In a companion paper, Richardson and Kilian [28] have shown
that for any e > 0 and any upper bound k on the amount of concurrency to be
tolerated, there exists a zero-knowledge proof for any language in N P requiring
k c messages. We believe that the Kilian-Richardson protocol can be used (with
some modifications) as a preprocessing protocol to allow subsequent constant
round concurrent zero-knowledge arguments for any statement in N P ; we are in
the process of checking the details.

The difficulties in achieving non-malleability and concurrent zero knowledge
both stem from potentially bad protocol interleavings. In [16] and in the prepro-
cessing protocol described in this paper, timing is used explicitly to proscribe
certain interleavings in order to achieve concurrent zero-knowledge. Can timing
be used in a natural way to achieve non-malleability? For concreteness, consider
non-malleable string commitment. Since non-malleable string commitment pro-
tocols exist without recourse to,timing [13], any timing-based solution would be
interesting only if it is efficient or simple.

Can timing be used to achieve other cryptographic objectives?

References

1. M. Bellare and P. Rogaway, Provably Secure Session Key Distribution. The Three
Party Case, Proc. 27th STOC, 1995, pp 57-64.

2. M. Bellare and M. Ytmg. Certifying permutations: Noninteractive zero.knowledge
based on any trapdoor permutation, Journal of Cryptology, 9(3):149-166, 1996.

3. M. Blum. Coin flipping by telephone: A protocol for solving impossible problems.
In Allen Gersho, editor, Advances in Cryptology: A Report on CRYPTO 81, pages
11-15, 24-26 August 1981. Department of Electrical and Computer Engineering, U.
C. Santa Barbara, ECE Report 82-04, 1982.

4. M. Blura, A. De Santis, S. Mieali, and G. Persiano. Noninteractive zero-knowledge,
SIAM Journal on Computing, 20(6):1084-1118, 1991.

5. Blum M., P. Feldman and S. Mieali, Non-Interactive Zero-Knowledge Proo]Systems,
Proe. 20th ACM Symposium on the Theory of Computing, Chicago, 1988, pp 103-
112.

6. G. Brassard, C. Crepeau and M. Yung, Constant-Round Per]ect Zero-Knowledge
Computationally Convincing Protocols. Theoretical Computer Science 84, 1991.

7. G. Brassard, D. Chaum, C. Crepeau, Minimum Disclosure Proofs of Knowledge.
JCSS, Vol. 37, 1988, pp. 156-189.

8. S. Brands and D. Chaum, Distance-Bounding Protocols Advances in Cryptology -
EUROCRYPT'93, 1993.

457

9. R. Canetti, C. Dwork, M. Naor, R. Ostrovsky, Deniable Encryption, "Security in
Communication Networks" workshop, Amalfi, Italy 1996 and CRYPTO'97

10. D. Chaum and H. van Antwerpen, Undeniable Signatures, Advances in Cryptology-
CRYPTO '89, G. Brassard (Ed.), Springer-Verlag, pp. 212-216.

11. R. Cramer and I. Dmugard New Generation of Secure and Practical RSA-Based
Signatures, Advances in Cryptology-CRYPTO '96. Springer-Verlag, 1996.

12. A. De Santis and M. Ytmg. Cryptographic Applications of the Metaproofand Many-
prover Systems, Proc. CRYPTO'90, Springer-Verlag, 1990.

13. D. Dolev, C. Dwork and M. Naor, Non.malleable Cryptography, Preliminary ver-
sion: Proc. 21st STOC, 1991. Full version: submitted for publication (available from
the authors).

14. C. Dwork and M. Naor, Pricing via Processing -or- Combatting Junk Mail, Ad-
vances in Cryptology - CRYPTO'92, Lecture Notes in Computer Science

15. C. Dwork and M. Naor, Method for message authentication from non.malleable
crypto systems, US Patent No. 05539826, issued Aug. 29th 1996.

16. C. Dwork, M. Naor, and A. Sahai, Concurrent Zero Knowledge, to appear,
STOC'98

17. U. Feige, A. Fist and A. Shamir, Zero Knowledge Proofs of Identity, J. of Cryp-
tology 1 (2), pp 77-94. (Preliminary version in STOC 87).

18: U. Feige and A. Shamir, Witness Indistinguishable and Witness Hiding Protocols
Proc. 22nd STOC, 1990, pp. 416-426.

19. U. Feige and A. Shamir, Zero Knowledge Proofs of Knowledge in Two Rounds,
Advances ha Cryptology - Crypto 89 Proceed/ngs, Lecture Notes in Computer Science
Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

20. U. Feige, D. Lapidot and A. Shamir, Multiple Non-Interactive Zero-Knowledge
Proofs Based on a Single Random String, Proceedings of 31st Symposium on Foun-
dations of Computer Science, 1990, pp. 308-317.

21. O. Goldreich, Founda t ions of C r y p t o g r a p h y (Fragments of a Book), 1995.
Electronic publication: http://www.eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-
books.html (Electronic Colloquium on Computational Complexity).

22. O. Goldreich and H. Krawczyk. On the Composition of Zero Knowledge Proof
Systems. SIAM J. on Computing, Vol. 25, No. 1, pp. 169-192, 1996.

23. S. Goldwasser and S. Micali. Probabilistic Bncryption, Journal of Computer and
System Sciences, Vol. 28, April 1984, pp. 270-299.

24. S. Goldwasser, S. MicaH, and C. Rackoff, The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, Vol. 18, 1 (1989), pp. 186-208.

25. J. Killian, E. Petrank, and C. Rackoff, Zero Knowledge on the Internet. Manuscript,
1998.

26. M. Naor, Bit Commitment Using Pseudo-Randomness, Journal of Cryptology, vol
4, 1991, pp. 151-158.

27. C. Rvr.koff and D. Simon, Non-Interactive Zero-Knowledge Proof of Knowledge and
Chosen Cipherezt Attack, Proc. CRYPTO'91, Springer-Verlag, 1992, pp. 433 - 444

28. R. Richardson and J. Killian. Non-Synchronized Composition of Zero-Knovoledge
Proofs. Manuscript, 1998.

