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Abst rac t .  In this paper we describe a method for estimating the in- 
ternal parameters of the left and right cameras associated with a stereo 
image pair. The stereo pair has known epipolar geometry and therefore 
3-D projective reconstruction of pairs of matched image points is avail- 
able. The stereo pair is allowed to move and hence there is a collineation 
relating the two projective reconstructions computed before and after 
the motion. We show that this collineation has similar but different pa- 
rameterizations for general and ground-plane rigid motions and we make 
explicit the relationship between the internal camera parameters and 
such a collineation. We devise a practical method for recovering four 
camera parameters from a single general motion or three camera param- 
eters from a single ground-plane motion. Numerous experiments with 
simulated, calibrated and natural data validate the calibration method. 

1 I n t r o d u c t i o n  

Traditional stereo vision systems use a single image pair to provide projective, 
affine, or Euclidean reconstruction. It has been clear that redundancy offered by 
further image pairs can significantly increase the quality and stability of visual 
reconstructions. Nevertheless, if the visual task is to recover metric structure, 
there are problems because both the intrinsic parameters (of the left and right 
cameras) and extrinsic ones (relative position and orientation of the two cameras) 
can vary over time. This is particularly critical when an active stereo head is 
being used. It is therefore important to be able to re-calibrate the stereo rig 
over time and over a small number of motions without using any special purpose 
calibration device. 

A number of authors investigated the relationship between projective, affine, 
and metric spaces in conjunction with a single camera undergoing rigid motions 
[10,6,7,13,15]. In [14] it is shown that there are many critical situations for which 
metric structure cannot be recovered. When image pairs are available one may 
use additional constraints. Affine structure can be recovered from either pure 
translations [12], pure rotations [2] or ground-plane motions [1] of a stereo rig. 
For general motions, affine structure can be estimated from the eigenvector of 
a 3-D collineation [17] and metric structure can be estimated from two general 
motions [3]. Furthermore, in [8] it is shown that  affine structure is an intrinsic 
property of a rigid stereo rig and that it can be easily recovered by combining 
any number of general motions. 
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In this paper  we develop closed-form solutions for the self-calibration of a 
stereo rig from a s ing le  general or ground-plane motion. The basic assumption 
is that  the stereo rig has the same internal and external parameters  before and 
after the motion. More precisely, let 791 and 792 be two projective reconstructions 
obtained with an uncalibrated stereo rig before and after a rigid motion. These 
two reconstructions, i.e., a set of 3-D points, are related by a 4x4  collineation 
H12 which is related to the rigid motion D12 by ([17,3]): 

- 1  
H12  ~ HpED12HpE (1) 

As it will be shown below, an immediate consequence of this similarity re- 
lationship is that  H12 can be factorized as A J A  -1 where J is a real Jordan 
canonical form. We prove tha t  this factorization is not unique and we show how 
to parameterize all such factorizations and how to estimate them in practice. 
Furthermore,  we show that  there exists a relationship between the left (or right) 
camera parameters  and all possible factorizations of H12. 

More precisely, let K be the upper  triangular matr ix  associated with the left 
camera such that  K33 = 1. We will show that  (i) in the case of a general motion 
the matr ix  K K  T is parameterized by a pencil of conics and that  (ii) for a ground- 
plane motion K K  T is parameterized by a linear combination of three conics. 
Therefore, one constraint onto the entries of K is sufficient to est imate four 
intrinsic parameters  from a single motion and two constraints onto the entries 
of K are necessary for estimating three intrinsic parameters  from a single planar 
motion. As a consequence, a camera with zero image skew can be calibrated 
from a general motion and a camera with zero image skew and known aspect 
ratio can in turn be calibrated from one ground-plane motion. 

The method described in this paper  has several advantages over previous 
stereo calibration approaches. The first advantage is tha t  affine calibration is 
not necessary prior to metric calibration as it is done with stratified approaches. 
This is particularly important  for ground-plane motions for which affine structure 
has proved difficult to obtain. The second advantage is that  all the computat ions 
are based on linear algebra techniques such as singular value decomposition. 
The third advantage is that ,  while a single motion is sufficient to calibrate, 
several motions can be combined in conjunction with a s tandard outliers rejection 
method in order to estimate the calibration parameters  more robustly. 

1.1 P a p e r  o r g a n i z a t i o n  

The remainder of the paper  is organized as follows. Section 2 briefly recalls the 
camera model and makes explicit the structure of K K  T for a camera with zero 
skew and for a camera with zero skew and known aspect ratio. Section 3 recalls 
the mathemat ica l  properties associated with equation (1). Section 4 describes 
the real Jordan factorization of matr ix  H12, analyses this factorization from a 
geometrical point of view, shows how to parameterize all possible factorizations, 
and describes a method to compute these factorizations in practice. Section 5 
shows how to perform Euclidean calibration from the real Jordan factorization 
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of H12 for general and ground-plane motions. Section 6 validates the method 
with simulated and real data  and Section 7 discusses the method in the light of 
the experimental  results obtained so far. 

2 C a m e r a  m o d e l  a n d  t h e  a b s o l u t e  c o n i c  

A pinhole camera projects a point M from the 3-D projective space onto a 

point m of the 2-D projective plane. This projection can be written as m _~ 
PM, where P is a 3><4 homogeneous matrix of rank equal to 3 and the sign _~ 

designates the projective equality - equality up to a scale factor. If we restrict 
the 3-D projective space to the Euclidean space, then it is well known that P 
can be written as: 

PE=K(Rt)=(KRKt) (2) 

where R and t describe the orientation and the position of the camera  in the 
chosen Euclidean frame. If we consider the s tandard camera frame as the 3-D 
Euclidean frame (the origin is the center of projection, the xy-plane is parallel to 
the image plane and the z-axis points towards the visible scene), the projection 
matr ix  becomes I P E  ---- ( g  03 ). 

The most general form for the matr ix  of intrinsic parameters  K is: 

K = ks  v0 (3) 
0 1 

where c~ is the horizontal scale factor, k is the ratio between the vertical and hor- 
izontal scale factors, r is the image skew and u0 and v0 are the image coordinates 
of the center of projection. 

The relation between the matr ix  K and the image of the absolute conic is 
C -~ K - T K  -1 [4]. Let us make explicit the dual of this conic, i.e., A = C - w :  

/ (~2 + r2 + u~ rk~ + uOvo lo 
A ~ - K K  v =  ~ rka+uovo k2a 2+v~ (4) 

\ UO V0 

This means that  A is symmetric and if we want to fix the scale factor (A is 
defined up to a scale) such that  A = K K  T, we need that  A33 = 1. 

Equation (3) describes a five-parameter camera. It  will be useful to consider 
camera models with a reduced set of intrinsic parameters ,  as follows: 

- four-parameter camera with r = 0 (image skew), which means tha t  the image 
is a rectangle - a sensible assumption. In this case the dual conic becomes: 

.ovo -v:) 
A _ K K  T =  [ UoVo ken ' + v ~  (5) 

\ UO V0 

1 We denote by 0~ the n-vector containing n zeros. 
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which provides an additional constraint on the entries of A, i.e. A12 - 
A13A23 = O. 

- three-parameter camera with r = 0 and k (aspect ratio) having a known 
value; for instance the value of k can be obtained from the physical size of a 
pixel. Therefore there is an additional constraint on the entries of A: 

k 2 ( A n  - A212) - (A~3 - A22) = 0 

3 R i g i d  m o t i o n  o f  a s t ereo  rig 

A stereo rig is composed of two cameras fixed together. Let P and P '  be 
the projection matrices of the left and right cameras. We can choose without 
loss of generality a projective basis ~p such that  2 P = (I3 03). In this case 
p i  = (H~o + e ' a  T, Ae')  [11], where H ~  is the infinite homography between the 
left and right images, e '  is the right epipole, a an arbi t rary 3-vector and A is 
an arbi t rary  scale factor. It  was shown in [8] tha t  the 4-vector ( a  T A) has a 
simple but  important  geometric interpretation, namely it is the plane of infinity 
associated with the stereo pair. However, this plane is not used throughout  this 
paper.  

Given a stereo rig with two projection matrices P and P ' ,  it is possible to 
compute the 3-D projective coordinates of a point M in the basis Bp from the 
equations m ~ P M  and m '  -~ P ' M ,  where m and m '  are the projections of 
M onto the left and right images. 

If  we restrict the projective space to the Euclidean space and choose as basis 
BE the s tandard camera frame associated with the first camera,  P and P '  are 
given by: 

P E  = ( K  03) and P ~  = ( K ' R  K ' t )  

where K and K '  are the matrices of left and right intrinsic camera parameters ,  
R and t describe the orientation and position of the right camera frame with 
respect to the left camera frame. The equations m "~ P E M E  and m '  ~_ P~EME 
allow the estimation of M E  - the 3-D Euclidean coordinates of a 3-D point in 
the basis BE. 

It  is straightforward to show that ,  if H p E  represents the collineation between 
the projective basis Bp and the Euclidean frame BE, i.e., M E  ~-- H p E M ,  we 
have the followings relations: 

! 
P ~- P E H p E  and P '  -~ P E H p E  

Indeed, from P M  ~- m ~_ P E M E  ~-- P E H p E M  it results that  P _ P E H p E .  

The basic assumption throughout the paper  is that  the stereo rig performs 
a series of rigid motions and that  during these motions K , K  I, R ,  and t remain 
constant,  as shown in Figure 1. As the bases ~p and BE are related to the 

2 We denote by I,, the n • n matrix of identity. 
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H/_, 

Bp Bp 

Dl_, 

Fig. 1. Rigid motion of a stereo rig. 

Hr~: 

stereo rig we can again use them to compute N and NE,  the projective and 
Euclidean representations of the same physical point after the motion. Clearly, 
the relationship between the projective and Euclidean representations before the 
motion holds after the motion, N E  ~ H p E N .  

Let D12 be the 4x4 matrix describing the rigid motion performed by the 
stereo rig. We have NE = D12ME and by substituting M E  and N E  with 
H p E M  and H p E N  we obtain: 

N "" Hp1ED12HpEM 

Consequently, the collineation between the two projective reconstructions (before 
and after the motion) (M and N) is related to the rigid motion by the following 
formula: 

H12 "~ H~ID12Hvz  (6) 

In order to get rid of the scale factor one may normalize H12 by dividing each 
term with sign(trace(H12)) ~ .  With this normalization "~-" becomes 
"=" and the eigenvalues of Hi2 and of D12 are the same. In what follows we 
assume that Hi2 has been normalized. 

The following proposition proved in [8] makes explicit the structure of HpE 
under the choice of the bases Bp and BE: 

Propos i t ion  1. The 4x4 collineation HpE allowing the conversion of a pro- 
jective reconstruction (basis 13p) obtained with a stereo rig into an Euclidean 
reconstruction (basis BE) has the following structure: 

(K -1 03) (7) 
HpE -~- aT 

where K is the matrix of intrinsic parameters of the left camera and ( a T A) is 
the equation of the plane at infinity in the projective basis 13p. 
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4 Algebraic preliminaries 

In this section we make explicit some algebraic properties of the 4 x 4 collineation 
H12 which are direct consequences of equation (6). 

The displacement matrix D12 has the form: 

/R12 t 2 )  
D =  ~, 03 n- 11 (8) 

where R12 is a 3 x 3 rotation matrix and t12 represents the translation. Therefore 
the eigenvalues of D12 are {e i~ e -i~ 1, 1}. 

A key issue with our approach is the distinction between the algebraic mul- 
tiplicity of an eigenvalue and its geometric multiplicity. We recall the following 
definitions (see [16,9]): 

Definition 2. Let A be an eigenvalue of a matrix. Its a lgeb ra i c  multiplicity 
is the number of times that  it occurs as a root of the corresponding characteristic 
polynomial. 

Definition 3. The geometric multiplicity of an eigenvalue A is the dimension 
of the eigenspace associated with the eigenvalue A. 

In the case of a rigid displacement the algebraic multiplicity of the eigenvalue 
A = 1 is, in general, equal to 2 (it is equal to 4 if 0 = 0). However its geometric 
multiplicity depends on whether the rigid motion is a screw or not and is equal 
to: 

- 1 in the case of general displacement, i.e., there is a translation along the 
screw axis 

- 2 in the case of planar motion (there is no translation along the axis or 
rotation). 

Therefore there are distinct calibration solutions for these two types of motion. 
Given matrix H12 similar to D12, its eigenvalues are {e iO , e - i O ,  1, 1} as well. 

From [9] we have the following proposition. 

Proposition 4. Let f~ be a matr ix  with its eigenvalues equal to {e iO, e -iO, 1, 1}. 
Then there exists a non-singular matr ix  A such that: 

cos(0) - sin(0) 0 0~  

Q = A sin(0) cos(0) 0 i )  A -1 = AJ~A - I  (9) 
0 0 1 
0 0 0 

where e = 1, i f  the geometric multiplici ty of the double eigenvalue A = 1 is 1, 
JE = J1, and c = 0 if  the geometric multiplicity of the double eigenvalue A = 1 
is equal to 2, J~ = J0. 
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Furthermore, if ~ = D is a displacement, A = E is of form: 

where Q z  is an orthogonal matrix, i.e E is a rotation or a reflection followed 
by a translation. 

Since J~ is the  m a t r i x  assoc ia ted  with  the  real Jordan canonical form, the  
f ac to r i za t ions  i n t roduced  in t he  p ropos i t i on  above  are ca l led  real Jordan factor- 
izations. 

4.1 N o n  u n i q u e n e s s  o f  t h e  r e a l  J o r d a n  f a c t o r i z a t i o n  

The  real  J o r d a n  fac to r i za t ion  descr ibed  above  is not  unique.  This  non unic i ty  is 
of crucial  i m p o r t a n c e  for our  ca l ib ra t ion  m e t h o d  and  we are  going to  give some 
ins ights  in to  th is  p roper ty .  

P r o p o s i t i o n  5. The real Jordan factorization of a matrix f~ is not unique. 
Moreover, ~ = A J ~ A  -1 and f~ = A ' J c A  ~-1 are real Jordan faetorizations if  
and only if there exists a matrix M commuting with JE, i.e. M J E  ---- J ~ M ,  such 
that A ~ = A M .  

P r o o f :  For  any M commut ing  wi th  J~, we have ~ = A J ~ M M - 1 A  -1  = 
A M J ~ ( A M )  -1 . 

Conversely,  if~2 = A J e A  -1 = A ' J ~ A  ' -1 ,  results  t ha t  A - 1 A ' J ~  = J ~ ( A - 1 A ' )  -1 
t Ience  A - I A  ~ = M commutes  with J~. 

By  mak ing  expl ic i t  the  m a t r i x  equa l i ty  M J ~  = J ~ M ,  it is easy  to  der ive  the  
s t ruc tu r e  of M :  

- if ~ = 1 (general  mot ion) ,  M = M 9 has  4 degrees of f reedom and  can  be  
wr i t t en  as: 

0 (11) 
M g =  0 9' 

0 0 

- if c = 0 (p lana r  mot ion) ,  M = M p  has  6 degrees of f reedom and  the  form: 

o (12) 
M p =  0 V 

0 5 
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if Ft is a displacement, i.e. f t  = E J ~ E  -1, E M ,  must be of form (10). Using 
this constraint we obtain: 

0 +1 = O~ t;  (13) 

0 0 

4.2 T h e  rea l  J o r d a n  f a e t o r i z a t i o n  o f  a e o l l i n e a t i o n  

The real Jordan factorization will be used to decompose matrix H12 which maps 
two projective reconstructions obtained with the stereo rig before and after the 
motion. It is therefore important  to describe how to obtain o n e  such a factor- 
ization. 

P r o p o s i t i o n  6. Let {ei~ -i~ 1, 1} be the eigenvalues of Hi2 and let Vz,V2 be 
the eigenvectors associated with e i~ and e - i~ 

(i) I f  the eigenvalue A = 1 has geometric multiplicity equal to 1, let u3 be the 
eigenvector associated with this eigenvalue and we obtain the following real 
Jordan factorization: 

H12 = (721 ?22 ?23 w J1 (Ul ?22 u3 "LI/) -1 = AgJ1A~ -1 (14) 

where ul  = v l  + v2, u2 = i (v l  - v2) are two real vectors and vector w is 
defined by 3 

W =  ( (~12-I3)-1~3)w4 (15) 

with w4 chosen such that de t (u , ,  u2, u3, w)  r O. 
(ii) I f  the eigenvalue A = 1 has geometric multiplicity equal to 2 let the vectors 

{723, u4} be a basis of the associated eigenspace and in this case the following 
real Jordan factorization is obtained: 

)-1 
H12 = (Ul  u2 u3 u4 ) J o  (721 u2 u3 u4 = ApJoAp 1 (16) 

P r o o f :  We show (ii) first. From H12vl = (cos(0) + i sin(0))Vl and H,2v2 = 
(cos(0) - i sin(0))v2, by simple addition and subtraction results: 

H12uz = cos(0)ul + sin(0)u2 
(17) 

H12u2 - sin(0)Ul + cos(0)u2 

Furthermore H12u3 = u3, H12u4 = u4 and writing together with (17), using 
matr ix notation, gives: 

cos(0) - sin(0) 0 0~ 
sin(0) cos(0) 0 

H12 (721 u2 ?23 u4 ) • (Ul  u2 u3 u4 ) 0 0 1 

0 0 0 

which is equivalent to (16). 

3 We denoted by A the 3 x 3 upper left block of a 4 x 4 matrix A and by N the first 
3 components ot the 4 vector a. 
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Second we prove (i). By combining equation (17) with H12u3 = u3 we obtain: [c~ 
H12 (Ul u2 u3) : (~1 u2 "It3) ~sin0(0 ) cos(0)0 

By inspecting equation (14), we notice tha t  w must verify: 

H12w = u3 -F w (18) 

The rank of H12 - I4 is equal to 3. We can assume that  d e t ( H 1 2  - I3) r 0 
and construct the vector given by equation (15). If d e t ( H 1 2  - I3) = 0, we can 
consider an other 3 x 3 block of the matr ix  H12 and apply the same method.  

Consequently, one way to compute a real Jordan factorization of a 4x4  
col l ineat ion H12 is to compute its eigenvalues and associated eigenvectors. In 
practice H12 is est imated from image measurements and therefore it is corrupted 
by noise. This noise can considerably per turbate  the eigenvalues and eigenvectors 
of HI~ [16]. 

Therefore we devised a simple method for computing the column vectors 
of matr ix  A without computing explicitly the eigenvalues of H12. The lat ter  
is est imated up to a scale factor but after normalization one may notice tha t  
the trace has a simple form t r a c e  (H12) = 2 + 2cos(0). Therefore, we have 

cos(0) - t ~ c ( H ) - ~  and sin(0) = X/1 - cos(0) 2. Finally, from equation (17) we 2 
obtain: 

( H r ~  - cos(0)I4 - sin(0)I4 ul  
sin(0)I4 H 1 2 - c o s ( 0 ) )  ( u 2 )  = 0 s  

which yields a solution for u l  and u2. 
The eigenspace corresponding to the eigenvalue 1 is given by (H12 - I4)u = 

04. In the noise-less case the rank of H12 - I4 is equal to 3. However, when 
the da ta  are corrupted by noise det(H12 - I4) # 0 and an approximate  solu- 
tion must  be found. In practice the singular value decomposition of H12 - I4 
allows to compute the eigenspace associated with the unit eigenvalue. If there is 
one small singular value, the geometric multiplicity is one and u3 is the vector 
corresponding to this singular value. If there are two small singular values, the 
geometric multiplicity is 2 and the two associated vectors are ua and u4. 

5 E u c l i d e a n  c a l i b r a t i o n  

We come back now to the basic equation associated with the rigid motion of --1 a stereo rig H12 = H p E D 1 2 H p E .  Consider first a real Jordan factorization of 
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D12, i.e D12 = E J E  -1. We obtain all the factorization by multiplying E with 
Md, equation (13): 

D12 = EMdJ~(~JMd) -1 

Consider now a real Jordan factorization of H12 obtained as described in 
Section 4.2. Again we multiply by matrix M to obtain all possible factorizations 
of H1;,  i.e. H12 = A M J ~ ( A M )  -1. 

Replacing D12 and H12 in HI~ = Hp~D12Hp E,  results: 

A M J ~ ( A M ) - I  --1 --1 --1 -- H p E E M d J  ~ ( H p E E M d )  

We immediately obtain H p ~ E M d  = A M  and, from equations (7), (10) and 
(13), results: 

,1) :) ( 0: 
~ r t h e r m o r e ,  by considering only the upper-left 3>3 block matrices in this 

equation one obtains K Q z Q ~  = (AM) and finally the orthogonality of matrices 
QE and Qz leads to the following relationship: 

K K  q- = ( K Q ~ Q z ) ( K Q E Q ~ )  q- = (AM) (AM) q- (19) 

5.1 G e n e r a l  m o t i o n  

For a general motion the structure of matrix M is given by equations (14) and 
(11) and we have: 

h g M g  = ( ~ U l  + f lu2 6~u2 - ~ u l  "yu3 w u 3  -~ " f W  ) 

The dual of the image of the absolute conic becomes in this case: 

g K  T = (AgMg)(AgMg)T = (a2 + f l2)(~l~T ~_ ~-2~23-) _~_ ~2 ~3~-T (20) 

T r 

where u i  = (uil, ui2, ui3) T for each u i  = (Uil, ui2, ui3, ui4) T, i = 1, 2, 3. 
Note that  K K  q- depends merely on vectors u l , u 2 , u 3  which have already 

been estimated and on two further positive parameters ~- > 0 and a _> 0. There- 
fore, in order to estimate A = K K  q- f r o m  a single m o v e m e n t  two additional 
constraints are needed. As it was shown in Section 2, a four-parameter camera 
has exactly two constraints associated with the entries of A, namely: 

A33 = 1 (21) 
A12 - A13A23 = 0 

By combining (20) with (21) obtain the following solutions for T and a: 

2 J 3 _ U l U 2  ) Y I j = I  ( U l U 2  3 J 

gr z V[ 2 {U 3 (U  3 U 3 J 3 U 2 U 2  ) J 3 2 , 1 3 : 1 ~  3~ 1 1 + _ U 3 ( ( U l  ) + ( U ~ ) 2 ) )  

1 - ~(~)2 
-r = (u3) 2 + (u3) 2 (22) 
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J is the j th component of ui. Notice that  one must check the sign of where u i 

and T since they must be, strictly positives by definition. 
Once a and T are computed, one may determine K K  T and compute the in- 

trinsic parameters either directly from equation (5) or by Cholesky factorization. 

5.2 P l a n a r  m o t i o n  

We consider now the case of a planar motion. In this case the structure of matrix 
M is defined by equation (12) and the structure of matrix A is given by equation 
(16), i.e., matrices Mp and Ap. Hence: 

h p M p  = ( CtUl + t3u2 c~u2 - ~ u l  V u3  -~- 5U4 a)U3 ~- ~]U4 ) 

and we obtain for the dual of the image of the absolute conic: 

K K  T = (ApMp)(ApMp)T = (~2 + 9 2 ) ( ~ 1 ~ :  + ~ 2 ~ )  (2a) 
Y 

T 

5 2 
-~- ~ (U'3U~ Jr (~) (U3~: Jr- U4 ~'T) ~ - ( ~ )  U-nU:) 

tt tt 2 

In this case, A = K K  T is defined by vectors U l , ' U 2 , u 3 , u 4  and by three 
undetermined parameters % a and #. Since we have three unknown parameters, 
we need 3 constraints on A in order to calibrate the camera with a single motion. 
A three-parameter camera has the following three constraints associated with it 
(see Section 2): 

A33 = 1 
A12 - A13A23 = 0 (24) 
k2(A11 - A122) - (A~3 - A22) = 0 

By combining (23) with (24) we obtain the following formulae for ~- > 0, a > 0 
and # ~ 0: 

~ ( ~ m  ~ - u ~ . ~ )  + ~ ( u ~  ~ - ~I.~) 
= k : , ~ ( ~ , ~ l  - u l . ~ )  + n:(u~4m2 - u~m~) 

Q 2 3 1 1  3 2 2  3 1 1 2  2 2  ~2 k m n u 4 + rn n u 4 --Ua(m n k + m n ) ) = k m 3 ( u 3 ( u 4  m --  U n t o  ) --  u 3 ( u n m  --  u 4 m  ) + U3(Un?Tt -- U~lyt2)) 

~- = 1 - a(u33 + #u43) 2 (25)  
?T~ 3 

w i t h  j E { 1 , 2 , 3 } , m  j J 3 J 3 n j J 3 3 J = U l U  1 -{- U 2 U  2 and Ul~ 2 . UlU 2 
Once 7-, a and # are thus computed and if the constraint 7- > 0 is verified, one 

can determine the three camera parameters either in closed-form or by Cholesky 
factorization. 
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6 E x p e r i m e n t a l  r e s u l t s  

In a first series of experiments, the above developed methods are evaluated on 
synthetic image da ta  in order to quantitatively study the accuracy of calibration 
as a function of image noise, and the type of movements considered. A second 
experiment compares the results of self-calibration and s tandard off-line cali- 
brat ion on images of a particular calibration grid. The third experiment is to 
validate the use of our method for self-calibration of a stereo rig in an unknown 
real-word scene. 

6.1 S y n t h e t i c  d a t a  

Synthetic stereo images showing a scene of about  40 3-D points are generated 
for five different points of view. The internal parameters  of the two cameras were 
kept fixed, such tha t  projective reconstruction using [5] with the same projection 
matrices results in a representation of the scene in one and the same projective 
frame related to the stereo rig. 

The different viewpoints are related by rigid motions of the rig and the conju- 
gate collineations Hii+l  from position i to i + 1 of projective space are est imated 
by the linear method presented in [8]. General screw motions and restricted pla- 
nar motions are considered as camera motions, in order to comparat ively study 
the performance of the respective methods of self-calibration. 

The influence of image noise is evaluated by adding artificial Gaussian noise 
with s tandard deviation varying from 0.3 to 2 pixeis. In order to obtain significant 
results, closed-form self-calibration is performed for each single movement  in the 
sequence and the average value of each parameter  over the sequence is considered. 
For each parameter  we compute the relative error between the est imated values 
c~*, k*, u~, v~) and the true values c~, k, u0, v0: 

e~, I c~, - ~t*, I ek I k - k* I lu0 - u; I and e, I vo - v; I 
I I k l  l u o l  I vo I 

and for the principal point additionally the relative Euclidean distance between 
the points (u;,  v;)  and (Uo, v0) is considered: 

- u;)2 + ( ,0 - v ; p  
.... = u 2 + v 2 

The median of the relative errors over 100 trial runs is depicted in Fig- 
ure 2 which demonstrates  that  accuracy of self-calibration degrades monotoni- 
cally nicely with increasing measurement noise. Furthermore,  calibration in the 
case of planar motion compares favorably with the case of general motion, given 
that  a priori estimates of the fixed parameters  (skew and aspect ratio) are in the 
vicinity of the true values. 

Obviously, the estimates of the principal point (u0,vo) are less stable than  
those of the scale factors (c~, k). On the one hand, the instability of the principal 
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Fig. 2. Relative error in estimates of the intrinsic parameter from four general dis- 
placements (left) and four planar motions (right) at different noise levels. 
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Fig. 3. The relative error in intrinsic parameters using an increasing number of motions. 

point is an intrinsic problem of camera calibration from noisy image measure- 
ments and was observed with most of the existing algorithms. On the other 
hand, an inaccurate principal point barely affects Euclidean reconstruction, as 
outlined in [8]. 

To quantify the possible gain in accuracy from combining several motions, 
closed-form self-calibration is performed over one to seven movements out of 
trajectories consisting of either a general motion or a planar motion. From 100 
trial at a noise level of I pixel, the first i movements of the trajectory were taken 
to calibrate and estimate the parameters by their average values. Figure 3 shows 
the evolution of the relative errors as a function of the number of motions which 
are considered. 

Obviously, using several motions instead of a of a single motion does not 
improve the accuracy associated with the estimation of ( ~  and barely improves 
the accuracy associated with u0, v0 or k. 
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left camera right camera 
Method a k u0 vo c~ k u0 v0 

Off-line calibration 1534.996 270 265i 1520 .996 264 271 
General motion 1550.988 278 300 1533.9881256 277 
Planar motion 1570 k* 261 291 1561 k* 291 296 

Table 1. Results for the left and right camera parameters using off-line calibration and 
self-calibration. The results shown are means of several motions. We used k* = .996 as 
known value for planar motions. 

6.2 Self-cal ibration wi th  image pairs of  a cal ibrat ion grid 

To justify the applicability of our method for camera self-calibration and to 
compare its effectiveness with that of standard off-line methods, calibration is 
executed on images of a 3-D calibration grid. It consists of 100 circular target 
points, that  are evenly distributed on three planes. Their 3-D positions are known 
with an accuracy of 0.02 mm, and their image projection are detected and local- 
ized at an accuracy of 0.05 pixel. The results of off-line calibration using [4] and 
the results of applying our self-calibration methods to eight stereo image pairs 
of the grid are compared in Table 1, for the left and right cameras, respectively. 
Even-though no knowledge about 3D scene structure is required, self-calibration 
performs, for both types of motions, as well as off:line calibration. 

6.3 On-l ine  self-cal ibration from image pairs of  a 3-D scene 

In order to validate the applicability of our method for camera self-calibration 
during runtime of a vision-system, i.e. for on-line calibration, we gathered 45 
stereo images of a real-world scene from viewpoints which differ merely by small 
motions of the stereo pair. To obtain point correspondences we used the following 
stereo tracking algorithm. Interest points are extracted from the first pair and 
matched between the left and right images. Next, the points in the left image 
are tracked, as the stereo rig moves, over the sequence of images associated with 
the left camera motion. To obtain point matches associated with the image pair 
after the motion, the tracking is guided by the epipolar geometry. This algorithm 
makes use of the fact that the epipolar geometry remains unchanged during the 
motion of the stereo rig. Figure 4 shows the matches obtained with two image 
pairs. 

In contrast to the previous experiments, the matched points are no longer 
evenly distributed, neither in the image, nor in space. Even worse, mismatches 
may be present in the data. Additionally, interest points are no longer extracted 
with 0.05 pixel accuracy. Nevertheless, the camera parameters resulting from 
self-calibration are within the expected range and the behaviour of the method 
is consistent with the results obtained for synthetic data. Figure 5 depicts the 
distribution of parameter estimates obtained by closed-form calibration for about 
1000 planar or general motions. Table 2 shows the average values of each pa- 
rameter set. 
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Fig. 4. Two image pairs and their matched points. 

7 C o n c l u s i o n  

We proposed a method for self-calibration of a stereo rig from a single general or 
ground-plane motion. The basic assumption is that  the stereo rig has the same 
internal and external parameters  before and after the motion. In this case the 
collineation relating the two projective reconstructions performed at each posi- 
tion is conjugated to a displacement. By making explicit the algebraic properties 
of such a collineation, we derived a closed-form solution to recover four camera 
parameters  from a single general motion or three camera parameters  from a 
single ground-plane motion. 

One of the advantages of this approach is tha t  calibration was done with- 
out explicitly computing affine structure. The second advantage is tha t  all the 
computat ions are based on linear algebra techniques such as singular value de- 
composition, and hence it is easy to implement and has low computat ion cost. 
Therefore, it can be included in on-line perception-action cycle, such as visual 
servoing. 

One remarkable feature of our method is tha t  it performs as well with small 
motions as with large ones. This has a crucial practical importance because it 
is much easier to find matches between images that  differ by a small motion 
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left camera right camera 
Method a k uo vo c~ k uo vo 

Off-line calibration 1534.996 270 265 1520 .996 264 271 
General motion 1531 1.01 2551323 1508 1.05 211 334 
Planar motion 1462 k* 154!246 1464 k* 143 259 

Table 2. Results for the left and right camera parameters using off-line calibration and 
self-calibration. The results shown are means of several motions. We used k* = .996 as 
known value for planar motions. 

d J  

, ,  .... 2 . . . .  

Fig. 5. The distributions of the estimated intrinsic parameters. 

than for images that  are far apart. One inconvenience is, however, that  small 
motions may sometimes give rise to bad results simply because a rotation matrix 
which is closed to the identity matrix does not have the algebraic properties that  
are expected by the method. Nevertheless, these "bad" motions can be easily 
eliminated by simply checking the conditioning of the collineation H12. 

Another source of errors is the sensitivity of the method to the accuracy with 
which the interest points are located and matched as well as the 3-D distribution 
of these points. This problem has been observed with both synthetic and real 
data. Interesting enough, the matrix conditioning analysis outlined above works 
well to eliminate such badly distributed data. 

In the future we plan to investigate more thoroughly the relationship between 
bad calibration and the numerical conditioning of the problem and to combine 
closed-form calibration methods with statistically robust methods. 
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