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Abstract  Tracking the 2D contour of a moving object has widely been used in 
the past years. So called active contour models have been proven to be a promis- 
ing approach to real-time tracking of deformable objects. Also tracking 2D con- 
tours, which are projections of rigid 3D objects, is reduced to tracking deformable 
2D contours. There, the deformations of the contour are caused by the movement 
in 3D and the changing perspective to the camera. 
In this paper a combination of 2D and 3D shape descriptions is presented, which 
can be applied to the prediction of changes in 2D contours, which are caused by 
movement in 3D. Only coarse 3D knowledge is provided, which is automatically 
acquired in a training step. Then, the reconstructed 3D model of the object is 
used to predict the shape of the 2D contour. Thus, limitations of the contour point 
search in the image is possible, which reduces the errors in the contour extraction 
caused by heterogenous background. 
The experimental part shows, that the proposed combination of 2D and 3D shape 
descriptions is efficient and accurate with respect to real-time contour extraction 
and tracking. 

1 Introduction 

In the past  years a new framework has been established for representing a deformable 
object  by its contour. Active contours [11] and related models have been developed and 
have been widely used in computer vision, for example for medical imaging, vision 
aided speech recognition (lip reading), segmentation and tracking [3, 14, 16]. 

Although active contour models  have been used for tracking moving objects, it is an 
open question how changes in the contour during tracking can be predicted. Using the 
data driven approach of  active contours usually no a priori knowledge of  the object  is 
available. Only a few mechanisms have been included providing the possibil i ty for pre- 
dicting the deformation of  the object 's  contour. For this, most researchers concentrate 
on the prediction of  2D changes without taking into account the motion of  the object 
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in 3D. [19] presents a Kalman-Snake combining the principles of active contours and 
prediction by a Kalman-Filter. In [1] the motion of the contour in the 2D image plane 
is predicted by computing the normal flow at the contour points. In the case of tracking 
rigid or elastic objects moving in a 2D plane parallel to the image plane some work 
have been presented which learn the possible deformations of the object and limit the 
contour point search on certain areas in the image [4, 12]. 

In the following, we focus on tracking the contours of rigid objects moving in 3D. 
Then, the deformation of the contour depends on the 3D shape of the object and is 
caused by the changing view to the camera. Without any prediction, problems arise, 
when the object moves in front of a heterogeneous background. Strong background 
edges often define local minima during the contour extraction process. As a result, the 
active contour is caught by the background and the moving object is lost. 

One straightforward approach to handle these problems is to predict the motion 
of the contour in the 2D image plane. This works very well (see [19]) in the case of 
tracking a single patch of the object or tracking an object, whose visible patches do not 
change. In contrary, if the visible parts of the object change, new object edges appear 
near the object itself (see Figure 1, (a)). Without any coarse knowledge about the 3D 
shape of the object these new edges cannot be distinguished from appearing background 
edges which have been covered before by the object (Figure 1, (b)). 

previous contour part 
rotation axis 

actual contour part 

background object contour part or background ? 

""T .... , ~ ~  

translation 

(a) (b) 

Figurel. Problem of predicting new contour parts: how can an active contour distinguish between 
a new contour part and an appearing background edge? (a) rotation of object. (b) translation and 
appearing background object. 

How can we get a solution for this problem? On the one hand we do not like to give 
up the data driven approach allowing a very fast and efficient tracking of moving objects 
even in real-time [5]. On the other hand, one needs to introduce knowledge about the 
moving object to increase robustness during tracking. Using knowledge can be a time 
consuming task which might prevent the use in real-time applications. 

In our contribution we concentrate on this trade-off. We present an efficient combi- 
nation of a 2D data driven contour extraction method and a 3D shape modelling tech- 
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nique. For 2D modelling of the contour as well as for 3D shape modelling a radial 
representation is used. Both representations can easily be mapped on each other, i.e. 
having several 2D views of the object the 3D representation can be built; having the 
3D representation the corresponding 2D contour can be predicted. And with a 3D rep- 
resentation and a single 2D contour corresponding to a unique view of the object the 
position of the object in 3D can roughly be estimated. For both the 2D and 3D case, it is 
possible to dynamically adjust the accuracy of the representation to the available com- 
putation time. This is an important feature for real-time applications. Thus, possible 
applications for our method exist in the field of autonomous mobile systems, where in 
different situations different objects need to be tracked: from unknown objects (obsta- 
cles) which need to be identified quickly and tracked without knowledge up to known 
objects in visual grasping tasks, where more time can be spent. Finally, the 3D contour 
prediction method itself can also be integrated in arbitrary contour tracking algorithms. 

In contrast to model based tracking algorithms [9, 10], we are not interested in an ac- 
curate 3D representation of the object. Active contours need only a coarse initialization 
near the contour which should be extracted. In our approach, the model of the object 
can also be constructed very quickly by presenting a sufficient number of 2D views and 
applying shape from contour methods. Finally, the experimental part will prove, that 
the 2D contour extraction, the 3D model construction as well as the prediction can be 
done in real-time on general purpose hardware. 

The paper is structured as follows. In Section 2 we shortly summarize the principles 
of 2D contour extraction by active rays. Section 3 discusses the basic concepts of shape 
from contour which is the key idea for our automatic shape reconstruction step. We 
focus on a radial representation of the object's shape by rays in Section 4, and show how 
the accuracy of the shape description can be adjusted dynamically. In Section 5 the basic 
concepts of shape from contour, the 2D contour representation, and 3D shape models 
are merged together to automatically reconstruct a 3D model by single 2D views. We 
also show, how the resulting coarse 3D model can be used to predict the changes in 
the 2D contour. In Section 6, experiments show the improvement for tracking objects 
moving in 3D. The paper finishes with a discussion in Section 7. 

2 A Radial Representation for Contour Extraction 

In this section a new approach will be shortly summarized for 2D contour extraction. A 
detailed description can be found in [6]. Instead of modelling the elastic contour by a 
parametric function in the 2D image plane [ 11 ], a different strategy has been developed. 

An initial reference point m = (x,~, ym) T inside the contour, which should be 
extracted, has to be chosen. This is similar to a balloon model [3], where the initial 
balloon also needs to be inside the contour of the object. In the next step the 2D image 
f ( x ,  y) is sampled along straight lines - -  so called rays - -  

Qm(r A) = f (Xm + A COS(r + A sin(C)), (1) 

from the reference point in certain directions. As a result for each ray we get 1D gray 
value signals which depend on the chosen reference point rn. Usually, for r the range 
from [0, 27r[ is sampled more or less dense, depending on the necessary accuracy of 
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the extracted contour. For real-time applications, this can be controlled by the available 
computation time. 

,~ (r a) 

contour C 

Figure2. Representation of a contour point by active rays 

Now, for contour extraction the rays Qm(r A) are taken. For each 1D gray value 
signal, features are computed to identify the position A* (r >__ 0 of the object's bound- 
ary on the ray. One possible criterion, which we call external energy, is the gradient 

A* (r x ( - -  ~Qrn(~b')~) 2) ' (2) 

of the 1D gray value signal to identify contours by changes in the gray values. Also, 
more sophisticated energies have been used, for example changes in the variance of the 
gray values to extract textured regions. 

Based on these features for direction r the position A* (r is identified, which cor- 
responds to the object boundary 

Crn(r = (Xm + )~* (r cos(e), Ym + )~*(r sin(e)), (3) 

in the 2D image plane, with 0 < r < 27r. This works well for convex contours, because 
then each ray only hits the object contour once. Depending on the position of the refer- 
ence point, this is also true for some concave contours. In the general case of concave 
contours, a mechanism has been provided, which allows more than one contour point 
on each 1D gray value signal. This case will not be discussed in this paper. A detailed 
description can be found [6]. In contrast to [18], where also a radial representation is 
proposed, but no energy description for the contour extraction, we force - -  similar to 
active contours - -  the smoothness of the 2D contour Crn(r E ]R 2 by defining an 
internal energy Ei 

d 2 2 
E, (C m ((~)) ---- Ot (~b)[ ~r A (r q- ~ (~b)[ ~ A (r (4) 

2 
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The internal energy is based on the distance of the contour point to the reference point. 
d 2 

Since the derivative of the distance ~-~A(r and the curvature ~-TzA(r describe the 
smoothness of the contour, this energy forces coherence of the contour in the image 
plane. Now, the contour extraction, i.e. searching for the function A* (r can be de- 
scribed as a minimization of the total energy E 

),* (r f 
o 

d~ X 2 ] 
i a ( r 1 6 2  2 +~(r (r d 2 -I~0m(r ] de. (5) 

2 

This algorithm has been successfully applied to real-time pedestrian tracking in natu- 
ral scenes [8]. More details of the mathematical derivation can be found in [6]. In this 
paper we focus on the combination with a 3D prediction step. In the next two sections 
we summarize the mathematical preliminaries for 3D object modelling and shape from 
contour. In Section 5 we will show, that in a combination with a similar 3D represen- 
tation the 2D radial representation has advantages. It is beyond the scope of this paper 
to make comparisons to other contour based tracking algorithms, especially active con- 
tours. Such a discussion can be found elsewhere. 

3 Concept of 3D Reconstruction from 2D Contours 

We are interested in tracking rigid objects moving in 3D. We focus on contour based 
methods (see Section 2). Thus, we need to describe formally, how 2D contours of 3D 
objects are generated. An important term in this context is the silhouette of an object. 
Since the next section describes how to build an object description out of segmented 
silhouettes, it is also important to define two further concepts, the visual and outer hull, 
which give approximations of 3D objects. 

Let the object O be represented by a set of points x E 1/3. The points xM C O 
are constant within the model coordinate system. In the following we assume, that the 
transformation of a point in model coordinates x,, to camera coordinates :~c is given 
by the relation Xc = RMcXM + tMc. In the case of model reconstruction, the rotation 
matrix RMc and the translation vector tMc are assumed to be known, either by defining 
the viewing angle in a training stage or by estimating the pose of the object from 2D 
images. 

3.1 Object Silhouettes 

A descriptive illustration of an object silhouette is the shadow of an object produced on 
a plane by a single light spot. Following [13], a definition of a silhouette might be: 

The word silhouette indicates the region of a 2D image of an object O 
which contains the projections of the visible points of O. 

The projection of object points to image points can be described by many different 
models. Generally, the projection function is denoted by 7 ) : 1/3 --+ 112. Here we 
only consider the cases of orthogonal and perspective projection, but other projections 
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are adaptable to the later concepts without big efforts. The backprojection function 
7 ~-x : 1t 2 --+ 1t 3, concerning a specified projection T', is defined by 

: =  = .  {=c �9 : = .} .  (6) 

This mapping of  image points zp to points in zc  camera coordinates is not unique, 
because of  7 ~ not being injective. 

Using these definitions, the silhouette of  an object O in the pose (R ,c ,  t~c) created 
by projection 7 ~ is formally denoted by 

(7) 

It is assumed, that the silhoutte has no "hole", therefore it can be represented by its 
contour. As we know the contour of  an object by tracking it using active rays, we have 
a representation of  the object silhouette at any time of the trace. 

3.2 Outer and Visual Hull 

Figure3. Building two silhouettes of an object (a), the outer hull of these silhouettes (b) and the 
visual hull (c) 

Now we examine the problem of  reconstructing an object out of  its silhouettes. 
Given n sequentially recorded silhouettes tSRMc(t),tMc(t), 1 < t <_ n, we define the 
abbreviation S(t) = tSRMc(t),tM,.(t ). The backprojection G'M(t) of  the Silhouette S(t) is 
given by the union of the backprojections of  all points xp E S(t).  Written in model 
coordinates, we can calculate 

cM(t) r = R M c ( t )  �9 - t M c ( t ) ) ,  (8) 

where an operation o between a set B and an element b is defined as the set of  results 
of  the operation between this vector and each element of  B: B o b := {x  o b [ x C B}.  

Using equation 8, the concept of  the outer hull A~ is defined in [ 17] as follows: 

t2 

t=l~ 1 

(9) 

Figure 3 shows an example, comparing the principles of  the outer and visual hull. Re- 
constructing objects by building the outer hull, is known in the literature as so called vol- 
ume intersection algorithms or as shape from contour techniques. In [13] an overview 
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Figure4. Illustration of building the outer hull of two given rectangular silhouettes by intersecting 
their backprojections. (a): intersection, (b): outer hull 

therefore is given. Figure 4 illustrates this concept. The outer hull is built out of  two 
rectangular silhouettes. In the case of  central perspective projection, the backprojec- 
tions of  rectangles are pyramids with infinite height. These pyramids are intersected, to 
build the outer hull. 

Algorithm to calculate the outer hull of silhouettes 
Parameters: S(t), RMc(t), tMc(t), 1 < t < n 
Initialization: ~ := R ~ 
FOR all t with i < t < n 

Transformation into camera coordinates: 
t - IAc := RMc(t) �9 t-tAM + tMC(t) 
Intersection with backprojection of silhouette: 
tA c := t - lAc  fq 79-1(S(t)) 
Transformation into model coordinates: 
tAM := RMrc(t)( tAc - tMc(t)) 

Return: outer hull hAM 

Figure5. Algorithm for the iterative calculation of the outer hull 

Joining all possible backprojections of  an object, an upper limit for the outer hull 
is given by the concept called visual hull H(O)  of  an Object O. It can be described in 
correspondence to [ 13] as the unity of  all points, whose backprojection of  any projection 
intersects the object O. The following relation holds: O _C H(O)  C_ AM. We now use 
the outer hull AM as an approximation of  the true object O. As already mentioned, 
we can do this, because in the context of  active contours, a coarse initialization of  the 
contour around the true contour is sufficient. 

The associative property of  the uniting operation allows the construction of  the outer 
hull as it is described in Figure 5. This algorithm has to be applied to the special 3D 
representation, which is used to model the point set, building the outer hull. 
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4 3D Radial Object Representation 

The idea of representing contours with 2D rays is now extended to the third dimension. 

(a) (b) 

Figure6. Definition of ray directions as normal vectors on the boundary plains of regular polyhe- 
drons; (a) icosahedron, (b) icosahedron with normal vectors 

To avoid confusions, following notations are used to distinguish between the 2D 
and 3D case: the accent - denotes, that the corresponding symbol belongs to 3D rays, 
the accent ^, that it belongs to the projection of a 3D ray, and without accent, that it 
belongs to a 2D ray. The 3D ray representation/~" can then be written as a tuple: 

k := (r162 rn, X: if" ~ ~ U ~ ) .  (10) 

I/V is the set of direction vectors n of the predefined 3D rays with I lnll = x. The vector 
rh E ~3 denotes the reference point and the function A returns the length of the ray in 
direction n. The value oo means, that this ray length is undefined, yet. 

Each ray represents a single point on the surface of the object. If  we define the 
representation continuously, i.e. W = {x E ~3 [ I1=11 -- x}, the represented point set 
is equal t o { x E ~ 3  [ x = r h + k n , 0 < k < ~ ( n ) , n E l f V } .  

In the discrete case, the choice of the directions l~  should be distributed regularly. 
Moreover the resolution should be changeable dynamically to achieve any-time behav- 
ior. If  we define the regularity in the sense that neighboring directions shall enclose all 
the same angle, we are restricted to 20 directions, defined by the normal vectors of the 
icosahedron, being the regular polyhedron with the most plains (see Figure 6). This is 
equal to take the 20 corners of the dodecahedron, being the regular polyhedron with the 
most corners. 

In [2] a method is described, to subdivide an icosahedron, so that the error in the 
regularity is minimized. Taking the 20 normals and the 12 corners of the icosahedron, 
60 triangular plains can be defined. 

This approximation can be refined by subdividing the triangles into subtriangles, 
defining three new points bisecting the three sides. 

Using this representation, all convex and some concave objects can be described. 
Like in the 2D case concave objects exist, which cannot be represented. Also holes 
in the objects can better be approximated using different representations (for example 
octrees); since we are only interested in the contour and a efficient mapping from 3D to 
2D rays and vice versa, this is not relevant for our approach. 
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5 Application to Contour Based Object Tracking 

We have seen, how to build the outer hull of an object from its silhouettes (Section 3). 
Besides we have designed a 3D representation by 3D rays, similar to the 2D ray rep- 
resentation (Section 4). Using these concepts, it is shown how to create the 3D object 
model (Section 5.1) and to extract its contour in a given pose (Section 5.2). Section 5.3 
describes how to use this model to predict contours during tracking objects. 

5.I 3D Model Generation 

Now we apply the algorithm described in Figure 5 to the 3D representation developed 
in Section 4. After each iteration step, the 3D ray model shall represent the outer hull, 
which is generated by intersecting the backprojections of the extracted silhouettes. 

The goal is to represent the outer hull AM by the 3D ray representation /7~M = 
(WM, 03, AM). The reference point is set to 03 without any loss of generality. 

According to Figure 5, 0AM has to be set to IR 3 at the beginning. This is done in 
OKM by assigning 0~M(nM) = OO. In a second step, the set tAM - -  using model coor- 
dinates - -  has to be transformed to camera coordinates. This is done by transforming 
/s to /s following: 

t/(c = (We, r~c, Ac), with (11) 

#c = RMC(t)" #M, 
rhc = tMc(t), 

Ac(nc) = AM(riM) where nc = RMc" riM. 

*Kc therefore represents the set tAc. 
Now, t/s has to be intersected with the backprojection of the Silhouette S(t), 

represented by the active contour tK.  It is mathematically clear, that for an object 
O, a silhouette S and an arbitrary point p E ~s ,  the relation 7"(p) • 7"(H(O))[= 
7'(0) = S] ::~ p r H(O) holds. Besides we know 7"(p) C S r p E P - I ( S ) .  
We see, that all points p with 7"(p) q~ S have to be removed. Applying this to the ray 
representation, only those rays are affected, whose projections are not totally contained 
in the silhouette. These rays have to be cut, so that the ends of their projections lie on 
the border of the silhouette. Figure 7 shows this operation and the notations used here. 

Let us describe this cutting step formally, by first calculating the 2D projection 
of each of the 3D rays. The starting point of each ray, i.e the reference point rhc, is 
projected to 7"(rhc). For each 3D direction nc E lYrrc the corresponding angle r  
and the length A(r can be determined by applying the projection function 7". 

These projected rays have to be intersected with the extracted contour tK.  There- 
fore, we overlay t K  with the projected rays. This is done by setting the reference point 
m := 7"(rhc), being possible, because m can be chosen arbitrarily. 

According to the preliminaries, a unique intercept point of the backprojection of the 

(eos(q~(nc)) ] with the ray in direction contour point e(q~(nc)) = rn + A(q~(nc)) k, sin(~b(rLc)) nc 
/ 

exists. The intersection of a 3D ray with the backprojection of the silhouette S therefore 
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Figure7. lllustration of the cutting algorithm 

is done by setting the ray length 5~c(nc) to p(nc), if the former ray length was larger. 
The value p(nc) is defined by following relation: rhc+p(nc)nc E 7 9-1 (c(~b(nc))). For 
the case of parallel or perspective projection, p(nc) can be determined easily: p(nc) = 

5,(nc) �9 A(q~(nc)). Formally, the intersection can be written as following: 5,(~(nc)) 

Ac(nc) := { Ac(nc) i f i ( r  _< A(r 
p(nc) i f i ( r  > A(r " 

(12) 

By applying this cutting step to every single ray, t/~ represents the outer hull tAM, 
afterwards. 

5.2 Model Based 2D Contour Computation 

In the following, the method is shortly summarized to create the silhouette of the 3D 
ray model in a given pose (RMc, tMc). The resulting silhouette shall be represented by 
K --- (m, A). The reference point m is set to "P(rhc). It remains to determine the values 

In the continuous case, for each value ~b, a set of B(r C 1~ of 3D rays can be 
found, defined by following relation: nc E B r ~b(nc) = ~b, where the function ~b 
is defined equal Section 5.1. For each direction nc also the length A(C(nc)) can be 
determined. The value ),(r is now given by the following equation: 

A(r = max{X(~b(nc)) I nc E B(r (13) 

In the discrete case, the set B(~b) is given by the relation nc E B r  ~b - A~b _< 
~b(nc) < ~b + A~b, where A~b denotes the maximum 3D angle between two neighboring 
3D rays. The value A(~b) is then defined equal to the continuous case. 
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Figure8. Data flow between 2D and 3D ray representations. A set of extracted 2D contours is 
used for 3D model generation. The model can then be used to predict a 2D contour for a given 
pose of the object. 

5.3 System Integration 

Now the 2D and 3D ray representations are tied together for contour based object track- 
ing. In Figure 8 the connections between both representations and the system integra- 
tion is clarified. The important aspect for object tracking is the possibility, that for each 
angle r we get an interval I ( r  = [As (r Ae (r which is used to limit tim contour 
point search in the 2D image plane (compare Section 2). Thus equation (5) becomes 

d 2 )~ 2 ~ ] (r 
A* (r -~urgmin - ]  #rn(r dr 

~(r162 2 

Having both, the 2D contour and the 3D model, a coarse 3D pose estimation is possi- 
ble, which is needed to perform a 3D motion estimation and prediction with a Kalman 
filter. For this, we have to define a distance function dist(v, vr), which measures the 
similarity of two 2D contours v and v ' .  Then the 3D pose, defined by R~c and tic, can 
be estimated by 

(RMC , t~c) T = argmin dist(v, v ' )  (15) 
RM~, tM~ 

where v corresponds to the extracted 2D contour and v t is the 2D contour of the model 
under the transformation Ruc and tuc. 
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Figure9. Some images out of the sequence taken from [15] and one recorded by us, and recon- 
structed coarse models. 

6 Experimental Evaluation 

We have conducted several experiments, concerning the 3D reconstruction, 2D predic- 
tion and tracking. In Figure 9 some images of two sequences are shown with the models 
reconstructed models. The first sequence totally consits of 36, the second of 9 images. 
Several other objects (for example, see Figure 10, right) haven been reconstructed. We 
have tested convex objects as well as concave objects. Although the reconstructed 3D 
shape of concave objects does not look quite well, the model is accurate enough con- 
cerning the accuracy of the predicted 2D contour. 

The computation time for model generation depending on the 2D and 3D ray resolu- 
tion are summarized in Table 1. For the models in Figure 9 and 8 an amount of 960 3D 
rays and 36 2D rays have been chosen, which means, that also model generation can be 
done in real-time. This is important for an online model building during tracking in the 
future. Another example for model generation can be seen in Figure 10 showing a toy 
train, following an elliptic way. Although the real pose of the object was estimated very 
roughly by deviding the whole rotation angle by the number of images and assuming a 
vertical rotation axis, the reconstructed model nearly has the same side relations as the 
original one: l : 1.45 : 1.95 (model) and 1 : 1.37 : 1.63 (original object). 

In Figure 10 three predicted contours and the corresponding extracted contours for 
the model from Figure 9 are shown, which proves the accuracy of contour prediction. 
The computation time for 2D contour prediction can be seen in Table 1. The mean error 
in the ray length is about 2% to 5% of the extracted ray length, varying in the different 
views. 

Finally, in Figure 11 a result for tracking a moving toy train is shown. The extracted 
motion path is overlayed the image. 

7 Discussion and Future Work 

In this paper we have presented an efficient combination of a 2D contour representa- 
tion and a 3D modelling technique. The motivation of the work has been to provide 
a mechanism for 2D contour prediction of rigid objects moving in 3D. This is an im- 
portant aspect for contour based tracking algorithms in the case of natural scenes with 
heterogeneous background. 
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Figurel0. Left: comparison between predicted 2D contour (first row) and extracted 2D contour 
(second row). The prediction is accurate enough to successfully limit the search space for 2D 
rays. Right: one image out of a sequence following a toy train (top) and the reconstructed coarse 
model (bottom). 

model generation contour generation 
number of 3D rays number of 3D rays 

number of 2Drays 6019601 15360 6019601 15360 

18 1 8 145 1 8 149 
36 1 8 143 1 10 179 
180 1 7 119 5 26 423 
360 2 8 120 10 51 733 

Tablel. Computation time for processing one image during the process of model and contour 
generation, depending on the 2D and 3D ray resolution (in msec. with an SGI Onyx R 10000) 

A short introduction to a radial representation of  2D contours and an energy descrip- 
tion for data driven contour extraction has been followed by a similar representation of 
3D objects. The 3D model of  an object can be built from a set of  different 2D contours. 
Well known methods from shape from contour have been applied. The key idea has 
been, to make use of  the similar representations, namely a radial representation for the 
2D as well as for the 3D case, to achieve real-time performance. This has been proven 
in the experimental part. 

It is worth noting, that we did not want to implement an accurate 3D model gen- 
eration algorithm. In the context of  active contours, a coarse 2D contour initialization 
is sufficient to extract the object's contour in the following energy minimization step. 
Thus, the 3D visual hull of  the object is sufficient for modelling the contour changes 
during tracking. At present, we are integrating this approach in our real-time object 
tracking system. Preliminary results show, that the performance of  the system can be 
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Figurell. Left: tracking result (3D path of the moving object overlayed the image) in the case of 
partial occlusions. Right: resampling of a 2D contour with a different reference point. 

increased for partial occlusions of the moving object. Also, the 3D pose estimation 
over time can be used for qualitative 3D motion estimation (for example, the object is 
moving toward the camera) of the moving object, as it has been reported in [7]. 

In the near future we focus on the following. First, during 3D model generation, the 
3D rays, which have been cut due to a segmentation error, cannot increase in length. 
This results in holes on the objects surface. Secondly, the initial 3D pose estimation 
of the object is a time consuming task, in the case that no a priori pose information is 
possible. Then, the complete parameter space RMc and tMc has to be searched. After the 
initialization, this can be done in real-time by assuming, that the pose of the object is 
changing slowly. 

Appendix: Technical Details for the Contour Comparison 

In our implementation of the system, we made the assumption of orthogonal projec- 
tion. Then we are able to calculate the 2D translation t2o between the extracted and the 
model contour: t2D = b - b, where b denotes the balance point of the extracted contour 
and b of the projection of the model silhouette. 

To compare the two contours, we have to superimpose them and also their reference 
points must be equal. We set the projection of the reference point of the model to 02, 
so we only translate the extracted contour by subtracting the translation vector t2D from 
the reference point m .  Then we resample the extracted contour with the new reference 
point 02 by trigonometric calculations illustrated in Figure 11. 

Afterwards for each new defined ray of the 2D representation, the corresponding 
ray length of the model projection can be determined by equation 13. To get the differ- 
ence measure in equation (15) between the two contours, we integrate over the square 
difference of the accoring ray lengths. 



857 

References 

1. M. Berger. Tracking rigid and non polyhedral objects in an image sequence. In Scandinavian 
Conference on Image Analysis, pages 945-952, Tromso (Norway), 1993. 

2. R. Beg. Objekterkennung mit dem Extended Gaussian Image. Technical report, Diploma 
thesis, Lehrstuhl for Mustererkennung (Informatik 5), Universit~it Erlangen-Nfirnberg, Er- 
langen, 1993. 

3. L.D. Cohen and I. Cohen. Finite-element method for active contour models and balloons 
for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
15(11):1131-1147, 1993. 

4. T.E Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models - -  their training 
and applications. Computer Vision Graphics and Image Processing, 61(1):38-59, 1995. 

5. R. Curwen and A. Blake. Dynamic contours: Real-time active splines. In A. Blake and 
A. Yuille, editors, Active Vision, pages 39-58. MIT Press, Cambridge, 1992. 

6. J. Denzler. Active Vision for Real-Time Object Tracking. Dissertation, Technische Fakult~it, 
Universit~it Erlangen-Nfimberg, Erlangen, in preparation, 1997. 

7. J. Denzler and H. Niemann. 3d data driven prediction for active contour models based on 
geometric bounding volumes. Pattern Recogniton Letters, 17(11): 1171-1178, 1996. 

8. J. Denzler and H. Niemann. Real-time pedestrian tracking in natural scenes. In G. Sommer, 
K. Daniliidis, and J. Pauli, editors, Computer Analysis of  Images and Patterns, CAIP'97, 
Kiel 1997, pages 42-49, Berlin, 1997. Lecture Notes in Computer Science. 

9. D.B. Gennery. Visual tracking of known 3d objects. International Journal of  Computer Vi- 
sion, 7(3):243-270, 1992. 

10. C. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors, Active Vision, 
pages 59-74. MIT Press, Cambridge, 1992. 

11. M. Kass, A. Wittkin, and D. Terzopoulos. Snakes: Active contour models. International 
Journal of  Computer Vision, 2(3):321-331, 1988. 

12. K.F. Lai and R.T. Chin. Deformable contours: Modelling and extraction. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 15(1): 1-20, 1996. 

13. A. Laurentini. How far 3d shapes can be understood from 2d silhouettes. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 17(2):188-195, 1995. 

14. F. Leymarie and M.D. Levine. Tracking deformable objects in the plane using an active con- 
tour model. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 15(6):617- 
634, 1993. 

15. S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (coil-20), 1996. 
http://www.cs.columbia.edu/CAVE/coil-20.html. 

16. R. Ronfard. Region-based strategies for active contour models. International Journal of  
Computer Vision, 13(2):229-251, 1994. 

17. C.G. Small. Reconstructing convex bodies from random projected images. The Canadian 
Journal of  Statistics, 19(4):341-347, 1991. 

18. S.M. Smith and J.M. Brady. Asset-2: Real-time motion segmentation and shape tracking. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):814-820, 1995. 

19. D. Terzopoulos and R. Szeliski. Tracking with Kalman snakes. In A. Blake and A. Yuille, 
editors, Active Vision, pages 3-20. MIT Press, Cambridge, 1992. 


