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Abstract .  We present a method for efficient conversion of differential 
(chosen plaintext) attacks into the more practical known plaintext and 
ciphertext-only attacks. Our observation may save up to a factor of 22~ in 
data over the known methods, assuming that plaintext is ASCII encoded 
English (or some other types of highly redundant data). We demonstrate 
the effectiveness of our method by practical attacks on the block-cipher 
Madryga and on round-reduced versions of RC5 and DES. 
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1 Introduct ion 

Differential cryptanalysis [1, 12] is a very powerful technique for the analysis 
of block-ciphers. I~ has been used with success against many block-ciphers, 
e.g. [1, 2, 3, 18, 4]. One weakness of differential cryptanalysis is that  it finds 
chosen plaintex~ attacks; these are much less practical than known-plaintext and 
certainly than ciphertext-only attacks. Ciphertext-only attacks are the most use- 
ful attacks on cryptosystems, since they require only passive eavesdropping from 
the attacker. Such attacks are usually hard to find, since the assumptions on the 
knowledge of the attacker are minimal. Exceptions include the most basic ci- 
phers, like simple substitution or Vigen~re [11]. 

Although there exists a general method for converting any differential cho- 
sen plaintext attack into the more favorable known plaintext attack [1], this 
conversion becomes (almost) impractical due to the huge increase in the data  
requirements. If a differential attack uses m chosen-plaintext pairs, the corre- 
sponding known-plaintext attack will need about 2~ 2v/2-m known plaintexts, 
where w is the block size (in bits) of the analyzed cryptosystem. For exam- 
ple, if a differential attack on a cryptosystem with 64-bit block uses only eight 
chosen-plaintext pairs, the corresponding known-plaintext attack will require 234 
known plaintext-ciphertext pairs, an increase which makes this attack much less 
practical. 

In this paper we show a method of converting successful differential chosen- 
plaintext attacks into known-plaintext and even ciphertext-only attacks without 
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loosing as much efficiency as the above mentioned method, and under a reason- 
able assumption that plaintext comes from a redundant source. Notice that due 
to plaintext redundancy, the probability of some input differences increases, and 
the probability of other input differences decreases or even becomes negligible. If 
the probability of the input differences which are useful for the differential attack 
is increased (depending on the type of input redundancy and the type of input 
differences required for the attack on the particular cipher), then the cipher is 
weaker against the differential attack combined with the redundancy assump- 
tion. We show, for example, that under the assumption that plaintext comes 
from ASCII encoded English encrypted in ECB (Electronic CodeBook) mode, 
the probability of input differences with small Hamming weight (which are the 
differences needed for most of the known attacks) increases significantly. There- 
fore, only about 214 known-plaintexts are needed for a known-plaintext attack 
of the previous example, saving a factor of 220 in data. Moreover, our observa- 
tion helps to turn differential attacks into much more desirable ciphertext-only 
attacks, with modest increase in data. Our efficient conversion method applies 
also for the combined differential-linear attacks [13], which can be converted into 
efficient known-plaintext attacks. 

This paper is organized as follows: In section 3 we outline the principles of our 
method. Then, we demonstrate its applicability for various ciphers; we start by 
presenting a new differential attack on Madryga [14, 21] with only sixteen chosen 
plaintext pairs. We use this cipher as a testing ground for the development 
of our ideas. Then, we proceed to a ciphertext-only attack on Madryga with 
only several thousand ciphertexts. We continue demonstrating the effectiveness 
of our approach with a ciphertext-only attack on 4-round RC5 using only 217 
ciphertexts, and a known plaintext attack on 6-round RC5 (as of today this is the 
first known plaintext attack on this cipher) .with about 218 plaintext/ciphertext 
pairs (the previous known-plaintext attack on this cipher [8] required 257 for 
6-round RC5 but it was found erroneous [22]). We show a new known-plaintext 
attack on seven round DES [19] with about 217 known plaintexts, t Finally we 
show, that our attacks are applicable not only to ECB mode, but also to the 
first block of the CBC (Cipher Block Chaining) mode if the initial vector (IV) 
is unchanged for several datagrams or incremented sequentially, starting from 
a random value (as is usually the practice on the Internet), and to the counter 
mode [21]. 

To conclude, we show that differential attacks are very subjective to the un- 
derlying plaintext redundancies. We mark the importance of studying differential 
attacks on ciphers together with the underlying redundancies of the protocols, 
they are used in. We also suggest methods, that may help to prevent attacks of 
the kind described in this paper. 

1 For FEAL [16, 17] there exist several very efficient known-plaintext attacks which 
u s e  specific features of this cipher. Our analysis is applicable to FEAL as well b u t  

yields inferior results. 
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2 Differential Cryptanalysis 

Differential cryptanalysis is a very efficient chosen plaintext attack on block- 
ciphers [1]. The idea of differential cryptanalysis is to analyze pairs of plaintexts 
instead of single plaintexts. An attacker chooses the difference Ap  between plain- 
texts (P, P*) and studies the propagation (avalanche) of the changes in the en- 
cryption process. During the attack he searches and then studies the ciphertexts 
pairs (C, C*), which exhibit difference AC, predicted by his analysis. 

Let us introduce some terminology related to differential cryptanalysis. The 
difference between two bit-strings X and X* of equal length is defined as X 
X* = AX, where ~ is a bitwise XOR operation. We call a pair of plaintexts 
(P, P*) a good pa i r  with respect to differential analysis of a cipher, if it ex- 
hibits the difference propagation and the output difference AC, predicted by the 
analysis of a cipher. We call noise all pairs that are suspected to be good pairs 
(i.e. pass all our criteria for good pairs (which we call filters)), but which do 
not exhibit the difference propagation, predicted by the analysis. 

It is well known, that unlike other chosen plaintext attacks, differential crypt- 
analytic attacks can be easily converted to known plaintext attacks [1]. The idea 
is similar to the Birthday paradox. Denote the length of the blocks in bits by w. 
Suppose that differential chosen plaintext attack needs m pairs to succeed, and 

2s 
that we are given n ~ 2 2 2~m random known plaintexts and their ciphertexts. 
These plaintexts can form about 2 w �9 m pairs. Since the block size is w bits, 
there are only 2 w possible different XOR values and thus, due to the uniform 
distribution of the plaintexts, there are about ~ = m pairs for each XOR 
value (and thus, we expect m pairs with the specific differences, used by the at- 
tack). In order to find pairs with useful input differences, one can sort the array 
of n known plaintext/ciphertexts by plaintexts, and then search for pairs with 
particular differences; the total complexity of this process is O(n log n). Once 
these pairs are discovered a regular differential attack on the cipher may begin. 

3 On Ciphertext-Only Attacks 

In this section we describe our method for converting successful differential at- 
tacks into ciphertext-only attacks (and known-plaintext attacks) with huge sav- 
ings over the method described in the previous section. We show practical cases, 
where this conversion can be applied very efficiently. 

The essence of differential cryptanalysis is in studying the differences between 
plaintexts, without using the plaintexts themselves (although there are many 
ways of helping the analysis by adding the information about plaintexts). Thus, 
one can perform a ciphertext-only attack on a cipher as soon as he is able to 
detect ciphertext pairs that come from good plaintext pairs. Suppose that we 
are in a ciphertext-only attack scenario and that we are given only a pool of n 
ciphertexts, without the knowledge of the corresponding plaintexts. It may seem 

n2 
that we will have to check all the -y pairs, which is usually infeasible, and that 
we will not be able to detect pairs that exhibit useful input difference (as we show 
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in the previous section). However, two observations may help in our case. First, 
the structure of the ciphertext difference in a good pair may be very restricted, 
and thus the search in a sorted pool of ciphertexts will still have O(nlogn) 
complexity. The second observation is related to the possible redundancy of the 
encrypted plaintexts. Usually not MI 2 w blocks are "legal" plaintexts, and the 
probabilities of possible plaintexts may be very non-uniform. Thus, among the 
pairs taken from a pool of redundant plaintexts, some differences will be very 
frequent, and some will never occur. 

Let us proceed with an important but simple to analyze example of plaintext 
redundancy. Suppose that  the plaintext source, produces blocks of w bits, and 
has entropy of e bits (so there are w -  e redundant bits per block). Suppose also 
that  the entropy is "bit-local ' :  a fixed subset of e bits out of w is chosen and 
may get all 2 ~ possible values uniformly. The other w - e = r redundant bits 
are fixed to arbitrary values. This sort of redundancy describes many types of 
computerized information (database records, network packets, etc.). Denote the 
set of all such blocks as Se, and denote the set of all differences, produced by 
elements of S, as ASe. Let there exist a fast differential attack on the cipher, 
which succeeds with m chosen pairs, using differences from the set ASe. If the 
differences used by the differential attack are not in ASe, then the cipher (taken 
together with the redundancy assumption) is more secure against this differential 
attack, than in the general (uniformly random plaintext) case 2 . For the described 
type of redundancy, we can use only n~ ~ 2~ 2~-m ciphertexts, which form about 
2era pairs. This pool contains about m pairs with useful input differences for a 
differential attack. If the corresponding plaintexts are known to the attacker, he 
can simply sort the table of given plaintexts and search in the sorted table for 
pairs that  exhibit the necessary input differences and proceed to analysis of the 
pairs as in a regular differential attack. 

If the corresponding plaintexts are not known, we are in a ciphertext-only 
scenario. If we expect (due to differential analysis) a ciphertext difference in a 
good pair to have a definite structure (for example, AC should be a particular 
constant), then the probability for a random pair to have similar ciphertext 
difference may be as small as 2 -w . Suppose for simplicity, that  the probability 
of a good pair is p ~ 1 (i.e., one good pair is enough to start  a differential attack, 
which is true in many cases). Since in a ciphertext-only scenario we do not know 
which m pairs exhibit useful input differences, we can only hope that  about one 
pair in a pool of 2~m pairs of ciphertexts will be good for the differential attack 3. 
The Signal/Noise ratio (ratio of the probability of a good pair to the probability 
of noise) for the ciphertext-only attack in this case is SIN = 2-e'n-1 2~ = The 2 w ~-. 
attack will be successful if SIN > 1. 

2 This may lead to a method of strengthening for differentially-weak ciphers. Add 
redundancy to the plaintext, in a way, that prohibits successful input differences. 
For example one can use error correcting code (plaintexts be codewords), in order 
to avoid input differences of low Hamming weight. 

3 However, in order to find it we do not need to check all 2r pairs. If we are looking 
for a well defined ciphertext difference, search in a sorted pool of n~ ciphertexts will 
have O(n~ log n~) complexity. 
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We can generalize the description above in two ways. First, it may. be more 
useful to consider a set of possible "good" output differences .4 0 of size 2 k, rather 
than one output difference. If differences from the set Aa  are equally likely to 

2r-k appear in a good pair, then the Signal/Noise ratio will decrease to ~ ,  but 
the probability of a good pair will increase (since we relax the conditions on the 
differential propagation pattern), and thus m will decrease. In this case we have 
to solve a more complex search problem. For example, we would like to find all 
pairs with differences of low Hamming weight in reasonable time. We can state 
this problem as follows: 

P r o b l e m  1 Find all pairs (si, sj), i ~ j, in a given set S o f n  binary words from 
{0, 1} ~, such that dH(si, sj) < k (here dH denotes Hamming distance}. Let us 
call such pairs k-neighbors. 

We can reduce this problem to a well studied approximate string matching (ap- 
proximate dictionary queries) problem. However most of the algorithms for this 
problem are linear in the document size n. Since we have to call this algorithm n 
times (to check neighbors of each element of the set), this results in a complex- 
ity of O(n~), which is the complexity of checking all pairs in the set. In [23] an 
efficient algorithm, based on tries, which runs in O(k[27[ k) expected worst case 
time (here I~UI denotes the alphabet size), independently of the document size 
(n) is presented. Trie indices combine suffixes and so are compact in storage. 
Applying this algorithm to our problem, we get O(nk2 ~) complexity. Though 
exponential in k, it still provides a better algorithm than exhaustive check of 
all pairs if logn > k + 1 + logk. Thus, for a set of size 22~ the search of all 
15-neighbors can be performed faster than 239 using tries. 

Since we have seen that redundancy in some cases helps for differential at- 
tacks, our second observation concerns another useful type of redundancy - -  the 
natural language redundancy. For a natural language L over alphabet A, denote 
by A n the set of all n-grams of the language. Then the n-gram entropy of the 
language is: 

H(X1, . . . ,Xn)  = ~ -P(xn  = s) logP(xn = s), 
s E A  ~ 

where X- = (X1, . . . ,  X,~) E A n. We say that the language has entropy HL if: 

HL = lim H(X1 , . . . ,Xn)  
r~---*oo n 

In the case of the English language successive approximations of HL go as: 
log 2 26 ~ 4.7, the first order approximation (English letter frequencies) gives 

4.2, digram frequencies give ~ 3.9. Shannon [24] suggests a value of 2.3 bits 
per letter for eight letter blocks. By various experiments, for large n the entropy 
decreases into the interval 1.0 < HL < 1.5. By a gambling technique Cover and 
King [6] give an estimate of 1.3 bits of information per letter. In [5] an upper 
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bound of 1.75 bit per letter is estimated from a large sample of ASCII encoded 
English text. 

Our experiments with large English files show, that some differences are 
very frequently encountered, even in a small quantities of English plaintext. For 
example, differences with low Hamming weights (especially one-bit differences 
at the beginning and at the end of the block) are very frequent. For a more 
detailed study of these differences see Appendix A. This fact can be used in a 
differential known-plaintext and even in differential ciphertext-only attacks on 
block-ciphers that are weak with respect to these differences. In the following 
sections we demonstrate new attacks on Madryga, RC5 and DES which follow 
the ideas expressed in this section 4. 

As we explained here and as we will show in the further sections, differen- 
tial attacks are very subjective to the underlying plaintext redundancies. We 
stress the importance of studying differential attacks on ciphers together with 
underlying redundancies of the protocols, they are used in. 

4 Attacks on Madryga  

We used the Madryga block-cipher [14, 21] as a testing ground for the devel- 
opment of our ideas. In the following subsections we describe this cipher and 
our attacks on it. We first find a very fast differentiM attack on M~lryga, which 
uses negligible amount of data, and then proceed to a differential ciphertext-ouly 
attack on this cipher, which is also very efficient. 

4.1 Descr ip t ion  of  M a d r y g a  

Madryga is a blockcipher proposed in 1984 by W. E. Madryga [14]. It was de- 
signed for efficient software implementation. It consists of data-dependent rota- 
tions and exclusive or's with the bytes of the key. Madryga was designed as an 
alternative to DES (with larger key size - 64 bits) in order to permit efficient 
implementation both in software and hardware. 

Here is a description of the encryption Mgorithm. Block size and key size 
in Madryga may vary, but 64-bit block size was suggested for compatibility 
with DES. The key size in this case is also 64 bits. The encryption process 
consists of two nested cycles. The out-most cycle consists of eight iterations 
of the inner cycle. The inner cycle consists of eight local operations on the 
block. A work frame (Frame) of three consecutive bytes blb2ba is chosen in the 
plaintext block (Toxt), starting from the second last byte (the block is treated 
as a cyclic entity). The 64-bit key (Key) is rotated by three bit positions to the 
right and exclusive or'ed with the 64-bit constant (KoyHash). Rotation amount 
is extracted from the three least significant bits of ba. Then the least significant 
byte of the key is exclusive or'ed with bs. The concatenation of bibs is rotated by 

4 For the rest of the paper, all attacks are described for the English language model 
of redundancy, but they work even better in the "bit-local ~ model of redundancy, 
when the entropy e is the English language entropy. 
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the rotation amount to the left. Then the working frame is shifted one byte to 
the right and the process continues. The working frame moves to the right from 
the starting second-last byte to the starting third-last byte. Here is a Madryga 
implementation (WORD is 64 bits): 

/* NADRYOA encrypt ion engine,  64 -b i t  implementation. */ 
NORD EncKey; /* Secret Key */  
WORD KeyHaeh = OxOF1E2D3C4B5A6978; /*  Key Hash Constant * /  
MORD Key; /*  Work Key */  
WORD Text; /* P la in tex t  block * /  
WORD Frame; /*  Work Frame */  
#define FrameNaek OxFFFF 
#def ine  TextNask OxFFFFFFFFFFFFOO00 

Key = EncKey; 
for(i=O; i < 8; 

for(j=O; 

} 
} 

i++){  /*  Eight rounds */  
j < 8; j++){ /*  Eight bytes /b lock  */  
Frame = ROTL(Text,8*j)&FrameNask;/* Copy to Frame * /  
Key = ROTR(Key,3)'KeyHash; /*  Rotate & X0R with Hash*/ 
rotation_count = (Text >> ( 5 6 - 8 . j ) )  k 0xT; 
Text *= (Key & OxFF) << (56 -8 . j ) ;  
RotateFrame( rotation_count); 

/*  Copy from Frame */  
Text = (Text ~ ROTR(TextNask,8*j)) [ ROTL(Frame,64-8*j); 

4.2 D i f f e r e n t i a l  A t t a c k  on M a d r y g a  

In this subsection we present a very efficient differential attack on Madryga, with 
82% probability of success, that uses only sixteen chosen plaintext pairs. Another 
differential attack, using 5000 chosen plaintexts was developed by Shirriff [25]. 

We start with two observations. The first observation is that keyscheduling 
in Madryga is very simple: the initial key is at least as long as the block-size (64 
bits in our case). In every iteration (every time the work frame is shifted) the 
key is rotated to the right 3 bits, and exclusive or'ed with the key hash constant. 
That means that simple equations relate bits of the key at each stage to the 
bits of the initial key. The second observation is that block-sizes larger than 64 
bits may only weaken Madryga. Data-dependent rotations in Madryga are very 
local, and are the only tool to provide avalanche. It will take much longer for 
small differences to propagate in a larger block. 

We note that rotation amounts of the first round are known to an attacker. 
They are saved before the last byte of the working frame is exclusive or'ed with 
the corresponding byte of the key. Thus in a chosen plaintext attack, starting 
with one-bit difference in plaintexts, and setting to zero (or other appropriate 
value) two rotation amounts that may move this bit, one can assure that one- 
bit difference is preserved after the first round (after eight frame operations) 
and after the second round, if difference is placed in the upper five bits of the 
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byte. With probability (0.57) 4 ~ ~ (the probability for a difference bit not to 
influence the rotation amounts after one round is intuitively ~, but due to weak 
randomizing properties of Madryga it is slightly lower - 0.57; exact analysis was 
done by [25] and is confirmed by our experiments) this one-bit difference will 
propagate to the end of the sixth round (we number the rounds of Madryga 
1, 2 , . . . ,  8). At the 7th and 8th rounds, we allow the difference to propagate 
arbitrarily (and it is even better for us if the one-bit difference will not be 
preserved). 

Due to the very slow avalanche in Madryga, it is clear that starting with 
chosen plaintext pair differing by one bit, we will see many zeroes in the cipher- 
text difference. The question is: what information about the secret key can be 
derived from such a pair. In order to learn more from each pair, we do not care 
for the behavior of the difference in the last two rounds (similar to the 2R attack 
in [1]). This may cause many ciphertext differences, but we use a "go up" idea 
similar to [4] to trace guesses about the key bits and the difference to a one-bit 
difference after the sixth round. This way we get more bits of the key from each 
pair (at least four and up to thirty bits, depending on the difference locations 
in the last round), and at the same time increase the probability of a good pair. 
Since each found key bit can be traced exactly to a bit of the initial key (due to 
a simple keyscheduling algorithm in Madryga), our aim is to find about 30 key 
bits. The rest can be found by a reduced exhaustive search. 

Putting together the ideas expressed in this section, we need only about 
sixteen chosen pairs with one-bit differences in order to find partial information 
about the secret key. The rest can be done by a reduced exhaustive search, which 
becomes feasible. Success probability of this attack is 1 - (1 - ~ ) I s  ~ 0.82. 

4.3 C i p h e r t e x t - O n l y  At t ack  on M a d r y g a  

In this section we demonstrate how our method can be used in order to derive 
ciphertext-only attacks. The differential attack described in the previous sec- 
tion succeeds with only about sixteen chosen pairs. Therefore the corresponding 
known plaintext attack, due to the conventional technique [1], will require about 
285 known plaintexts. Although this number can be reduced, since any one-bit, 
and even two-bit input difference will suffice for our attack, the pool of required 
known plaintexts is still too big. 

Under a reasonable assumption of highly redundant plaintext (for exam- 
ple English text in ASCII format) the amount of data can be significantly re- 
duced. Let us present an example of a ciphertext-only attack on Madryga with 
only ~ 21~ ciphertexts, corresponding to English plaintexts (95 printable ASCII 
characters), taken from the beginning of "The Hound of the Baskervilles" by 
Sir Arthur Conan Doyle. In the pool of (2~ 2) ~ 223 English pairs, on the av- 
erage about 26.6 pairs have one-bit differences. The probability that a one-bit 
difference will be preserved during six rounds of Madryga is about (0.57) 6 "~ 2 -5 
(this is lower than in the chosen plaintext case, since we cannot control the lo- 
cation of the difference bit and the surrounding rotation counts before the first 
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round). Thus, about four good pairs are contained in the pool (even more if we 
consider other small input differences). Some of those can be detected due to 
low Hamming weight of the ciphertext difference. For any pair suspected to be 
a good pair, we "go up" two rounds (using an idea from [4]), performing the 
necessary guessing, and check if we arrive at a one-bit difference. This idea is a 
very efficient filter, which helps us to discard almost all wrong pairs. If the pair 
is good, it provides us with 10-30 bits of the secret key. Combining the guesses 
from several good pairs we find about 30 bits of the key. The rest can be found 
by a simplified exhaustive search, or by further analysis of the given ciphertexts. 

Below, we provide an example of the attack discussed above. Note that plain- 
texts and Plaintex~ Differences are unknown to the attacker, and they ap- 
pear here only for the sake of completeness. We printed only ciphertext pairs 
with Hamming weight (HW) less than 12 (the probability for a random pair to 
have such a low Hamming weight is ~ 2-25). The probability for a random pair 

64 58 to have one-bit ciphertext difference is ~-~ = 2- and in this example there are 
two such differences 5 ! 

Plain1 Plain2 Plaintext Difference Ciphertext Difference HW 

' e  h a v e  b '  ' u  h a v e  b '  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0  1 

' t  s u c h  a '  ' d  s u c h  a '  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  1 

' f r '  ' b r  ~ 0000000000000400 O00000DIE01COIO0 II 

5 K n o w n  P l a i n t e x t  a n d  C i p h e r t e x t - O n l y  A n a l y s i s  o f  R C 5  

RC5 is a fast block-cipher designed by Rivest in 1994 [20]. RC5 has an attrac- 
tively simple structure. It is also very flexible to changes of parameters. RC5 
has adaptable word size w in order to suit processors of different word-lengths, a 
variable number of rounds r and a variable-length cryptographic key b (so that 
the user can choose the level of security appropriate for his application). The 
"nominal" choice of parameters proposed in [20] is: 32 bit words, 12 rounds and 
a 16 byte key. This version of RC5 is referred to as: RC5-32/12/16. Another 
version with 64 bit words and 16 rounds was suggested for future 64 bit archi- 
tectures (RC5-64/16/16). The main feature of the cipher is intensive use of data 
dependent rotations. 

We use a description of RC5 as a so-called Feistel cipher from [8]. Denote 
by (L0, R0) the left and right halves of the plaintext, and let Si be the ith sub- 
key from the expanded key table S generated before encryption. The particular 
expansion algorithm has no influence on our cryptanalysis. As in all previous 
attacks, we assume that the subkeys produced by the key schedule are uni- 
formly random. This is a reasonable assumption which helps us concentrate on 
the properties of the encryption engine itself (it also simplifies the analysis of 
probabilities). Let w denote the word size which is 32 for RC5-32/12/16. Then 
the ciphertext (L2r+l, R2r+l) is calculated by the following equations: 

5 N o t e  t h a t  o n e - b i t  c i p h e r t e x t  d i f f e r ences  a r e  less  u s e f u l  to  u s  in t h i s  s cena r io ,  s ince  

they disclose less bits of the key. 



8] 

L1 = L0 +So  
R1 = R0 q- $1 
f o r  i = 2  to  2 r + l  do 

Li = Ri-1 
Ri = ((L~-I �9 Pq-1) <<< R i - 1 )  "3 L Si, 

where r - is the number of rounds, A <<< B denotes the rotation of word A by 
(B mod w) positions to the left (if w = 32, then the rotation amount is contained 
in five least significant bits of B), + denotes addition (mod 2 w), and ~ denotes 
bitwise XOI~. The two equations in the body of the loop are called half-round. 
Note that  two consecutive half-rounds correspond to one original round of RC5. 
The two initial equations are called the zeroth half-round. 

Several attacks on RC5 were published [8, 10, 4]. Currently the best known 
attack on RC5-32/12/16 is [4], a differential attack which uses 244 chosen plain- 
texts. As of today no known-plalntext attack on RC5, even with reduced number 
of rounds, exists due to recent result [22] which found gaps in the linear attack 
on RC5 described in [8]. In this section we show a ciphertext-only attack on RC5 
up to four rounds using only 217 ciphertexts and a known plaintext attack on 
RC5 up to six rounds, which requires about 218 known plalntext-ciphertexts. 

The attack described in [4] uses chosen plaintext pairs with small input 
differences 6 . Our main observation is that,  as in the previous section, assuming 
that  plaintext comes from an ASCII encoded English (all 95 printable charac- 
ters are possible), the probability of a small input difference is very high. This 
is true due to high redundancy of the English language, and due to the special 
properties of ASCII encoding (for example, upper and lower case letters differ 
in exactly one bit, etc.). See Appendix A for a study and examples of one-bit 
differences in ASCII encoded English. Our experiments show that  if the differ- 
ential attack on 1~C5 uses m pairs, the corresponding known-plaintext attack 
by our method will use ~ 2 l~ �9 ~ known plaintexts. For example, since the 
differential attack on six rounds of RC5 requires 216 chosen plaintexts [4] our 
method provides a known plaintext attack on six-round RC5 with about 218 
known plalntexts. However there are several important differences between the 
two approaches. First of all, note that  the actual probability of a good pair for six 
rounds of RC5 is estimated in [4] to be about 2 -12"6, and 216 chosen plaintexts 
are required in order to detect several good pairs. Then, the differential attack 
generates new pairs according to the "space oracle" suggested by several good 
pairs. For example, pairs with the same five least significant bits of L0 and R0 as 
in a good pair. This increases the probability of finding additional good pairs. In 
our case, we can also detect the oracle structure, but we cannot use it to a full 
extent by generating pairs according to it. However, we can still use it in order 
to refine the filtration process, since many good pairs are missed by the attack at 
the first stage. In our experiments we used 218 different known plaintexts (taken 
from books by Charles Dickens) and they resulted in about 216"6 pairs with 

0 This attack uses mainly symmetric two-bit differences like 80000000 80000000, how- 
ever symmetric differences are more rare than one-bit differences in our case, and 
thus we use one-bit differences, which are still good enough. 
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one-bit difference. Among these we were able to detect six pairs with ciphertext 
difference Hamming weights less than 20 (the probability for a random pair to 
pass this test is about 2-16"6), ranging from 14 to 19. They belonged to three 
space oracles: two pairs to one oracle, three to another and one pair to another 
one. Having detected the space oracles, it becomes possible to detect more good 
pairs missed by the first step, due to the increase of the Signal/Noise ratio by 
a factor of "~ 21~ In fact, the pool of 216"6 plalntexts with one-bit differences 
contains 8-16 good pairs. This amount of good pairs is enough in order to find 
about ten bits of the last round subkey of RC5. Although the full attack on RC5 
according to [4] will require about 30 good pairs, it seems that a more thorough 
analysis of the given pool of pairs, assisted by a partial knowledge of the key 
will defeat six-round RC5 (two-bit and three-bit differences, that we omitted for 
simplicity of the present description will help). 

Furthermore, the pool of 2 lz ciphertexts can be used for a ciphertext-only 
attack on RC5 with four rounds, and detect several good pairs even for five 
rounds of RC5. The decrease in the number of rounds is due to more compli- 
cated filtration, required by the ciphertext-only attack. The idea of this attack 
is as follows. We know, that the set of all 233 pairs produced by a given pool 
contains lots of good pairs (more than 27 good pairs). The problem is that with- 
out knowing the corresponding plaintexts we have to check all the possible pairs, 
which considerably complicates the filtration process. The solution is to search 
for the differences with lower Hamming weight than in a known plaintext case 
(less than 10). Note, that oracle information from the plaintexts is unavailable 
in the ciphertext-only case. However, we are still able to detect about 16 good 
pairs with low Hamming weights (from 4 to 8 in our experiment) and derive 
the partial key information from them exactly as in the known plaintext case. 
Using the partial key information, we can proceed to check the pairs with heav- 
ier differences and thus find almost all bits of the last subkey. The attack then 
continues with the same data, but with RC5 reduced by one-half round. Note, 
that given a pool of the same size, encrypted by RC5 with five rounds, we still 
can detect several good pairs with high probability. 

A natural question that arises here is why we do not continue our attack for 
more rounds of RC5. For example, due to our calculation the known plaintext 
attack on eight-round RC5 by our method will require about 2 l~ ~ = 224"s 
known plaintexts which still is a very practical amount of data 7. The problem is 
that we need different plaintexts. In the case of a redundant source of plaintexts 
we can easily get about 2 '~H blocks (where n denotes the size of the block in bytes, 
and H denotes the entropy a single byte (letter)). For the English language, 
organized in eight-letter blocks, we can get about 21s-219 different plaintext 
blocks in a file of similar size (about 30% blocks appear several times in the file 
of this size). Although it is possible to exceed the 2 '~H bound due to many rare 
blocks that there are in English, one will have to request much more data in 
the search for new blocks. Notice, however, that for 128-bit blocks this bound is 

A pool of only about 220 different English pairs contains one good pair for eight- 
round RC5 with high probability, but how to detect it? 
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about 230 (due to the larger block size, the entropy is lower - -  between 1.5 and 
1.7, and the distribution of the blocks is much more uniform). Thus, our method 
is able to penetrate RC5-64/r/16 (a 128-bit version of RC5) for more rounds. 
We leave the details of this attack for the full version of this paper. 

6 K n o w n  P l a i n t e x t  A n a l y s i s  o f  D E S  

The Data Encryption Standard [19] is one of the most important block-ciphers 
nowadays. In the 90-s two powerful methods of cryptanalysis were developed 
in attempt to break DES: differential cryptanalysis [1] and linear cryptanaly- 
sis [15]. The first attack uses 24~ chosen plaintexts, the second uses 24s known 
plaintexts. A mixed differential-linear approach was developed in [13] and suc- 
cessfully demonstrated on DES reduced to eight rounds. This combined approach 
starts as a differential attack for four rounds, preserving parity of particular bit 
subsets, which are then used by linear relations for the last four rounds. Their 
attack is a chosen plaintext attack with about 512 chosen plaintexts. 

In this section we show that due to differential behavior of the first rounds of 
the attack of [13], it is perfectly suitable for our method of converting differential 
attacks into knowmplaintext and ciphertext-only attacks. Note however that we 
cannot afford structures, that were used in [13] to gain the first round for free 
and to decrease the data requirements from 1400 to 900 pairs. Thus, our attack 
works against DES, reduced to seven rounds (and not eight rounds as in [13]). 

We checked the probability of the input difference used in [13], assuming that 
plaintext is ASCII encoded English s. In our experiment we used a file with the 
book "David Copperfield" by Charles Dickens. This file contains 218 eight-byte 
blocks, among these about 217"3 blocks are different. This file contains more than 
215 different pairs with one-bit input differences. However these differences are 
distributed very non-uniformly between the 64 possible bit-locations (see Ap- 
pendix A). About two thirds of the differences occur in the four least significant 
bits of the first byte and in the four least significant bits of the last byte. The 
probability of a one-bit difference is relatively low for the middle bits of the block. 
Taking into account the initial permutation (IP) of DES (which was irrelevant 
to the analysis in [13]), the two bit locations toggled by the differential-linear 
attack occupy bits 42,50 (corresponds to original 2,3 bits) or bits 44,52 (corre- 
sponds to original 10,11 bits). In our experiment only 2 § 26 - 28 pairs toggled 
the first group of bits, but 388 § 1348 -- 1736 toggled the second group. This 
data is more than sufficient, since 1400 pairs can be used by [13]'s attack in order 
to find six bits of the key with success probability more than 95%. 

Note that our aim here is to demonstrate how our ideas work in practice and 
not to provide the most efficient attack in a specific case. This task would require 
a thorough study of the underlying redundancy together with the cryptanalysis 
of the cipher. For example, one may find new attacks, which are optimal only in 
this special case. See table 1 for a summary of our results. 

8 The input difference toggles bits 2 and/or 3, or 10 and/or 11, the bits are counted 
from 1 to 64 from msb to lsb. 
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Cipher 
Madryga 
RC5 (4 rounds) 
RC5 (6 rounds) 
DES (7 rounds) 

Data for the Attack 
16 chosen plaintext pairs or 4000 ciphertexts 

21~ ciphertexts 
2 is known plaintexts 
217 known plaintexts 

Table 1. Summary of our attacks for English plaintexts or bit-local redundancies with 
English entropies. 

7 Discussion 

In this section we discuss modes of operation of block-ciphers in the context 
of our attacks. See [21] for a full account on available modes of operation for 
block-ciphers. 

The attacks described in this paper are applicable first and foremost to re- 
dundant data encrypted in ECB mode or to the case, when by an error CBC 
decryption is performed instead of CBC encryption. However, data for these at- 
tacks can be derived from the CBC encryption mode as well in the case, when 
the initial vector (IV) (which is added to the first block of the plaintext before 
the encryption) is not frequently changed. Another case is the case of sequential 
IV increments (for example, a counter starting from a random value). These are 
common practice on the Internet, and are suggested in [9] and in several other 
Internet-drafts. This method is used to prevent repetitions of the first block, 
assuming that the first block of the datagram is constant in many applications. 
However, this method of IV choice provides many pairs, all with small input 
differences, which can be used by our attack (given the first blocks of 2 k such 
datagrams we get k �9 2 k-1 pairs with one-bit differences). Another method of 
IV choice is the encryption of thee datagram sequence numbers or other incre- 
mented entities, and sending IV in clear (explicit IV method) in order to avoid 
problems with loss, duplication or re-ordering of datagrams. This method is also 
very vulnerable to our analysis, and so is the case with other cryptographicaly 
weak pseudo-random IV generators (even having relatively long periods). Note 
that compression option, available in several protocols, does not influence this 
attack, since it uses only the first block of the plaintext. A good method of IV 
choice, that is suggested in several recent Internet-drafts, is the last ciphertext 
block of the previous datagram. This method seems to provide much better 
resistance to the attacks described in this paper. 

Another application of our attack is to the block-cipher counter mode [21]. 
In this case a sequence of numbers is used as the input to a cipher in order 
to generate a pseudo-random stream. However, due to the sequential nature of 
the numbers being encrypted, the attacker obtains lots of data with small input 
differences, so this mode of operation is particularly vulnerable to our attack. 

There is a simple and efficient method that may increase the complexity of 
the present attacks (at least for the types of redundancies, used in our examples). 
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Seeing that  a combination of a cipher with ASCII encoded English is dangerous, 
one can perform a fixed random permutat ion of the ASCII table. Before the 
encryption, each plaintext byte is to be substituted for a new, permuted value. 
Although due to the structure of the language, there still will be many blocks 
differing only in one symbol, the probability of one-bit differences will decrease 
considerably. Another method is to use error-correcting code, and let codewords 
represent possible plaintexts. This way one can eliminate MI the low Hamming 
weight differences in the plaintext. Note however, that  adding redundancy to the 
plaintext must be checked with the other existing attacks. 
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A An Example of One-Bit English Plaintext Differences 

In this Appendix we present a short study of ASCII encoded English difference 
behavior. We feel however, that this subject is worth a more thorough study. 

In the left part of Figure 1 we present the distribution of weights of the 
differences in a sample of 10000 blocks. We compare several English texts of 
the same length: a sample from Dickens, a sample from Conan Doyle, a sample 
from Merkle's description of Khufu and Khafre block-ciphers and the lst-order 
approximation to English (correct letter frequencies) with a sample of 10000 
uniformly random blocks. Axis x marks the weights of the difference from 0 to 
64. Axis y marks the number of pairs with difference weight x. One sees that all 
samples behave close to binomial distribution, however the mean of the random 
sample is around 32 while the mean of all English samples is about 20. This is 
explained by the fact, that English text consists mainly from ASCII encoded 
letters, and thus only five least significant bits of each byte (40 bits altogether) 
may vary, while the 24 most significant bits are constant most of the time. Thus, 
even before starting the analysis of the language itself, one sees that differences in 
ASCII encoded English are shifted to the low Hamming weight end. However in 
the 10000-block Random sample there were no differences with Hamming weight 
less than 11. The English samples behave very similar to each other, with an 
exception of the lst-order English, which is the highest of them. This is at the 
cost of reduced probability of differences in the low Hamming weight tail of the 
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distribution. However in the main part of this paper we are interested exactly in 
these low Hamming weight differences (e.g. one, two and three-bit differences). 
This shows, that simple lst-order English is a bad approximation, for the needs 
of our analysis. We observed that first order word approximation and especially 
second order word approximation, behave very close to the real English in the 
area of low Hamming weight differences. 

2 ~  
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1 2 f l o  - -  

I O . ' I n  - -  

I g I g  - -  

4r~ - -  

n ~  

, hill. ,,,,,. ,.,,,, ,dh 

iii 
,,, llflh 
lll.llUlh 

Fig. 1. Distribution of differences: (a) left figure compares English samples vs. Random 
sample; (b) right figure shows distribution of one-bit differences. 

In the right part of Figure 1 we show the distribution of one-bit differences 
in English, calculated from a sample of about 217 different blocks, taken from 
"David Copperfield" by Charles Dickens. Here we number the bit locations from 
0 to 63 (from lsb to msb). As mentioned above, one sees that only about 40 out 
of 64 bit locations account for significant amounts of one-bit differences (due to 
ASCII encoding of English letters). One may see that ~ of the differences occur 
in the four least significant bits of the first byte, and in the four least significant 
bits of the last byte of the block. The probability of the one-bit differences in 
the middle bits of the block is relatively low. 

Below we present an example of English one-bit differences. These are the 85 
one-bit differences obtained from a file of 5000 blocks, taken from the beginning 
of "The Hound of the Baskervilles" by Sir Arthur Conan Doyle. The same data 
was used in our ciphertext-only attack on Madryga in section 4.3. 
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' t h e r e  h '  ' t h e r e  i '  

' d  l e f t  h '  ' d  l e f t  i '  

' t o  b e  a '  ' t o  b e  c '  

' n t a t i o n , '  ' n t a t i o n . '  

' r l e s ' s  d '  ' r l e s ' s  ~ '  
' u l d  b e  m'  ' u l d  b e  O '  
' e x a m i n a '  ' e x a m i n e '  

' w h i c h  s '  ' w h i c h  w '  

' n d i n g  o r '  ' r i d i n g  o v '  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2  
0000000000000002  

0000000000000002  

0000000000000002  

0000000000000002  

0000000000000004  

0000000000000004 
0000000000000004 

' e x a m i n a '  

'@ b e e n  a '  

'@ moor  a '  

which c '  

h a v e  r e '  

s t i c k ,  ' 
b r '  

was Of ' 

h a v e  b e '  

' ? "  " D o  ' 

' "  " A n d '  

' The  ' 

' e x a m i n i '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
' e  b e e n  i '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  

' e  moor i' 0000000000000008  

w h i c h  s' 0000000000000010 
h a v e  s e '  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  

s t i c k .  ' 0000000000000200  

f r '  0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0  

was on ' 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0  
h a v e  r e '  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  

' ? "  " T o '  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  

' "  " I n d '  0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0  

' t h e  ' 0000000020000000  

' m e r .  " '  ' m e s .  " '  0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
' h a d  you  ' ' h a t  you  ' 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  

' e r  a n d  s '  ' e s  a n d  s '  0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  

' a c t  ' ' a s t  ' 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
' n d  t h a t  ' ' n t  t h a t  ' 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  

' t h e  moo '  ' The  moo'  0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0  

' d  a t  t h e '  ' e  a t  t h e '  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' e  t h a t  t '  ' d  t h a t  t '  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' n  t h a t  t '  ' o  t h a t  t '  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' t  h a v e  b '  ' u  h a v e  b '  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' 8 a s k e r v '  ' " B a s k e r v '  0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' " I  h a v e  ' ' I h a v e  ' 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
' e  u p o n  t '  ' g  u p o n  t '  0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' l d  c o u n t '  ' n d  c o u n t '  0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
' e n  ' ' a n  ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' s .  ' 'w .  ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' a n d  ' ' i n d  ' 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' d  s u c h  a '  ' r  s u c h  a '  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
'He was a '  ' h e  was a '  2000000000000000 
' . ,  ~ rom ' ' n ,  f r o m  ' 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' b y  t h e  1 '  ' b y  t h e  m'  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

' e r  and  r '  ' e r  a n d  s '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
' h e a l t h , '  ' h e a l t h . '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2  
' h a p t e r  1 '  ' h a p t e r  3 '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2  

' o ~  t h e  m'  ' o f  t h e  o '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2  

' t e d .  ' ' t e d .  " '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2  
' t h a '  ' t h e '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4  

' t o  my a '  ' t o  my e '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4  

' ,  w i t h  a '  ' ,  w i t h  e '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4  
' t h a '  ' t h i '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  

' t h e  s t a '  ' t h e  sti' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  
' e  l a s t  f '  ' e  l a s t  n '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8  

' t o  be  c '  ' t o  b e  s '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  

' "  ~176 d '  ' "  " I  t '  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  

' e  t h e  r e '  ' e  t h e  s e '  0000000000000100  

'Ho lmes ,  ' 'Ho lmes .  ' 0000000000000200  
' d o '  ' l o '  0000000000000800  

' d o '  ' t o '  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
' my i n f e '  ' my i n v e '  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  

' t h e  far' ' t h e  n a r '  0000000000080000  

' t h e  Hed'  ' t h e  med'  0000000000200000  

' y  o f  t h e '  ' y  on  t h e '  0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0  

' on  ' ' o f  ' 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0  
' w e d ,  a n d '  ' w e t ,  a n d '  0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  

' a s  t h e  ' ' i s  t h e  ' 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0  

' e d  ' ' s t  J 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
' i t  may ' ' I t  may J 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0  

' ,  d '  ' -  d '  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' d s  w i t h  ' ' e s  w i t h  ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' h t  t h a t  ' ' i t  t h a t  ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' s .  ' ' r .  ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' u  h a v e  h '  ' t  h a v e  b '  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' t h a t  D r '  ' " t h a t  D r '  0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' d  in ' ' f  in ' 0200000000000000 
' f  t h e  c h '  ' d  t h e  c h '  0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' a n  ' ' e n  ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' p  u p o n  t '  ' t  u p o n  t '  0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' v e  ' ' r e  ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' f  w h i c h  ' ' n  w h i c h  ' 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
' e  h a v e  b '  ' u  h a v e  b '  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

' W e r e  t h e '  ' w e r e  t h e '  2000000000000000 


