
From Differential Cryptanalysis to
Ciphertext-Only Attacks

Alex Biryukov 1' and Eyal Kushilevitz 2,

(1) Applied Mathematics Department,
(2) Computer Science Department,

Technion - Israel Institute of Technology, Haifa, Israel 32000.
EmaJ]: {albi, eyalk}@cs, t echnion, ac. il

Abstract . We present a method for efficient conversion of differential
(chosen plaintext) attacks into the more practical known plaintext and
ciphertext-only attacks. Our observation may save up to a factor of 22~ in
data over the known methods, assuming that plaintext is ASCII encoded
English (or some other types of highly redundant data). We demonstrate
the effectiveness of our method by practical attacks on the block-cipher
Madryga and on round-reduced versions of RC5 and DES.

Keywords: block-ciphers, Madryga, RCS, DES, ciphertext-only attack,
differential cryptanalysis, differential-linear attack.

1 Introduct ion

Differential cryptanalysis [1, 12] is a very powerful technique for the analysis
of block-ciphers. I~ has been used with success against many block-ciphers,
e.g. [1, 2, 3, 18, 4]. One weakness of differential cryptanalysis is that it finds
chosen plaintex~ attacks; these are much less practical than known-plaintext and
certainly than ciphertext-only attacks. Ciphertext-only attacks are the most use-
ful attacks on cryptosystems, since they require only passive eavesdropping from
the attacker. Such attacks are usually hard to find, since the assumptions on the
knowledge of the attacker are minimal. Exceptions include the most basic ci-
phers, like simple substitution or Vigen~re [11].

Although there exists a general method for converting any differential cho-
sen plaintext attack into the more favorable known plaintext attack [1], this
conversion becomes (almost) impractical due to the huge increase in the data
requirements. If a differential attack uses m chosen-plaintext pairs, the corre-
sponding known-plaintext attack will need about 2~ 2v/2-m known plaintexts,
where w is the block size (in bits) of the analyzed cryptosystem. For exam-
ple, if a differential attack on a cryptosystem with 64-bit block uses only eight
chosen-plaintext pairs, the corresponding known-plaintext attack will require 234
known plaintext-ciphertext pairs, an increase which makes this attack much less
practical.

In this paper we show a method of converting successful differential chosen-
plaintext attacks into known-plaintext and even ciphertext-only attacks without

73

loosing as much efficiency as the above mentioned method, and under a reason-
able assumption that plaintext comes from a redundant source. Notice that due
to plaintext redundancy, the probability of some input differences increases, and
the probability of other input differences decreases or even becomes negligible. If
the probability of the input differences which are useful for the differential attack
is increased (depending on the type of input redundancy and the type of input
differences required for the attack on the particular cipher), then the cipher is
weaker against the differential attack combined with the redundancy assump-
tion. We show, for example, that under the assumption that plaintext comes
from ASCII encoded English encrypted in ECB (Electronic CodeBook) mode,
the probability of input differences with small Hamming weight (which are the
differences needed for most of the known attacks) increases significantly. There-
fore, only about 214 known-plaintexts are needed for a known-plaintext attack
of the previous example, saving a factor of 220 in data. Moreover, our observa-
tion helps to turn differential attacks into much more desirable ciphertext-only
attacks, with modest increase in data. Our efficient conversion method applies
also for the combined differential-linear attacks [13], which can be converted into
efficient known-plaintext attacks.

This paper is organized as follows: In section 3 we outline the principles of our
method. Then, we demonstrate its applicability for various ciphers; we start by
presenting a new differential attack on Madryga [14, 21] with only sixteen chosen
plaintext pairs. We use this cipher as a testing ground for the development
of our ideas. Then, we proceed to a ciphertext-only attack on Madryga with
only several thousand ciphertexts. We continue demonstrating the effectiveness
of our approach with a ciphertext-only attack on 4-round RC5 using only 217
ciphertexts, and a known plaintext attack on 6-round RC5 (as of today this is the
first known plaintext attack on this cipher) .with about 218 plaintext/ciphertext
pairs (the previous known-plaintext attack on this cipher [8] required 257 for
6-round RC5 but it was found erroneous [22]). We show a new known-plaintext
attack on seven round DES [19] with about 217 known plaintexts, t Finally we
show, that our attacks are applicable not only to ECB mode, but also to the
first block of the CBC (Cipher Block Chaining) mode if the initial vector (IV)
is unchanged for several datagrams or incremented sequentially, starting from
a random value (as is usually the practice on the Internet), and to the counter
mode [21].

To conclude, we show that differential attacks are very subjective to the un-
derlying plaintext redundancies. We mark the importance of studying differential
attacks on ciphers together with the underlying redundancies of the protocols,
they are used in. We also suggest methods, that may help to prevent attacks of
the kind described in this paper.

1 For FEAL [16, 17] there exist several very efficient known-plaintext attacks which
u s e specific features of this cipher. Our analysis is applicable to FEAL as well b u t

yields inferior results.

74

2 Differential Cryptanalysis

Differential cryptanalysis is a very efficient chosen plaintext attack on block-
ciphers [1]. The idea of differential cryptanalysis is to analyze pairs of plaintexts
instead of single plaintexts. An attacker chooses the difference Ap between plain-
texts (P, P*) and studies the propagation (avalanche) of the changes in the en-
cryption process. During the attack he searches and then studies the ciphertexts
pairs (C, C*), which exhibit difference AC, predicted by his analysis.

Let us introduce some terminology related to differential cryptanalysis. The
difference between two bit-strings X and X* of equal length is defined as X
X* = AX, where ~ is a bitwise XOR operation. We call a pair of plaintexts
(P, P*) a good pa i r with respect to differential analysis of a cipher, if it ex-
hibits the difference propagation and the output difference AC, predicted by the
analysis of a cipher. We call noise all pairs that are suspected to be good pairs
(i.e. pass all our criteria for good pairs (which we call filters)), but which do
not exhibit the difference propagation, predicted by the analysis.

It is well known, that unlike other chosen plaintext attacks, differential crypt-
analytic attacks can be easily converted to known plaintext attacks [1]. The idea
is similar to the Birthday paradox. Denote the length of the blocks in bits by w.
Suppose that differential chosen plaintext attack needs m pairs to succeed, and

2s
that we are given n ~ 2 2 2~m random known plaintexts and their ciphertexts.
These plaintexts can form about 2 w �9 m pairs. Since the block size is w bits,
there are only 2 w possible different XOR values and thus, due to the uniform
distribution of the plaintexts, there are about ~ = m pairs for each XOR
value (and thus, we expect m pairs with the specific differences, used by the at-
tack). In order to find pairs with useful input differences, one can sort the array
of n known plaintext/ciphertexts by plaintexts, and then search for pairs with
particular differences; the total complexity of this process is O(n log n). Once
these pairs are discovered a regular differential attack on the cipher may begin.

3 On Ciphertext-Only Attacks

In this section we describe our method for converting successful differential at-
tacks into ciphertext-only attacks (and known-plaintext attacks) with huge sav-
ings over the method described in the previous section. We show practical cases,
where this conversion can be applied very efficiently.

The essence of differential cryptanalysis is in studying the differences between
plaintexts, without using the plaintexts themselves (although there are many
ways of helping the analysis by adding the information about plaintexts). Thus,
one can perform a ciphertext-only attack on a cipher as soon as he is able to
detect ciphertext pairs that come from good plaintext pairs. Suppose that we
are in a ciphertext-only attack scenario and that we are given only a pool of n
ciphertexts, without the knowledge of the corresponding plaintexts. It may seem

n2
that we will have to check all the -y pairs, which is usually infeasible, and that
we will not be able to detect pairs that exhibit useful input difference (as we show

75

in the previous section). However, two observations may help in our case. First,
the structure of the ciphertext difference in a good pair may be very restricted,
and thus the search in a sorted pool of ciphertexts will still have O(nlogn)
complexity. The second observation is related to the possible redundancy of the
encrypted plaintexts. Usually not MI 2 w blocks are "legal" plaintexts, and the
probabilities of possible plaintexts may be very non-uniform. Thus, among the
pairs taken from a pool of redundant plaintexts, some differences will be very
frequent, and some will never occur.

Let us proceed with an important but simple to analyze example of plaintext
redundancy. Suppose that the plaintext source, produces blocks of w bits, and
has entropy of e bits (so there are w - e redundant bits per block). Suppose also
that the entropy is "bit-local ' : a fixed subset of e bits out of w is chosen and
may get all 2 ~ possible values uniformly. The other w - e = r redundant bits
are fixed to arbitrary values. This sort of redundancy describes many types of
computerized information (database records, network packets, etc.). Denote the
set of all such blocks as Se, and denote the set of all differences, produced by
elements of S, as ASe. Let there exist a fast differential attack on the cipher,
which succeeds with m chosen pairs, using differences from the set ASe. If the
differences used by the differential attack are not in ASe, then the cipher (taken
together with the redundancy assumption) is more secure against this differential
attack, than in the general (uniformly random plaintext) case 2 . For the described
type of redundancy, we can use only n~ ~ 2~ 2~-m ciphertexts, which form about
2era pairs. This pool contains about m pairs with useful input differences for a
differential attack. If the corresponding plaintexts are known to the attacker, he
can simply sort the table of given plaintexts and search in the sorted table for
pairs that exhibit the necessary input differences and proceed to analysis of the
pairs as in a regular differential attack.

If the corresponding plaintexts are not known, we are in a ciphertext-only
scenario. If we expect (due to differential analysis) a ciphertext difference in a
good pair to have a definite structure (for example, AC should be a particular
constant), then the probability for a random pair to have similar ciphertext
difference may be as small as 2 -w . Suppose for simplicity, that the probability
of a good pair is p ~ 1 (i.e., one good pair is enough to start a differential attack,
which is true in many cases). Since in a ciphertext-only scenario we do not know
which m pairs exhibit useful input differences, we can only hope that about one
pair in a pool of 2~m pairs of ciphertexts will be good for the differential attack 3.
The Signal/Noise ratio (ratio of the probability of a good pair to the probability
of noise) for the ciphertext-only attack in this case is SIN = 2-e'n-1 2~ = The 2 w ~-.
attack will be successful if SIN > 1.

2 This may lead to a method of strengthening for differentially-weak ciphers. Add
redundancy to the plaintext, in a way, that prohibits successful input differences.
For example one can use error correcting code (plaintexts be codewords), in order
to avoid input differences of low Hamming weight.

3 However, in order to find it we do not need to check all 2r pairs. If we are looking
for a well defined ciphertext difference, search in a sorted pool of n~ ciphertexts will
have O(n~ log n~) complexity.

76

We can generalize the description above in two ways. First, it may. be more
useful to consider a set of possible "good" output differences .4 0 of size 2 k, rather
than one output difference. If differences from the set Aa are equally likely to

2r-k appear in a good pair, then the Signal/Noise ratio will decrease to ~ , but
the probability of a good pair will increase (since we relax the conditions on the
differential propagation pattern), and thus m will decrease. In this case we have
to solve a more complex search problem. For example, we would like to find all
pairs with differences of low Hamming weight in reasonable time. We can state
this problem as follows:

P r o b l e m 1 Find all pairs (si, sj), i ~ j, in a given set S o f n binary words from
{0, 1} ~, such that dH(si, sj) < k (here dH denotes Hamming distance}. Let us
call such pairs k-neighbors.

We can reduce this problem to a well studied approximate string matching (ap-
proximate dictionary queries) problem. However most of the algorithms for this
problem are linear in the document size n. Since we have to call this algorithm n
times (to check neighbors of each element of the set), this results in a complex-
ity of O(n~), which is the complexity of checking all pairs in the set. In [23] an
efficient algorithm, based on tries, which runs in O(k[27[k) expected worst case
time (here I~UI denotes the alphabet size), independently of the document size
(n) is presented. Trie indices combine suffixes and so are compact in storage.
Applying this algorithm to our problem, we get O(nk2 ~) complexity. Though
exponential in k, it still provides a better algorithm than exhaustive check of
all pairs if logn > k + 1 + logk. Thus, for a set of size 22~ the search of all
15-neighbors can be performed faster than 239 using tries.

Since we have seen that redundancy in some cases helps for differential at-
tacks, our second observation concerns another useful type of redundancy - - the
natural language redundancy. For a natural language L over alphabet A, denote
by A n the set of all n-grams of the language. Then the n-gram entropy of the
language is:

H(X1, . . . ,Xn) = ~ -P(xn = s) logP(xn = s),
s E A ~

where X- = (X1, . . . , X,~) E A n. We say that the language has entropy HL if:

HL = lim H(X1 , . . . ,Xn)
r~---*oo n

In the case of the English language successive approximations of HL go as:
log 2 26 ~ 4.7, the first order approximation (English letter frequencies) gives

4.2, digram frequencies give ~ 3.9. Shannon [24] suggests a value of 2.3 bits
per letter for eight letter blocks. By various experiments, for large n the entropy
decreases into the interval 1.0 < HL < 1.5. By a gambling technique Cover and
King [6] give an estimate of 1.3 bits of information per letter. In [5] an upper

77

bound of 1.75 bit per letter is estimated from a large sample of ASCII encoded
English text.

Our experiments with large English files show, that some differences are
very frequently encountered, even in a small quantities of English plaintext. For
example, differences with low Hamming weights (especially one-bit differences
at the beginning and at the end of the block) are very frequent. For a more
detailed study of these differences see Appendix A. This fact can be used in a
differential known-plaintext and even in differential ciphertext-only attacks on
block-ciphers that are weak with respect to these differences. In the following
sections we demonstrate new attacks on Madryga, RC5 and DES which follow
the ideas expressed in this section 4.

As we explained here and as we will show in the further sections, differen-
tial attacks are very subjective to the underlying plaintext redundancies. We
stress the importance of studying differential attacks on ciphers together with
underlying redundancies of the protocols, they are used in.

4 Attacks on Madryga

We used the Madryga block-cipher [14, 21] as a testing ground for the devel-
opment of our ideas. In the following subsections we describe this cipher and
our attacks on it. We first find a very fast differentiM attack on M~lryga, which
uses negligible amount of data, and then proceed to a differential ciphertext-ouly
attack on this cipher, which is also very efficient.

4.1 Descr ip t ion of M a d r y g a

Madryga is a blockcipher proposed in 1984 by W. E. Madryga [14]. It was de-
signed for efficient software implementation. It consists of data-dependent rota-
tions and exclusive or's with the bytes of the key. Madryga was designed as an
alternative to DES (with larger key size - 64 bits) in order to permit efficient
implementation both in software and hardware.

Here is a description of the encryption Mgorithm. Block size and key size
in Madryga may vary, but 64-bit block size was suggested for compatibility
with DES. The key size in this case is also 64 bits. The encryption process
consists of two nested cycles. The out-most cycle consists of eight iterations
of the inner cycle. The inner cycle consists of eight local operations on the
block. A work frame (Frame) of three consecutive bytes blb2ba is chosen in the
plaintext block (Toxt), starting from the second last byte (the block is treated
as a cyclic entity). The 64-bit key (Key) is rotated by three bit positions to the
right and exclusive or'ed with the 64-bit constant (KoyHash). Rotation amount
is extracted from the three least significant bits of ba. Then the least significant
byte of the key is exclusive or'ed with bs. The concatenation of bibs is rotated by

4 For the rest of the paper, all attacks are described for the English language model
of redundancy, but they work even better in the "bit-local ~ model of redundancy,
when the entropy e is the English language entropy.

78

the rotation amount to the left. Then the working frame is shifted one byte to
the right and the process continues. The working frame moves to the right from
the starting second-last byte to the starting third-last byte. Here is a Madryga
implementation (WORD is 64 bits):

/* NADRYOA encrypt ion engine, 64 -b i t implementation. */
NORD EncKey; /* Secret Key */
WORD KeyHaeh = OxOF1E2D3C4B5A6978; /* Key Hash Constant * /
MORD Key; /* Work Key */
WORD Text; /* P la in tex t block * /
WORD Frame; /* Work Frame */
#define FrameNaek OxFFFF
#def ine TextNask OxFFFFFFFFFFFFOO00

Key = EncKey;
for(i=O; i < 8;

for(j=O;

}
}

i++){ /* Eight rounds */
j < 8; j++){ /* Eight bytes /b lock */
Frame = ROTL(Text,8*j)&FrameNask;/* Copy to Frame * /
Key = ROTR(Key,3)'KeyHash; /* Rotate & X0R with Hash*/
rotation_count = (Text >> (5 6 - 8 . j)) k 0xT;
Text *= (Key & OxFF) << (56 -8 . j) ;
RotateFrame(rotation_count);

/* Copy from Frame */
Text = (Text ~ ROTR(TextNask,8*j)) [ROTL(Frame,64-8*j);

4.2 D i f f e r e n t i a l A t t a c k on M a d r y g a

In this subsection we present a very efficient differential attack on Madryga, with
82% probability of success, that uses only sixteen chosen plaintext pairs. Another
differential attack, using 5000 chosen plaintexts was developed by Shirriff [25].

We start with two observations. The first observation is that keyscheduling
in Madryga is very simple: the initial key is at least as long as the block-size (64
bits in our case). In every iteration (every time the work frame is shifted) the
key is rotated to the right 3 bits, and exclusive or'ed with the key hash constant.
That means that simple equations relate bits of the key at each stage to the
bits of the initial key. The second observation is that block-sizes larger than 64
bits may only weaken Madryga. Data-dependent rotations in Madryga are very
local, and are the only tool to provide avalanche. It will take much longer for
small differences to propagate in a larger block.

We note that rotation amounts of the first round are known to an attacker.
They are saved before the last byte of the working frame is exclusive or'ed with
the corresponding byte of the key. Thus in a chosen plaintext attack, starting
with one-bit difference in plaintexts, and setting to zero (or other appropriate
value) two rotation amounts that may move this bit, one can assure that one-
bit difference is preserved after the first round (after eight frame operations)
and after the second round, if difference is placed in the upper five bits of the

79

byte. With probability (0.57) 4 ~ ~ (the probability for a difference bit not to
influence the rotation amounts after one round is intuitively ~, but due to weak
randomizing properties of Madryga it is slightly lower - 0.57; exact analysis was
done by [25] and is confirmed by our experiments) this one-bit difference will
propagate to the end of the sixth round (we number the rounds of Madryga
1, 2 , . . . , 8). At the 7th and 8th rounds, we allow the difference to propagate
arbitrarily (and it is even better for us if the one-bit difference will not be
preserved).

Due to the very slow avalanche in Madryga, it is clear that starting with
chosen plaintext pair differing by one bit, we will see many zeroes in the cipher-
text difference. The question is: what information about the secret key can be
derived from such a pair. In order to learn more from each pair, we do not care
for the behavior of the difference in the last two rounds (similar to the 2R attack
in [1]). This may cause many ciphertext differences, but we use a "go up" idea
similar to [4] to trace guesses about the key bits and the difference to a one-bit
difference after the sixth round. This way we get more bits of the key from each
pair (at least four and up to thirty bits, depending on the difference locations
in the last round), and at the same time increase the probability of a good pair.
Since each found key bit can be traced exactly to a bit of the initial key (due to
a simple keyscheduling algorithm in Madryga), our aim is to find about 30 key
bits. The rest can be found by a reduced exhaustive search.

Putting together the ideas expressed in this section, we need only about
sixteen chosen pairs with one-bit differences in order to find partial information
about the secret key. The rest can be done by a reduced exhaustive search, which
becomes feasible. Success probability of this attack is 1 - (1 - ~) I s ~ 0.82.

4.3 C i p h e r t e x t - O n l y At t ack on M a d r y g a

In this section we demonstrate how our method can be used in order to derive
ciphertext-only attacks. The differential attack described in the previous sec-
tion succeeds with only about sixteen chosen pairs. Therefore the corresponding
known plaintext attack, due to the conventional technique [1], will require about
285 known plaintexts. Although this number can be reduced, since any one-bit,
and even two-bit input difference will suffice for our attack, the pool of required
known plaintexts is still too big.

Under a reasonable assumption of highly redundant plaintext (for exam-
ple English text in ASCII format) the amount of data can be significantly re-
duced. Let us present an example of a ciphertext-only attack on Madryga with
only ~ 21~ ciphertexts, corresponding to English plaintexts (95 printable ASCII
characters), taken from the beginning of "The Hound of the Baskervilles" by
Sir Arthur Conan Doyle. In the pool of (2~ 2) ~ 223 English pairs, on the av-
erage about 26.6 pairs have one-bit differences. The probability that a one-bit
difference will be preserved during six rounds of Madryga is about (0.57) 6 "~ 2 -5
(this is lower than in the chosen plaintext case, since we cannot control the lo-
cation of the difference bit and the surrounding rotation counts before the first

80

round). Thus, about four good pairs are contained in the pool (even more if we
consider other small input differences). Some of those can be detected due to
low Hamming weight of the ciphertext difference. For any pair suspected to be
a good pair, we "go up" two rounds (using an idea from [4]), performing the
necessary guessing, and check if we arrive at a one-bit difference. This idea is a
very efficient filter, which helps us to discard almost all wrong pairs. If the pair
is good, it provides us with 10-30 bits of the secret key. Combining the guesses
from several good pairs we find about 30 bits of the key. The rest can be found
by a simplified exhaustive search, or by further analysis of the given ciphertexts.

Below, we provide an example of the attack discussed above. Note that plain-
texts and Plaintex~ Differences are unknown to the attacker, and they ap-
pear here only for the sake of completeness. We printed only ciphertext pairs
with Hamming weight (HW) less than 12 (the probability for a random pair to
have such a low Hamming weight is ~ 2-25). The probability for a random pair

64 58 to have one-bit ciphertext difference is ~-~ = 2- and in this example there are
two such differences 5 !

Plain1 Plain2 Plaintext Difference Ciphertext Difference HW

' e h a v e b ' ' u h a v e b ' 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 1

' t s u c h a ' ' d s u c h a ' 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

' f r ' ' b r ~ 0000000000000400 O00000DIE01COIO0 II

5 K n o w n P l a i n t e x t a n d C i p h e r t e x t - O n l y A n a l y s i s o f R C 5

RC5 is a fast block-cipher designed by Rivest in 1994 [20]. RC5 has an attrac-
tively simple structure. It is also very flexible to changes of parameters. RC5
has adaptable word size w in order to suit processors of different word-lengths, a
variable number of rounds r and a variable-length cryptographic key b (so that
the user can choose the level of security appropriate for his application). The
"nominal" choice of parameters proposed in [20] is: 32 bit words, 12 rounds and
a 16 byte key. This version of RC5 is referred to as: RC5-32/12/16. Another
version with 64 bit words and 16 rounds was suggested for future 64 bit archi-
tectures (RC5-64/16/16). The main feature of the cipher is intensive use of data
dependent rotations.

We use a description of RC5 as a so-called Feistel cipher from [8]. Denote
by (L0, R0) the left and right halves of the plaintext, and let Si be the ith sub-
key from the expanded key table S generated before encryption. The particular
expansion algorithm has no influence on our cryptanalysis. As in all previous
attacks, we assume that the subkeys produced by the key schedule are uni-
formly random. This is a reasonable assumption which helps us concentrate on
the properties of the encryption engine itself (it also simplifies the analysis of
probabilities). Let w denote the word size which is 32 for RC5-32/12/16. Then
the ciphertext (L2r+l, R2r+l) is calculated by the following equations:

5 N o t e t h a t o n e - b i t c i p h e r t e x t d i f f e r ences a r e less u s e f u l to u s in t h i s s cena r io , s ince

they disclose less bits of the key.

8]

L1 = L0 +So
R1 = R0 q- $1
f o r i = 2 to 2 r + l do

Li = Ri-1
Ri = ((L~-I �9 Pq-1) <<< R i - 1) "3 L Si,

where r - is the number of rounds, A <<< B denotes the rotation of word A by
(B mod w) positions to the left (if w = 32, then the rotation amount is contained
in five least significant bits of B), + denotes addition (mod 2 w), and ~ denotes
bitwise XOI~. The two equations in the body of the loop are called half-round.
Note that two consecutive half-rounds correspond to one original round of RC5.
The two initial equations are called the zeroth half-round.

Several attacks on RC5 were published [8, 10, 4]. Currently the best known
attack on RC5-32/12/16 is [4], a differential attack which uses 244 chosen plain-
texts. As of today no known-plalntext attack on RC5, even with reduced number
of rounds, exists due to recent result [22] which found gaps in the linear attack
on RC5 described in [8]. In this section we show a ciphertext-only attack on RC5
up to four rounds using only 217 ciphertexts and a known plaintext attack on
RC5 up to six rounds, which requires about 218 known plalntext-ciphertexts.

The attack described in [4] uses chosen plaintext pairs with small input
differences 6 . Our main observation is that, as in the previous section, assuming
that plaintext comes from an ASCII encoded English (all 95 printable charac-
ters are possible), the probability of a small input difference is very high. This
is true due to high redundancy of the English language, and due to the special
properties of ASCII encoding (for example, upper and lower case letters differ
in exactly one bit, etc.). See Appendix A for a study and examples of one-bit
differences in ASCII encoded English. Our experiments show that if the differ-
ential attack on 1~C5 uses m pairs, the corresponding known-plaintext attack
by our method will use ~ 2 l~ �9 ~ known plaintexts. For example, since the
differential attack on six rounds of RC5 requires 216 chosen plaintexts [4] our
method provides a known plaintext attack on six-round RC5 with about 218
known plalntexts. However there are several important differences between the
two approaches. First of all, note that the actual probability of a good pair for six
rounds of RC5 is estimated in [4] to be about 2 -12"6, and 216 chosen plaintexts
are required in order to detect several good pairs. Then, the differential attack
generates new pairs according to the "space oracle" suggested by several good
pairs. For example, pairs with the same five least significant bits of L0 and R0 as
in a good pair. This increases the probability of finding additional good pairs. In
our case, we can also detect the oracle structure, but we cannot use it to a full
extent by generating pairs according to it. However, we can still use it in order
to refine the filtration process, since many good pairs are missed by the attack at
the first stage. In our experiments we used 218 different known plaintexts (taken
from books by Charles Dickens) and they resulted in about 216"6 pairs with

0 This attack uses mainly symmetric two-bit differences like 80000000 80000000, how-
ever symmetric differences are more rare than one-bit differences in our case, and
thus we use one-bit differences, which are still good enough.

82

one-bit difference. Among these we were able to detect six pairs with ciphertext
difference Hamming weights less than 20 (the probability for a random pair to
pass this test is about 2-16"6), ranging from 14 to 19. They belonged to three
space oracles: two pairs to one oracle, three to another and one pair to another
one. Having detected the space oracles, it becomes possible to detect more good
pairs missed by the first step, due to the increase of the Signal/Noise ratio by
a factor of "~ 21~ In fact, the pool of 216"6 plalntexts with one-bit differences
contains 8-16 good pairs. This amount of good pairs is enough in order to find
about ten bits of the last round subkey of RC5. Although the full attack on RC5
according to [4] will require about 30 good pairs, it seems that a more thorough
analysis of the given pool of pairs, assisted by a partial knowledge of the key
will defeat six-round RC5 (two-bit and three-bit differences, that we omitted for
simplicity of the present description will help).

Furthermore, the pool of 2 lz ciphertexts can be used for a ciphertext-only
attack on RC5 with four rounds, and detect several good pairs even for five
rounds of RC5. The decrease in the number of rounds is due to more compli-
cated filtration, required by the ciphertext-only attack. The idea of this attack
is as follows. We know, that the set of all 233 pairs produced by a given pool
contains lots of good pairs (more than 27 good pairs). The problem is that with-
out knowing the corresponding plaintexts we have to check all the possible pairs,
which considerably complicates the filtration process. The solution is to search
for the differences with lower Hamming weight than in a known plaintext case
(less than 10). Note, that oracle information from the plaintexts is unavailable
in the ciphertext-only case. However, we are still able to detect about 16 good
pairs with low Hamming weights (from 4 to 8 in our experiment) and derive
the partial key information from them exactly as in the known plaintext case.
Using the partial key information, we can proceed to check the pairs with heav-
ier differences and thus find almost all bits of the last subkey. The attack then
continues with the same data, but with RC5 reduced by one-half round. Note,
that given a pool of the same size, encrypted by RC5 with five rounds, we still
can detect several good pairs with high probability.

A natural question that arises here is why we do not continue our attack for
more rounds of RC5. For example, due to our calculation the known plaintext
attack on eight-round RC5 by our method will require about 2 l~ ~ = 224"s
known plaintexts which still is a very practical amount of data 7. The problem is
that we need different plaintexts. In the case of a redundant source of plaintexts
we can easily get about 2 '~H blocks (where n denotes the size of the block in bytes,
and H denotes the entropy a single byte (letter)). For the English language,
organized in eight-letter blocks, we can get about 21s-219 different plaintext
blocks in a file of similar size (about 30% blocks appear several times in the file
of this size). Although it is possible to exceed the 2 '~H bound due to many rare
blocks that there are in English, one will have to request much more data in
the search for new blocks. Notice, however, that for 128-bit blocks this bound is

A pool of only about 220 different English pairs contains one good pair for eight-
round RC5 with high probability, but how to detect it?

83

about 230 (due to the larger block size, the entropy is lower - - between 1.5 and
1.7, and the distribution of the blocks is much more uniform). Thus, our method
is able to penetrate RC5-64/r/16 (a 128-bit version of RC5) for more rounds.
We leave the details of this attack for the full version of this paper.

6 K n o w n P l a i n t e x t A n a l y s i s o f D E S

The Data Encryption Standard [19] is one of the most important block-ciphers
nowadays. In the 90-s two powerful methods of cryptanalysis were developed
in attempt to break DES: differential cryptanalysis [1] and linear cryptanaly-
sis [15]. The first attack uses 24~ chosen plaintexts, the second uses 24s known
plaintexts. A mixed differential-linear approach was developed in [13] and suc-
cessfully demonstrated on DES reduced to eight rounds. This combined approach
starts as a differential attack for four rounds, preserving parity of particular bit
subsets, which are then used by linear relations for the last four rounds. Their
attack is a chosen plaintext attack with about 512 chosen plaintexts.

In this section we show that due to differential behavior of the first rounds of
the attack of [13], it is perfectly suitable for our method of converting differential
attacks into knowmplaintext and ciphertext-only attacks. Note however that we
cannot afford structures, that were used in [13] to gain the first round for free
and to decrease the data requirements from 1400 to 900 pairs. Thus, our attack
works against DES, reduced to seven rounds (and not eight rounds as in [13]).

We checked the probability of the input difference used in [13], assuming that
plaintext is ASCII encoded English s. In our experiment we used a file with the
book "David Copperfield" by Charles Dickens. This file contains 218 eight-byte
blocks, among these about 217"3 blocks are different. This file contains more than
215 different pairs with one-bit input differences. However these differences are
distributed very non-uniformly between the 64 possible bit-locations (see Ap-
pendix A). About two thirds of the differences occur in the four least significant
bits of the first byte and in the four least significant bits of the last byte. The
probability of a one-bit difference is relatively low for the middle bits of the block.
Taking into account the initial permutation (IP) of DES (which was irrelevant
to the analysis in [13]), the two bit locations toggled by the differential-linear
attack occupy bits 42,50 (corresponds to original 2,3 bits) or bits 44,52 (corre-
sponds to original 10,11 bits). In our experiment only 2 § 26 - 28 pairs toggled
the first group of bits, but 388 § 1348 -- 1736 toggled the second group. This
data is more than sufficient, since 1400 pairs can be used by [13]'s attack in order
to find six bits of the key with success probability more than 95%.

Note that our aim here is to demonstrate how our ideas work in practice and
not to provide the most efficient attack in a specific case. This task would require
a thorough study of the underlying redundancy together with the cryptanalysis
of the cipher. For example, one may find new attacks, which are optimal only in
this special case. See table 1 for a summary of our results.

8 The input difference toggles bits 2 and/or 3, or 10 and/or 11, the bits are counted
from 1 to 64 from msb to lsb.

84

Cipher
Madryga
RC5 (4 rounds)
RC5 (6 rounds)
DES (7 rounds)

Data for the Attack
16 chosen plaintext pairs or 4000 ciphertexts

21~ ciphertexts
2 is known plaintexts
217 known plaintexts

Table 1. Summary of our attacks for English plaintexts or bit-local redundancies with
English entropies.

7 Discussion

In this section we discuss modes of operation of block-ciphers in the context
of our attacks. See [21] for a full account on available modes of operation for
block-ciphers.

The attacks described in this paper are applicable first and foremost to re-
dundant data encrypted in ECB mode or to the case, when by an error CBC
decryption is performed instead of CBC encryption. However, data for these at-
tacks can be derived from the CBC encryption mode as well in the case, when
the initial vector (IV) (which is added to the first block of the plaintext before
the encryption) is not frequently changed. Another case is the case of sequential
IV increments (for example, a counter starting from a random value). These are
common practice on the Internet, and are suggested in [9] and in several other
Internet-drafts. This method is used to prevent repetitions of the first block,
assuming that the first block of the datagram is constant in many applications.
However, this method of IV choice provides many pairs, all with small input
differences, which can be used by our attack (given the first blocks of 2 k such
datagrams we get k �9 2 k-1 pairs with one-bit differences). Another method of
IV choice is the encryption of thee datagram sequence numbers or other incre-
mented entities, and sending IV in clear (explicit IV method) in order to avoid
problems with loss, duplication or re-ordering of datagrams. This method is also
very vulnerable to our analysis, and so is the case with other cryptographicaly
weak pseudo-random IV generators (even having relatively long periods). Note
that compression option, available in several protocols, does not influence this
attack, since it uses only the first block of the plaintext. A good method of IV
choice, that is suggested in several recent Internet-drafts, is the last ciphertext
block of the previous datagram. This method seems to provide much better
resistance to the attacks described in this paper.

Another application of our attack is to the block-cipher counter mode [21].
In this case a sequence of numbers is used as the input to a cipher in order
to generate a pseudo-random stream. However, due to the sequential nature of
the numbers being encrypted, the attacker obtains lots of data with small input
differences, so this mode of operation is particularly vulnerable to our attack.

There is a simple and efficient method that may increase the complexity of
the present attacks (at least for the types of redundancies, used in our examples).

85

Seeing that a combination of a cipher with ASCII encoded English is dangerous,
one can perform a fixed random permutat ion of the ASCII table. Before the
encryption, each plaintext byte is to be substituted for a new, permuted value.
Although due to the structure of the language, there still will be many blocks
differing only in one symbol, the probability of one-bit differences will decrease
considerably. Another method is to use error-correcting code, and let codewords
represent possible plaintexts. This way one can eliminate MI the low Hamming
weight differences in the plaintext. Note however, that adding redundancy to the
plaintext must be checked with the other existing attacks.

8 Acknowledgments

We would like to thank the Project Gutenberg [7], which was our source for
printed texts in English and Eli Biham for helpful discussions.

References

1. E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

2. E. Biham, A. Shamir, Differential Cryptanalysis of Feal and N-Hash, Lecture Notes
in Computer Science 547, Advances in Cryptology - EUROCRYPT'91, pp.l-17,
Springer-Verlag, 1991.

3. E. Biham, A. Shamir, Differential Cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer, Lecture Notes in Computer Science 576, Advances in Cryptol-
ogy - CRYPTO'91, pp.156-171, Springer-Veflag, 1992.

4. A. Biryukov, E. Kushilevitz, Improved Cryptanalysis of RC5, to appear, proceed-
ings of EUROCRYPT'98.

5. P. F. Brown, V. 3. Della Pietra, R. L. Mercer, S. A. Della Pietra, An Estimate of
an Upper Bound for the Entropy of English, Computational Linguistics, Vol. 18,
N. 1, pp.31-40, 1992.

6. T. M. Cover, R. King, A Convergent Gambling Estimate of the Entropy of English,
IEEE Transactions on Information Theory, Vol. 24, N. 4, pp.413-421, 1978.

7. Project Gutenberg, http://www.promo.net/pg
8. B. S. Kaliski, Y. L. Yin, On Differential and Linear Cryptanalysis of the RC5 En-

cryption Algorithm, Lecture Notes in Computer Science 963, Advances in Cryptol-
ogy - CRYPTO'95, pp.171-184, Springer-Verlag, 1995.

9. P. Kharn, P. Metzger, W. Simpson, The ESP DES-CBC Transform,
ftp:/ /ftp.isi.edu/in-notes/rfc1829.txt, 1995.

10. L. R. Knudsen, W. Meier, Improved Differential Attacks on RCS, Lecture Notes
in Computer Science 1109, Advances in Cryptology - CRYPTO'96, pp.216-228,
Springer-Verlag, 1996.

11. A. G. Konheim, Cryptography: A Primer, New York: John Wiley & Sons, 1981.
12. X. Lai, 3. L. Massey, S. Murphy, Markov Ciphers and Differential Cryptanaly-

sis, Lecture Notes in Computer Science 547, Advances in Cryptology - EURO-
CRYPT'91, pp.17-38, Springer-Verlag, 1992.

13. S. K. Langford, M. E. Hellman, Differential-Linear Cryptanalysis, Lecture Notes
in Computer Science 839, Advances in Cryptology - CRYPTO'94, pp.17-25,
Springer-Verlag, 1994.

86

14. W. E. Madryga, A High Performance Encryption Algorithm, Computer Security:
A Global Challenge, Elsevier Science Publishers, pp. 557-570, 1984.

15. M. Matsui, Linear Cryptanalysis Method of DES Cipher, Lecture Notes in Com-
puter Science 765, Advances in Cryptology - EUROCRYPT'93, pp.386-397,
Springer-Verlag, 1994.

16. S. Miyaguchi, A. Shiraishi, A. Shimizu, Fast Data Encryption Algorithm Feal-8,
Review of Electrical Communications Laboratories, Vol. 36, N. 4, pp.433-437, 1988.

17. S. Miyaguchi, Feal.N specifications, NTT, 1989.
18. S. Murphy, The Cryptanalysis of FEAL-4 with PO Chosen Plaintexts, Journal of

Cryptology, pp.145-154, 1990.
19. National Bureau of Standards, Data Encryption Standard, U.S. Department of

Commerce, FIPS pub. 46, 1977.
20. R. L. Rivest, The RC5 Encryption Algorithm, Lecture Notes in Computer Science

1008, Fast Software Encryption, pp.86-96, Springer-Verlag, 1994.
21. B. Schneier, Applied Cryptography Second Edition, John Wiley & Sons, New York,

NY, 1996.
22. A. A. Sel~uk, New Results in Linear Cryptanalysis of RC5, to appear, proceedings

of Fast Software Encryption 5, 1998.
23. H. Shang, T. H. Merrettal, Tries for Approximate String Matching, IEEE Trans-

actions on Knowledge and Data Engineering, Vol. 8, N. 4, 1996.
24. C. Shannon, Prediction and Entropy in Printed English, Bell Systems Technical

Journal, Vol. 30, N. 1, pp.50-64, 1951.
25. K. Shirriff, Differential Cryptanalysis of Madryga, unpublished manuscript,

http://ftp.cs.berkeley.edu/ucb/sprite/www/papers/maxlryga.ps, October 1995.

A An Example of One-Bit English Plaintext Differences

In this Appendix we present a short study of ASCII encoded English difference
behavior. We feel however, that this subject is worth a more thorough study.

In the left part of Figure 1 we present the distribution of weights of the
differences in a sample of 10000 blocks. We compare several English texts of
the same length: a sample from Dickens, a sample from Conan Doyle, a sample
from Merkle's description of Khufu and Khafre block-ciphers and the lst-order
approximation to English (correct letter frequencies) with a sample of 10000
uniformly random blocks. Axis x marks the weights of the difference from 0 to
64. Axis y marks the number of pairs with difference weight x. One sees that all
samples behave close to binomial distribution, however the mean of the random
sample is around 32 while the mean of all English samples is about 20. This is
explained by the fact, that English text consists mainly from ASCII encoded
letters, and thus only five least significant bits of each byte (40 bits altogether)
may vary, while the 24 most significant bits are constant most of the time. Thus,
even before starting the analysis of the language itself, one sees that differences in
ASCII encoded English are shifted to the low Hamming weight end. However in
the 10000-block Random sample there were no differences with Hamming weight
less than 11. The English samples behave very similar to each other, with an
exception of the lst-order English, which is the highest of them. This is at the
cost of reduced probability of differences in the low Hamming weight tail of the

8T

distribution. However in the main part of this paper we are interested exactly in
these low Hamming weight differences (e.g. one, two and three-bit differences).
This shows, that simple lst-order English is a bad approximation, for the needs
of our analysis. We observed that first order word approximation and especially
second order word approximation, behave very close to the real English in the
area of low Hamming weight differences.

2 ~

n ~ b

~,~

i?

. ",i
~ .

_ . r

. . . ~m 1 6 . ~ - -

1 2 f l o - -

I O . ' I n - -

I g I g - -

4r~ - -

n ~

, hill. ,,,,,. ,.,,,, ,dh

iii
,,, llflh
lll.llUlh

Fig. 1. Distribution of differences: (a) left figure compares English samples vs. Random
sample; (b) right figure shows distribution of one-bit differences.

In the right part of Figure 1 we show the distribution of one-bit differences
in English, calculated from a sample of about 217 different blocks, taken from
"David Copperfield" by Charles Dickens. Here we number the bit locations from
0 to 63 (from lsb to msb). As mentioned above, one sees that only about 40 out
of 64 bit locations account for significant amounts of one-bit differences (due to
ASCII encoding of English letters). One may see that ~ of the differences occur
in the four least significant bits of the first byte, and in the four least significant
bits of the last byte of the block. The probability of the one-bit differences in
the middle bits of the block is relatively low.

Below we present an example of English one-bit differences. These are the 85
one-bit differences obtained from a file of 5000 blocks, taken from the beginning
of "The Hound of the Baskervilles" by Sir Arthur Conan Doyle. The same data
was used in our ciphertext-only attack on Madryga in section 4.3.

88

' t h e r e h ' ' t h e r e i '

' d l e f t h ' ' d l e f t i '

' t o b e a ' ' t o b e c '

' n t a t i o n , ' ' n t a t i o n . '

' r l e s ' s d ' ' r l e s ' s ~ '
' u l d b e m' ' u l d b e O '
' e x a m i n a ' ' e x a m i n e '

' w h i c h s ' ' w h i c h w '

' n d i n g o r ' ' r i d i n g o v '

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0000000000000002

0000000000000002

0000000000000002

0000000000000002

0000000000000004

0000000000000004
0000000000000004

' e x a m i n a '

'@ b e e n a '

'@ moor a '

which c '

h a v e r e '

s t i c k , '
b r '

was Of '

h a v e b e '

' ? " " D o '

' " " A n d '

' The '

' e x a m i n i ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
' e b e e n i ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

' e moor i' 0000000000000008

w h i c h s' 0000000000000010
h a v e s e ' 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

s t i c k . ' 0000000000000200

f r ' 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

was on ' 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0
h a v e r e ' 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

' ? " " T o ' 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

' " " I n d ' 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0

' t h e ' 0000000020000000

' m e r . " ' ' m e s . " ' 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
' h a d you ' ' h a t you ' 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

' e r a n d s ' ' e s a n d s ' 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

' a c t ' ' a s t ' 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
' n d t h a t ' ' n t t h a t ' 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

' t h e moo ' ' The moo' 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

' d a t t h e ' ' e a t t h e ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' e t h a t t ' ' d t h a t t ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' n t h a t t ' ' o t h a t t ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' t h a v e b ' ' u h a v e b ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' 8 a s k e r v ' ' " B a s k e r v ' 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' " I h a v e ' ' I h a v e ' 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' e u p o n t ' ' g u p o n t ' 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' l d c o u n t ' ' n d c o u n t ' 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' e n ' ' a n ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' s . ' 'w . ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' a n d ' ' i n d ' 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' d s u c h a ' ' r s u c h a ' 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'He was a ' ' h e was a ' 2000000000000000
' . , ~ rom ' ' n , f r o m ' 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' b y t h e 1 ' ' b y t h e m' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

' e r and r ' ' e r a n d s ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
' h e a l t h , ' ' h e a l t h . ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
' h a p t e r 1 ' ' h a p t e r 3 ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

' o ~ t h e m' ' o f t h e o ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

' t e d . ' ' t e d . " ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
' t h a ' ' t h e ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

' t o my a ' ' t o my e ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

' , w i t h a ' ' , w i t h e ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
' t h a ' ' t h i ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

' t h e s t a ' ' t h e sti' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
' e l a s t f ' ' e l a s t n ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

' t o be c ' ' t o b e s ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

' " ~176 d ' ' " " I t ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

' e t h e r e ' ' e t h e s e ' 0000000000000100

'Ho lmes , ' 'Ho lmes . ' 0000000000000200
' d o ' ' l o ' 0000000000000800

' d o ' ' t o ' 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
' my i n f e ' ' my i n v e ' 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

' t h e far' ' t h e n a r ' 0000000000080000

' t h e Hed' ' t h e med' 0000000000200000

' y o f t h e ' ' y on t h e ' 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0

' on ' ' o f ' 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0
' w e d , a n d ' ' w e t , a n d ' 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

' a s t h e ' ' i s t h e ' 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

' e d ' ' s t J 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
' i t may ' ' I t may J 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

' , d ' ' - d ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' d s w i t h ' ' e s w i t h ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' h t t h a t ' ' i t t h a t ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' s . ' ' r . ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' u h a v e h ' ' t h a v e b ' 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' t h a t D r ' ' " t h a t D r ' 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' d in ' ' f in ' 0200000000000000
' f t h e c h ' ' d t h e c h ' 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' a n ' ' e n ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' p u p o n t ' ' t u p o n t ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' v e ' ' r e ' 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' f w h i c h ' ' n w h i c h ' 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
' e h a v e b ' ' u h a v e b ' 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

' W e r e t h e ' ' w e r e t h e ' 2000000000000000

