
O p t i m a l  E s t i m a t i o n  o f  T h r e e - D i m e n s i o n a l  
R o t a t i o n  a n d  R e l i a b i l i t y  E v a l u a t i o n *  

Naoya Ohta  and Kenichi Kanatani  

Department of Computer Science, Gunma University, 
Kiryu, Gunma 376-8515 Japan 

{ohta I kanat ani }r gunma-u, ac. jp 

Abs t r ac t .  We discuss optimal rotation estimation from two sets of 3-D 
points in the presence of anisotropic and inhomogeneous noise. We first 
present a theoretical accuracy bound and then give a method that at- 
tains that bound, which can be viewed as describing the reliability of the 
solution. We also show that an efficient computational scheme can be 
obtained by using quaternions and applying renormalization. Using real 
stereo images for 3-D reconstruction, we demonstrate that our method 
is superior to the least-squares method and confirm the theoretical pre- 
dictions of our theory by applying the bootstrap procedure. 

1 Introduct ion 

Determining a rotational relationship between two sets of 3-D points is an im- 
por tan t  task for 3-D object reconstruction and recognition. For example, if we 
use stereo vision or range sensing, the 3-D shape can be reconstructed only for 
visible surfaces. Hence, we need to fuse separately reconstructed surfaces into 
one object [13]. For this task, we need to determine the rigid t ransformation 
between two sets of points. If one set is t ranslated so tha t  its centroid coincides 
with tha t  of the other, the problem reduces to estimating a rotation. 

Let {r~} and {r~}, c~ = 1, ..., N,  be the sets of three-dimensional vectors 
before and after a rotation, respectively. A conventional method for determining 
the rotat ion is the following least squares method: 

N 

I1r - Rr~ll 2 -+ min. (1) 

I n  t h i s  p a p e r ,  Ilall d e n o t e s  t h e  n o r m  of  a v e c t o r  a .  

The solution of the minimization (1) can be obtained analytically: Horn [3] 
proposed a method using quaternions; Arun et al. [1] used the singular value 
decomposition; Horn et el. [4] used the polar decomposition. The method of 
Horn [3] is guaranteed to yield a rotation matrix,  while the methods of Arun et 
el. [1] and Horn et al. [4] may  yield an orthogonal matr ix  of determinant  - 1 .  
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This drawback was later remedied by Umeyama [14] by introducing a Lagrange 
multiplier for that  constraint; Kanatani [8] restated it from a group-theoretical 
viewpoint. 

From a statistical point of view, the above least-squares method implicitly 
assumes the following noise model: 

- Points {ra}  are observed without noise, while the rotated points {Rr~} are 
observed with noise {Ar~}. 

- The noise {Ar~} is subject to an isotropic, identical, and independent Gaus- 
sian distribution of zero mean. 

The least-squares solution is optimal for this model. However, this model is not 
realistic in many situations: 

- The noise is often neither isotropic nor identical [10, 11]. 3-D points measured 
by stereo vision or range sensing usually have errors that  are very large along 
the viewing direction as compared with the directions perpendicular to it. In 
addition, the noise characteristics differ from point to point; usually, points 
near the sensor are more accurate than points far away. 

- The 3-D points in both sets suffer noise. If the 3-D points are measured by 
a sensor before and after a rotation, it is unreasonable to assume that  noise 
exists only in one set. 

In this paper, we first introduce a realistic noise model and present a theoret- 
ical accuracy bound, which can be evaluated independently of particular solution 
techniques involved. Then, we describe an estimation method that  attains the 
accuracy bound; such a method alone can be called "optimal". 

Since the solution attains the accuracy bound, we carl view it as quantita- 
tively describing the reliability of the solution; in the past, the reliability issue 
has at t racted little attention. 

The optimal method turns out to be highly nonlinear. However, we show that  
an efficient computational scheme can be obtained by using quanternions and 
applying the renormalization technique proposed by Kanatani [9]. Using real 
stereo images for 3-D reconstruction, we demonstrate that  our method is indeed 
superior to the least-squares method and confirm the theoretical predictions of 
our theory by applying the bootstrap procedure [2]. 

2 N o i s e  M o d e l  

- /  
Let ~a and ra ,  c~ = 1, ..., N, denote the true 3-D positions before and after a 

be their respective positions observed rotation, respectively, and let r~ and r~ 
in the presense of noise. We write 

I - - /  / r~  = ~ + A r ~ ,  r~  = r~  + A r ~ ,  (2) 

and assume that  Ar~ and Ar~ are independent Gaussian random variables of 
mean zero. Their covariance matrices are defined by 

V[,- A E[~,-o  a,-~], V[,'~,] , , T  = ' = E [ a ~ a ~  ], (3) 
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where E[ .  ] denotes expectation and the superscript T denotes transpose. The 
problem is formally stated as follows: 

Problem 1. Estimate the rotation matrix R that  satisfies 

- '  R e ~ ,  ~ 1, ..., N,  (4) 

from the noisy data  {r~} and {r~}. 

In practice, it is often very difficult to predict the covariance matrices V[r~] 
and Viral  precisely. In many cases, however, we can estimate their relative scales. 
If the 3-D positions are computed by stereo vision for example, the distribution 
of errors can be computed up to scale from the geometry of the camera con- 
figuration [10]. In view of this, we decompose the covariance matrices into an 
unknown constant e and known matrices V0[r~] and V0[r~] in the form 

= = (5) 

We call e the noise level, and V0[r~] mad V0[r~] the normalized covariance ma- 
trices. 

3 Theoret ical  Accuracy B o u n d  

The reliability of an estimator can be evaluated by its covariance matr ix if the 
set of parameters to be estimated can be identified with a point in a Euclidean 
space. However, a rotation is an element of the group of rotations S0(3), which 
is a three-dimensional Lie group. Hence, we cannot define the covariance matr ix 
of a rotation in the usual sense. 

Let R be an estimator of the true rotat ion/~.  Let l~ and AI2 be, respectively, 

the axis (unit vector) and the angle of the relative rotation /~/~/T. We define a 
three-dimensional vector 

A ~  = A~l~,  (6) 

arid regard this as the measure of deviation of the estimator /~ from the true 
ro ta t ion/~ .  We define the covariance matrix o f /~  by 

V[/~] = E [ a a a ~ T ] .  (7) 

The ~roup of rotations SO(3) has the topology of the three-dimensional 
projective space p3, which is locally homeomorphic to a 3-sphere S 3 [6]. If the 
noise is small, the deviation AI2 is also small and identified with an element 
of the Lie algebra so(3), which can be viewed as a Euclidean space. This is 
equivalent to regarding errors as occurring in the tangent space to the 3-sphere 
S 3 a t /~ .  

With this definition of the covariance matrix, we can apply the theory of 
Kanatani  (Sect. 14.4.3 of [9]) to obtain a theoretical accuracy bound, which he 
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called the Cramer-Rao lower bound in analogy with the corresponding bound in 
traditional statistics. In the present case, it reduces to 

v[/~]  >- e ~ /~%)  x Wo, x ( / ~  , (8) 

w o  = ( R v 0 [ ~ o l R  T + v o V j )  -~ . (9) 

Here, A ~ B means that  A - B is a positive semi-definite symmetric matrix. 
The product v x A x v of a vector u = (ul) and a matrix A = (Aij) is the matrix 

�9 �9 * 3 

whose (U) element is ~k,t,m,n=l r mnvkvmAln' where r is the Eddington 
epsilon, taldng 1 when (ijk) is an even permutation of (123), - 1  when it is an 
odd permutation of (123), and 0 otherwise. 

If the noise is isotropic and identical, we have V0[r~] = V0[r~] = I (unit 
matrix). In this case, Eq. (8) corresponds to the result obtained by Oliensis [12]. 

4 O p t i m a l  E s t i m a t i o n  

Applying the general theory of Kanatani [9] (Sect. 14.5.2 of [9]), we can obtain 
a computational scheme for solving Problem 1 in such a way that  the resulting 
solution attains the accuracy bound (8) in the first order (i.e., ignoring terms of 
O(e4)): we minimize the sum of squared Mahalanobis distances, i.e., 

N 

J = E ( %  - O~, V0[r~]-i (% - O~)) 
~ = 1  

N 

E (  ~ - '  Vo[r~]-l(r~ --~ min, (10) + ~ - ~o, - ~ ' ) )  

subject to the constraint (4). Throughout this paper, (a, b) denotes the inner 
product of vectors a and b. Note that  Eq. (10) involves the normalized covariance 

r I matrices V0 [r~] and ~0 [%] alone; no knowledge of the noise level e is required. 
If R is fixed, the values of e~ and %-' that  minimize J subject to Eq. (4) can 

be obtained analytically. Introducing Lagrange multipliers, we obtain 

~ = r~ + Vo[r , ]RTW~(r~  - Rr~) ,  (11) 
- !  t t T t  ~ = ~ - v 0 M ] w ~ (  ~ - R ~ ) ,  (lZ) 

where 

W~ = (RV0[r~]R q- + V0[r~]) -1 . (13) 

The resulting minimum is then minimized with respect to R. If Eqs. (11) and 
(12) are substituted into Eq. (10), the problem reduces to 

N 

Z / '  (14) a = ro  - R r ~ ,  w ~ ( r "  - R ~ o ) )  ~ rain. 
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If V0[ra] = V0[r~] = I ,  Eq. (14) reduces to Eq. (1). This proves that  the 
least-squares method (1) is optimal for isotropic and identical noise even if r~  
and r'~ both contain noise. This corresponds to the result of Goryn and Hein [5]. 

5 R e l i a b i l i t y  o f  t h e  S o l u t i o n  

The unknown noise level e can be estimated a posteriori. Let J be the residual, 
i.e., the minimum of J .  Since J / e  2 is subject to a X 2 distribution with 3 ( N -  1) 
degrees of freedom in the first order (Sect. 7.1.4 of [9]), we obtain an unbiased 
estimator of the squared noise level e 2 in the following form: 

J 
2 2 - -  ( 1 5 )  

3 ( ~ -  1) 

Because the solution R of (14) attains the accuracy bound (8) in the first 
order, we can evaluate its covariance matrix V[R] by optimally estimating the 
true positions { ~ }  (we discuss this in Section 9) and substituting the solution 

and the estimator (15) for their true values tR and e 2 in Eq. (8). 
The minimization (14) must be conducted subject to the constraint tha t  R 

be a rotation matrix. This means we need to parameterize / /  appropriately and 
do numerical search in the parameter space. Such a technique is often inefficient. 
Kanatani  [9] proposed an efficient computational scheme called renormalization 
for maximum likelihood estimation with linear constraints. Here, the constraint 
is nonlinear, so Kanatani 's  technique cannot be applied directly. However, we 
can show that  the constraint can be converted into a linear equation in terms 
of quaternions. 

6 Q u a t e r n i o n  O p t i m i z a t i o n  

Consider a rotation by angle Y2 around axis l (unit vector). Define a scalar q0 
and a three-dimensional vector ql by 

~2 ~2 
q0 = cos i f ,  ql = l sin ~-. (16) 

Note that  q2 + ilq~ll2 = 1 by definition. Conversely, a scalar q0 and a three- 
dimensional vector ql such that  q2 + Ilql II 2 -- 1 uniquely determine a rotation 
R around axis l by angle Y2 (0 < /2 < 7r) in the form 

R = (q0 2 - Ilqtll2)/+ 2(qlq ~ + qoql • I), (17) 

where the product  a • A of a vector a and a matrix A is the matr ix whose 
columns are vector products of a and the corresponding columns of _4. Hence, 
a rotat ion is uniquely represented by a pair {q0, ql}, which is called a quater- 
nion [6]. 
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rd 

Fig. 1.3-D rotation by angle 12 around axis I. 

Suppose a point ~a undergoes a rotation R by angle 12 around axis l and 
moves to a new position ra.-' From Fig. 1, we can see that  the displacement 

- - !  
ra-' - ~ and the midpoint (~a + r~) /2  are related by 

- !  

- '  ~ + r--------z~ (18) r~ - e~ = 2tan ~ l  x 2 

Solving this for r~ -~ in terms of ~a, we can obtain a relation equivalent to Eq. (4) 
expressed in terms of the angle 12 and axis I of rotation R.  Hence, Eq. (18) is 
equivalent to Eq. (4). Multiplying EQ. (18) by cos(12/2) on both sides, we obtain 
after some manipulations 

q 0 ( r  r~) + ( r  + r ~ )  x ql = 0. (19) 

Define a 3 x 4 matrix X~  and a four-dimensional unit vector q by 

(, ) X ~ =  r ~ - r ~  ( r ~ + r ~ ) x I  , q =  ql  " 

' b y e ~  a n d e '  Let ffi:~ be the value of X a  obtained by replacing r~ and r~ ~, 
respectively, in the first of Eqs. (20). Then, Eq. (19) can be expressed as a l inear  

equation in q in the form 

fftY~q = 0. (21) 

Now the problem is to minimize Eq. (10) subject to the constraint (21). 
- !  

Introducing Lagrange multipliers for this constraint and eliminating e~ and r~,  
we can reduce the problem to the following minimization with respect to q: 

J = (q, M q )  -~ rain. (22) 
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Here, M is a 4 • 4 matrix defined by 

N 

M =  E T x,~wox~, (23) 
o~=1 

where W a  is a 3 x 3 matrix given by 

W ~  = (q02 (V0[r~] + V0[r~]) 2qoS[q I x (V0[r~] ' - - v0[r~ 

)-~ 
+ ql x (V0[r~] + V0[r~]) x ql (.24) 

Here, the operation S[. ] designates symmetrization: S[A] = (A + AT)/2.  
If noise is isotropic and identical, Eq. (22) reduces to the method implied by 

Zhang and Faugeras [16] and Weng et al. [15]. In this sense, Eq. (22) can also be 
viewed as an extension of their methods to cope with anisotropic noise. 

7 R e n o r m a l i z a t i o n  

Since the constraint (21) is linear, the renormalization technique of Kanatani [9] 
can be applied to the optimization (22). In order to do so, we first evaluate the 
statistical bias of the moment matrix M defined by Eq. (_23). 

Let ~7~ be the true value of X~,  and write X a  = X ~  + A X e .  From the 
first of Eqs. (20), we see that the error term A X ~  is given by 

A X +  = ( A r ~ - -  Ar~ (Ar~ + Arm) x I ) .  (25) 

Similarly, let / ~  be the true value of M ,  and write M = / ~ / +  A M .  From 
Eq. (23), we see that  the error term A M  has the following expression: 

N 

AM = E (AXyW.X~  + X:W~AX~ + ZIX:WaAX~,). (26) 
o~'=1 

It follows that the moment matrix M has the following statistical bias. 

N 

E[AM] = E E[AX~W, AX,~] 

. .& / .  ( ,~ , . "  - ,~ ,. . , w ~ ( ,~  , . "  - ,~ ,. ~ ) ) 

( (~"  + ~o)  • wo(~T" - ~r~))T~ (27) 
(,~,.'~ + a , . o )  x w~ x ( ,~,-"  + ~ , - ~ ) ] '  

Define a 4 x 4 matrix N by 

N = ( ~ ~  
N '  ' (2s)  
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where 
N 

n0 = ~ ( w o ;  v0[~.] + v0[r (29) 

N 

- 2  y :  t~[A[w.(v0[~.]  ' = - y0[~.])]], (30) 

N 

N '  = E [ W ~  x (V0[r~] + V0[r~])]. (31) 

The inner product (A; B) of matrices A = (Ai j )  and B = (Bi j )  is defined by 
(A; B) = ~ , j = i  A i j B i j .  The exterior product [A x B] is the matrix whose (i j )  

element is ~3j ,m ,n= i r162 The operation A[.] designates antisym- 
metrization: A[A] = ( A  - AT)/2. For an antisymmetric matrix C = (Cij) ,  we 
define t3[C] = (C32, C13, C21) T. Then, the statistical bias E [ A M ]  is expressed 
as follows: 

E [ A M ]  = e2 g .  (32) 

Applying the recipe of Kanatani [9], we obtain the following renormalization 
procedure: 

1. From the data {ra} and {r~}, compute X a ,  a = 1, ..., N ,  by the first of 
Eqs. (20). 

2. S e t c = 0 a n d W ~  = I , a =  1, . . . ,N.  
3. Compute the moment matrix M by Eq. (23). 
4. Compute the matrix N by Eq. (28). 
5. Compute the smallest eigenvalue A of matrix 

.~I = M - c N  (33) 

and the corresponding unit eigenvector q = (q0 qi q2 q3) T. 
6. If [A I ~ 0, return q and stop. Otherwise, update c and W~ as follows and 

go back to Step 3: 

A 
c 6- c + )Nq---------'- 7 (34) 

W(~ ~-- (qo 2 (Vo[rc,] + Vo[r~]) - 2qoS[q I • (Vo[r,~] - Vo[r~])] 

)-1 
+ qi x (V0[r~] + V0[r~]) x ql �9 (35) 

Here, we put ql = (ql q2 q3) T 
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T a b l e  1. Estimated rotations. 

Axis Angle 
Renormalization (0.9999,0.0003,0.0123) 29.769 ~ 

Least squares (0.9985,-0.0545, 0.0040) 26.790 ~ 
True values (1.0000, 0.0000, 0.0000) 30.000 ~ 

8 Rotation Estimation from Stereo Images 

We conducted experiments for 3-D data  obtained by stereo vision. Figures 2(a) 
and (b) are pairs of stereo images of an object before and after a rigid rotation 
around a vertical axis. We manually selected the feature points marked by black 
dots and computed their 3-D positions r~ and normalized covariance matrices 
Vo[r,] by the method described in [10], assuming that  image noise was isotropic 
and homogeneous (but the resulting errors in the reconstructed 3-D positions 
were highly anisotropic and inhomogeneous). We thus obtained two sets of 3-D 
points. 

After translating one set so that  its centroid coincides with that  of the other, 
we computed the rotation by renormalization. As a comparison, we also tried the 
conventional least-squares method (the schemes described in [1, 3, 4, 8, 14, 15, 16] 
all yield the same solution). Table 1 lists the computed values together with 
the true values. We can see from this that  our method considerably improves 
accuracy as compared with the least-squares method. However, this result is for 
just one occurrence of noise. In order to assert the superiority of our method, 
we need to examine the reliability of the solution for all possible occurrences of 
noise. 

9 Reliability Analysis 

We evaluated the reliability of the computed solution R in the following two 
ways: 

- Theoretical analysis. 
- Random noise simulation. 

The  former is straightforward: since our method attains the theoretical accu- 
racy bound (8) in the first order, we can evaluate the reliability of the solution 
by approximating the true values by their estimates in Eq. (8). 

A well known method to the latter is (parametric) bootstrap [2], which can 
be applied to any solution method. In the present case, we do not know the 
true positions {e~}, but we know the true rotation R (see Table 1). So, we first 
estimate {~a} by optimally correcting the data  {ra}  and {r~} into {~a} and 

^ !  
{r~}, respectively, so that  the constraint ra^/ = R ? a  is exactly satisfied. From 
Eqs. (11) and (12), this optimal correction is done as follows 2 [9]: 

?a  = r~ + V0[ r , ] /~Tw~( r~  -- Z~r~), (36) 

2 I~ the true value R is not known, its estimate 1~ is used. 
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(a) Before rotation. 

(b) After rotation. 

Fig. 2. Stereo images. 

^ /  / - / [,~]wo(r~ Rro), (37) 'r(~ ----.o~-- Yo 

(]~Y0 [ ]/~T i])-1 W ~  = r~ + Y0[r~ (3s) 

Estimating the variance e 2 by Eq. (15), we generated random independent 
Gaussian noise that has the estimated variance 2 2 and added it to the projections 
of the corrected positions { ~ }  and {/~} (= { z ~ } )  on the image planes of the 
left and the right cameras independently. Then, we computed the rotation R* 
and the error vector A$~* in the form given by Eq. (6). 
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(a) Renorraalization. (b) Leas t  squaxes. 

Fig. 3. Error distribution. 

Figure 3(a) shows three-dimensional plots of the error vector A/2* for 100 
trims. The ellipsoid in the figure is defined by 

( A a * ,  V [ / ~ ] - l ~ a * )  = 1, (39) 

where ? [R]  is the covariance matrix computed by approximating/~, {0,},  and e 2 
by /~ ,  {/ ' ,},  and ~2, respectively, on the right-hand side of Eq. (8). This ellipsoid 
indicates the standard deviation of the errors in each orientation [9]; the cube 
in the figure is displayed merely as a reference. Figure 3(b) is the corresponding 
figure for the least-squares method (the ellipsoid and the cube axe the same as 
in Fig. 3(a)). 

Comparing Figs. 3(a) and (b), we can confilzn that our method improves the 
accuracy of the solution considerably as compared with the least-squares method. 
We can also see that  errors for our method distribute around the ellipsoid defined 
by Eq. (39), indicating that our method already attains the thereticM accuracy 
bound; no further improvement is possible. 

The above visual observation can be given quantitative measures. We define 
the bootstrap mean m *  o and the bootstrap covarianee matr ix  V[R*] by 

B 

* 1 E * ms~ =- ~ Ag2b, (40) 
b=l 

B 

1 - - (41) v [ K ]  = 
b=l 

where B is the number of bootstrap samples and AI-2~ is the error vector for the 
bth sample. The bootstrap mean error E~2 and the bootstrap standard deviation 
S~ are defined by 

(42) 
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Table  2. Bootstrap errors and the theoretical lower bound. 

I s* 
Renormahzation ).0277~ I 1.1445 ~ 

Least squares 0.0468 ~ 3.0868 ~ 
Lower bound 0 ~ 1.1041 ~ 

where t r A  denotes the trace of matr ix  A. The corresponding s tandard deviation 

for the (estimated) theoretical lower bound I)[R] is ~ / ~ 1 ~ ] .  Table 2 lists the 

values of E L and S~ for our method and the least-squares method (B -- 2000) 
together with their theoretical lower bounds. We see from this tha t  al though 
the mean errors are very small for both  methods,  the s tandard deviation of our 
solution is almost 1/3 that  of the least-squares solution and very close to the 
theoretical lower bound. 

This observation confirms tha t  the reliability of the solution computed  by our 
method can indeed be evaluated by (approximately) computing the theoretical 
accuracy bound given by Eq. (8). 

10 Concluding Remarks 

We have discussed optimal rotat ion estimation from two sets of 3-D points in 
the presence of anisotropic and inhomogeneous noise. We have first presented 
a theoretical accuracy bound defined independently of solution techniques and 
then given a method that  attains it; our method is truly "optimal" in tha t  sense. 
This optimal  method is highly nonlinear, but  we have shown tha t  an efficient 
computat ional  scheme can be obtained by using quaternions and applying the 
renormalization technique. 

Since the solution at tains the accuracy bound, we can view it as describing 
the reliability of the solution; the computat ion does not require any knowledge 
about  the noise magnitude. Using real stereo images for 3-D reconstruction, 
we have demonstrated tha t  our method is considerably more accurate than  the 
conventional least-squares method.  We have also confirmed the theoretical pre- 
dictions of our theory by applying boots t rap  procedure. 
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