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Abst rac t .  This paper addresses the problem of computing three-dimen- 
sional structure and motion from an unknown rigid configuration of point 
and lines viewed by an affine projection model. An algebraic structure, 
analogous to the trilinear tensor for three perspective cameras, is defined 
for configurations of three centered affine cameras. This centered affine 
trifocal tensor contains 12 non-zero coefficients and involves linear rela- 
tions between point correspondences and trilinear relations between line 
correspondences. It is shown how the affine trifocal tensor relates to the 
perspective trilinear tensor, and how three-dimensional motion can be 
computed from this tensor in a straightforward manner. A factorization 
approach is also developed to handle point features and line features 
simultaneously in image sequences. This theory is applied to a specific 
problem in human-computer interaction of capturing three-dimensional 
rotations from gestures of a human hand. Besides the obvious appli- 
cation, this test problem illustrates the usefulness of the affine trifocal 
tensor in a situation where sufficient information is not available to com- 
pute the perspective trilinear tensor, while the geometry requires point 
correspondences as well as line correspondences over at least three views. 

1 I n t r o d u c t i o n  

The problem of deriving structural information and motion cues from image se- 
quences arises as an important subproblem in several computer vision tasks. In 
this paper, we are concerned with the computation of three-dimensional struc- 
ture and motion from point and line correspondences extracted from a rigid 
three-dimensional object of unknown shape, using the affine camera model. 

Early works addressing this problem domain based on point correspondences 
from perspective and orthographic projection have been presented by (Ullman 
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1979, Maybank 1992, Huang & Lee 1989, Huang & Netravali 1994) and others. 
With the introduction of the affine camera model (Koenderink & van Doorn 
1991, Mundy & Zisserman 1992) a large number of approaches have been devel- 
oped, including (Shapiro 1995, Beardsley et al. 1994, McLauchlan et al. 1994, 
Torr 1995) to mention just a few. Line correspondences have been studied by 
(Spetsakis 8z Aloimonos 1990, Weng et al. 1992), and factorization methods for 
points and lines constitute a particularly interesting development (Tomasi & 
Kanade 1992, Morita & Kanade 1997, Quan& Kanade 1997, Sturm & Triggs 
1996). These directions of research have recently been combined with the ideas 
behind the fundamental matrix (Longuet-Higgins 1981, Faugeras 1992, Xu & 
Zhang 1997) and have lead to the trilinear tensor (Shashua 1995, Hartley 1995, 
Heyden 1995) as a unified model for point and line correspondences for three 
cameras, with interesting applications (Beardsley et al. 1996) as well as a deeper 
understanding of the relations between point features and line features over mul- 
tiple views (Faugeras & Mourrain 1995, Heyden et al. 1997). 

The subject of this paper is to build upon the abovementioned works, and to 
develop a framework for handling point and line features simultaneously for three 
or more affine views. Initially, we shall focus on image triplets and show how an 
a]fine trifocal tensor can be defined for three centered affine cameras. This tensor 
has a similar algebraic structure as the trilinear tensor for three perspective 
cameras. Compared to the trilinear tensor, however, it has the advantage that 
it contains a smaller number of coefficients, which implies that fewer feature 
correspondences are required to determine this tensor. It will also be shown that 
motion estimation from this tensor is more straightforward. 

This theory will then be applied to the problem of computing changes in 
three-dimensional orientation from a sparse set of point and line correspon- 
dences. Specifically, it will be demonstrated how a straightforward man-machine 
interface for 3-D orientation interaction (Lindeberg ~z Bretzner 1998) can be 
designed based on the theory presented and using no other user equipment than 
the operator's own hand. For more details, see (Bretzner & Lindeberg 1998). 

2 G e o m e t r i c  p r o b l e m  a n d  e x t r a c t i o n  o f  i m a g e  f e a t u r e s  

A specific application we are interested in is to measure changes in the orientation 
of a human hand, as a straightforward interface to transfer 3-D rotational infor- 
mation to a computer using no other user equipment than the operator's own 
hand. In contrast to previous approaches for human-computer interaction that 
are based on detailed geometric hand models (such as (Lee & Kunii 1995, Heap 
& Hogg 1996)) we shall here explore a model based on qualitative features only. 
This model involves the thumb, the index finger and the middle finger, and for 
each finger the position of the finger tip and the orientation of the finger are 
measured in the image domain. Successful tracking of these image features over 
time leads to three point correspondences and three line correspondences, and 
the task is to compute changes in the 3-D orientation of such a configuration, 
which is assumed to be rigid. It is worth noting that neither the trajectories of 
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point features or line features per se are sufficient to compute the motion infor- 
mation we are interested in. The problem requires the combination of point and 
line features. Moreover, due to the small number of image features, the informa- 
tion is not sufficient to compute the trilinear tensor for perspective projection 
(see the next section). For this reason, we shall use an affine projection model, 
and the affine trifocal tensor will be a key tool. 

The trajectories of image features used as input are extracted using a frame- 
work for feature tracking with automatic scale selection reported in (Bretzner 
& Lindeberg 1996, Bretzner & Lindeberg 1997). Blob features corresponding to 
the finger tips are computed from points (x, y; t) in scale-space (Koenderink 
1984, Lindeberg 1994) at which the squared normalized Laplacian 

2 2 (nxx + Lyy) 2 (1) (Vnorm L) = t ~ 

assumes maxima with respect to scale and space simultaneously (Lindeberg 
1994). Such points are referred to as scale-space maxima of the normalized Lapla- 
clan. In a similar way, ridge features are detected from scale-space maxima of a 
normalized measure of ridge strength defined by (Lindeberg 1996) 

2 2 2 2 2 2 AL~_norm = t 4~ (Lpp - Lqq) = t ar ((L== - Lyy) 2 + 4Lz~) , (2) 

where Lpp and Lqq are the eigenvalues of the Hessian matrix and the normal- 
ization parameter -~ = 0.875. At each ridge feature, a windowed second moment 
matrix (F5rstner & Giilch 1987, Big/in et al. 1991, Lindeberg 1994) 

,v)eR" L , L ,  L2y J g(('~; s)d~drl (3) 

is computed using a Gaussian window function g(., .; s) centered at the spatial 
maximum of AL.y-norm and with the integration scale s tuned by the detection 
scale of the scale-space maximum of .4L~-no~m. The eigenvector of # corre- 
sponding to the largest eigenvalue gives the orientation of the finger. 

The left column in figure 3 shows an example of image trajectories obtained 
in this way. An attractive property of this feature tracking scheme is that the 
scale selection mechanism adapts the scale levels to the local image structure. 
This gives the ability to track image features over large size variations, which is 
particularly important for the ridge tracker. Provided that the contrast to the 
background is sufficient, this scheme gives feature trajectories over large numbers 
of frames, using a conceptually very simple interframe matching mechanism. 

3 T h e  t r i f o c a l  t e n s o r  f o r  t h r e e  c e n t e r e d  a f f i n e  c a m e r a s  

To capture motion information from the projections of an unknown configuration 
of lines in 3-D, it is necessary to have at least three independent views. A canon- 
ical model for describing the geometric relationships between point correspon- 
dences and line correspondences over three perspective views is provided by the 
trilinear tensor (Shashua 1995, Shashua 1997, Hartley 1995, Heyden et al. 1997). 
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For affine cameras, a compact model of point correspondences over multiple 
frames can be obtained by factorizing a matrix with image measurements to the 
product of two matrices of rank 3, one representing motion, and the other one 
representing shape (Tomasi & Kanade 1992, Ullman & Basri 1991). Frameworks 
for capturing line correspondences over multiple affine views have been presented 
by (Quan & Kanade 1997) and for point features under perspective projection 
by (Sturm & Triggs 1996). 

The subject of this section is to combine the idea behind the trilinear tensor 
for simultaneous modelling of point and line correspondences over three views 
with the affine projection model. It will be shown how an algebraic structure 
closely related to the trilinear tensor can be defined for three centered affine 
cameras. This centered aJfine trifocal tensor involves linear relations between 
the point features and trilinear relationships between the line features. 

3.1 P e r s p e c t i v e  c a m e r a  a n d  t h r e e  v i e w s  

Consider a point P = (x, y, 1, )0 T which is projected by three camera matrices 
M = [I, 0], M'  = [A, u'] and M" = [B, u'] to the image points p, p' and p ' :  

(i) p =  = | 0 1 0 0 1  , (4) 
\ 0  0 1 0 ]  

= u'2 J = I a2Tp + A u ' 2 / '  (5) p' = a | a l  2 a 2 a 2 n ' 3 ]  
\ a 3 a~ a 3 k a3Tp + ~u'3 ) 

p" = ~ r = b~ b~ b~ r  = | b2Tp + ~u ''2 . (8) 
1 b~ b~ b~ r / \ b3~.p + ~u,,~ 

Following (Faugeras & Mourrain 1995) and (Shashua 1997), let us introduce the 
following two matrices 

. ( ; 1  0 x ' )  ( - 1  0 x"~ 
rj = - l  y' ' s~ = 0 - l  y " ]  " (7) 

Then, in terms of tensor notation (where i, j, k E [1, 3], it, u E [1, 2] and we 
throughout follow the Einstein summation convention that a double occurrence 
of an index implies summation over that index) the relations between the image 
coordinates and the camera geometry can be written 

)tryu t3 "4- , j trip = O, + SkOiP = O. (8) 

By introducing the trifocal tensor (Shashua 1995, Hartley 1995) 

T[k = aJ.i u''k _ bku d,  (9) 



145 

the relations between the point correspondences lead to the trifocal constraint 

r~ o~ mjk = 0. (10) j ~ 1 7 7  

Written out explicitly, this expression corresponds to the following four relations 
between the projections p, p' and p" of P (Shashua 1997): 

x t tT :3p  - x  ,, X l  i'~33 i p  q_ x , T ? l p i  . . . .  T : l p i  O, 

y " T 1 3 p  - y " x  <' 33 + x,T:2p,. - T:2V ' : O, 
(11) ~1m23 i H I,r~33 i t ,~31 i ,7-21 i x l  i p 0, - x  y l  i p + - = Y l i  P ~i P 

y ' + y'T: p ' . . . .  T: p ' O. 

Given three corresponding lines, lTp  = 0, l 'Tp  ' = 0 and l " T p  '' = 0, each image 
line defines a plane through the center of projection, given by L T p  = O, L ' T p  = 
0 and L " T p  = 0, where 

L T  = l T M = (/1, 12, /aO), 

L ,T  = y T  M ,  = (l~ a{, Yj a {, l~ a g, l} u 'J) ,  (12) 

L ' 'T = I " T M  '' = (1; b~, l~ b~, l'~ b~, l'~ u"k ) .  

Since l, l' and l" are assumed to be projections of the same three-dimensional 
line, the intersection of the planes L, L' and L" must degenerate to a line and 

11 lj a I l k 

rank 12 l}a~ l;b2 k 
, y ,, = 2 .  ( 1 3 )  

lj a 3 1 k bka 
lj/ It/j l k" u "k 

All 3 x 3 minors must be zero, and removal of the three first lines respectively, 
leads to the following trilinear relationships, out of which two are independent: 

(12TJ3 k - l a T  j k )  l~ l ;  = O, 

( l lT~ k -- laT  jk )  l} l~ = 0, (14) 

(1,T] a -12T j k )  l} l ;  = O. 

These expressions provide a compact characterization of the trilinear line rela- 
tions first introduced by (Spetsakis & Aloimonos 1990). 

In summary, each point correspondence gives four equations, and each line 
correspondence two. Hence, K points and L lines are (generically) sufficient to 
express a linear algorithm for computing the trilinear tensor (up to scale) if 
4K + 2L _> 26 (Shashua 1995, Hartley 1995). 
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3.2 Af[ine c a m e r a  a n d  t h r e e  v iews 

Consider next a point Q = (x, y, A, 1) T which is projected to the image points 
q, q~ and q" by three affine camera matrices M, M'  and M",  respectively: 

I X  H 

q = = M Q  = 1 0 0  , (15) 
0 0 1  

(i) = M ' Q =  I~C~o  0 lC]V '2 , (16) 

- -  (17) 

Here, the parameterization of Q differs from P, since for an image point q = 
(x, y, 1) T the projection (15) implies that the three-dimensional point is on the 
ray Q = (x, y, A, 1) T for some ),. By eliminating ),, we obtain the following linear 
relationships between the image coordinates of q, q' and q": 

1 1 1 1 2 3)Y- t -  3 ( c 3 d  1 - eld~)x + (c3d 2 - c l  d 1" - d l x  ' - c l x  '' 

2 1 2 1 1 : _  C2X H (c3d 1 - e2d l )x  + d3Y (c3d 2 - c~d~)y + 
1 2  1 2  (~a~ - ~Id])x + ( ~ 4  - c~d~)y + d~x' - 4Y" 
2 2 2 2 2 i C 2 H (~adl c~d])z  + (~3d2 2 2 - - c2d3)Y + d3Y - 3Y 

"~- (C172 H1 - -  dlv I1) ~- O, 

~- (c2v H1 -- d~v '2) = 0, 

+ (c~v ''2 - d~v '2) = 0 ,  

+ ( 4 ~  ''~ - a ~  '~) = o. 

(is) 

This structure corresponds to the trilinear constraint (11) for perspective pro- 
jection, and we shall refer to it as the affine trifocal point constraint. 

Three lines 1T q = O, ItTq ! = 0 and l "Tq  '~ = 0 in the three images define three 
planes L T Q  = O, L~TQ = 0 and L " T Q  = 0 in three-dimensional space with 

L T = l T M  = (/1, 12, 0, 13), 

I 2 t 1 t 2 I 1 I 2 1! I 1 11 12 1 ! 
L 'T  = l ' T M  ' = (l~c~ + / 2 C l ,  l l C  2 + /2C2,  l lC3  "~- 12C3, ~1 v Jr t2V  ~- 3 ) ,  

= ( p t 4 1  1!!42 lrr41 11142 i l l41  1H42 ~l! I l l  ~1! H2 
L ' T  = I ' T M "  k~l ~1 "~- ~2t* l ,  ~1~2 -~ ~ 2 ~ 2 ,  ~1~3 "~- ~ 2 ~ 3 ,  t l V  "]- t 2 V  -~ ll3')" 

Since l, l' and l" are projections of the same three-dimensional line, the inter- 
section of L, L' and L" must degenerate to a line and 

rank 

I 1 I 2 lit,41 11 11Cl + 12el ~1 ~1 + l~l~ 
I 1 J 2 111r71 I! 2 12 ll C 2 + 12c 2 + 12d2 
t 1 I 2 iHrll  II 2 0 llC3 + 12C3 ~1 ~3 -}- 12d3 

,I I1 , t!  I 1 - - , I t  112 , .  h v  + l'2 v'2 + l' 3 13 t t 2 V  + t l  V t 3  

= 2. (19) 
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All 3 • 3 minors must be zero, and deletion of the first, second and fourth rows, 
respectively, results in the following relationships between l, l' and l": 

l~ (4v ''~ - a ~  '~) l~l; - l ~  ( 4 ~  - 4d~) l~ ;  = o ,  

~1 ~ z  ,,~ - ~'~ '~'~ V~' " - ~ (4d~ - 4 ~ ) ~  = O, (20) 

l~ (4d~3 - 4 d ~ ) 1 } l ;  - 1 2  (dld~3 - 4d~l)1;.l~' = O, 

3 = d 3 = 0, v ~a = v "3 = 1 and only two of the relations are independent. where cj 
This treatment,  which largely derives similar results as (Torr 1995) while 

using another formalism, shows that  point and line correspondences are captured 
by 16 coefficients. Each point correspondence gives four equations, and each line 
correspondence two. Thus, K point correspondences and L line correspondences 
are sufficient to compute this a]fine trifocal t ensor  (up to scale) if 4K + 2L >__ 15. 

3 . 3  T h e  c e n t e r e d  affine c a m e r a  a n d  i ts  r e l a t i o n s  to  p e r s p e c t i v e  

Let us next consider the case when image coordinates in the affine camera are 
measured relative to the center of gravity of a point configuration. This cen- 
tered affine camera is obtained by setting (v '1 , v '2) = (v ''1 , v ''2) = (0, 0) in (16) 
and (17) and corresponds to disregarding the translational motion. Then, the 
expressions (18) and (20) for the point and line correspondences reduce to: 

(c~d I - c ~ d l ) x  + (c~d~ - c ~ d ~ ) y  + d~x' - c ~ x "  = 0, 

(4d~-4a~)x  + ( c ~ d ~ - 4 a ~ ) y + 4 r  =0,  
(cld~ - c~d2)x + (cld~ - c ld~)y + d~x' - c~y" = O, 

(c~d~ - c21d~)x + (c~d~ - c~d23)y + d]y'  - c]y"  = O, (21) 

l l ( l ~ 4 ) l t 3  t - -  lllt3(Itktdk3) -[- 13(l~jc~)(l~k'dk3) - 13(l~c~)(l~'d k) = O, 

12(l~c~)l~3 ' - 121~3(l~k'dk3) + 13(l~jc~)(l~dk3) - 13(l~jc~)(l~k'dk ) = O, 

l~(l~c~)(l;d~) -l~ (ly;)(l i 'd~)+ l~(l~4)(l';d~l) - (l~4)(l;d~)= O. 

Structurally, there is a strong similarity between these relationships for the cen- 
tered affine camera and the corresponding relationships (11) and (14) for the 
perspective camera. Let us make the following formal replacements between the 
affine camera model (15)-(17) and the perspective camera model (4)-(6): 

- Interchange rows 3 and 4 in the coordinate vectors in the 3-D domain: 

Q = (x, y, ~, 1) T ~ P = (x ,y ,  1,/~)T, 

- Interchange columns 3 and 4 in the camera matrices: 

( al a I a I u '1 ~ / cl c I 0 c~ ~ / bl b~ b~ ~,,1 
a 2 a  2a32u'21 = [Cl 2 c ~ 0 c  2 ] ,  [ b  2b~b32u"2 |  = 

'tL t3 / \ o  1 / 

(22) 

dl 4 0 d~) 
d~ d 2 0 d 2 . 

0 0 1  

(23) 
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Then, the algebraic structure between corresponding points and lines will be the 
same for the two projection models. This implies that the relations between point 
and line correspondences in (21) for three centered cameras can be expressed on 
the form (11) and (14) with the cen tered  affine tr i focal  t e n s o r  defined by 

Ti  j a  = ui-Yu ' '~ - b i'~u ' j  = {(23)} = 

Written out explicitly, the components of Tj k are 

,Tlll  1 1 d lC3 , 1  1 7-112 i 2 2 1 = c~d3 = c~d3 _ _ d l C 3 ,  

•121 2 1 1 2 ~122 2 2 2 2 
= cld3 - d i e 3 ,  = C l d 3  - dlC3,  

~131 3 1 1 3 ~132 3 2 2 3 
= C l d 3 - d l C 3  -= O, -~ c l d 3 - d l C  3 = O, 

a i d 3  d lC3 ,  2 ~_ - -  = O l d 3  - -  d i e 3 ,  

~221 2 1 1 2 ,-~22 2 '2 2 2 
- - = e l d 3 - d l r  2 = 5 1 d 3 - d l C 3 ,  

~231 3 1 i 3 32 3 2 2 3 
= c l d  3 d i e  3 = O, ~ = 0 ,  - -  = o l d  3 --  d l c  3 

~311 1 1 1 1 12 1 2 2 1 
d i e  3 O, ~3 O, = c i  d3 = - -  = = c l d  3 --  d l C  3 

~321 2 1 1 2 ,-/~22 2 2 2 2 
--  d i e 3  3 -- = C l d 3  = O, = c l d 3  d l C  3 = O, 

% 3 1 =  3 1 i 3 3 2 2 3 d~, 
-- d l C 3  3 ~- C l d  3 d 1, 7~ 32 3 = = Old3  - d l C 3  

given by 

~3 = 44 - d~ 1 = o, 

~123 2 3 3 2 
---- Cld3 - dlc3 = O, 

~133 3 3 3 3 
= C l d  3 - -  d l c  3 -.~ O, 

~-)  3 1 3 3 1 
= C l d  3 - d i e  3 = 0 ,  

~]~23 2 3 3 2 
2 = o l d  3 - d l c  3 = 0 ,  

7~33 3 3 3 3 
2 = O l d  3 - -  d i e  3 -~- O~ 

7~13 1 3 3 1 
d i e  3 -  3 = C l d 3 -  - c~ ,  

~ 3  ~ 3 3 ~ _~, 
3 -~ C l d 3  - d i e 3  ~ 

7~33 3 3 3 3 
3 = O l d  3 - d i e  3 = O, 

and the relations between point and 

(24) 

(25) 

line correspondences in (21) can be written 

~313X H -I- ~331X ! - -  71111X --  ~11y= 0,  

~13r + ~ 3 2 ~ ,  ~12~ _ ~l~y= 0, 

~3x,,  + 5 % ,  ~ l x _  ~ % --0 ,  

~3y, ,  + ~ % ,  T122x _ f f2y=  0, (26) 

l~(li l i '5 ~ + lil~'TY + l ; l i ' ~  ~ + l ; l~ '~  ~) 

- 11(lil;17"313 -.F ll21131"-r323 -{- ll3111t'-r331 + l~l~'T332)= O, 

lz(lil~'T211 + lilt'T212 + l~1~'7~2 ~ + I'21~'7~2 2) 

- l~(lil'~'% ~3 + 1;l'~'% ~ + l 'A'% ~ + l'~l'~'~ ~ )  = O. (27) 

The centered affine trifocal tensor has 12 non-zero entries. Due to the centering 
of the equations, one point correspondence is redundant. Thus, K point corre- 
spondences and L line correspondences are (generically) sufficient to compute 
"~i jk (up to scale) provided that 4(K - 1) + 2L >_ 11. 

4 O r i e n t a t i o n  f r o m  t h e  c e n t e r e d  a f f ine  t r i f o c a l  t e n s o r  

To compute the camera parameters from the affine trifocal tensor, we largely 
follow the approach that (Hartley 1995) uses for three perspective cameras. The 
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calculations can, however, be simplified with al ine cameras. From (25) we di- 
rectly get 

Given these 4 and d3 k, the remaining d i and d k can be computed from (25) using 

Vd31 -c~ 
dI -c~ 

4 - 4  

d~ -c~, 
d I -c31 

4 -4 
dl - 4  

( c~ �84 

4 
4 
cl 
d~ 
a~ 
d 1 

,'7; 1, \ 
I12 
17,' ~2 

= T211 (29) 

The camera matrices are, however, not uniquely determined. The centered affine 
trifocal tensor Ti Jk in (24) is invariant under transformations of the type 

(30) 

With N'  and N"  denoting the upper left 2 x 3 submatrices of M'  and M"  re- 
spectively, this ambiguity implies that  both {N',/V"} and { N ' ,  N " }  are possible 
solutions (with .N" analogously) 

) = = 1 = N ' F .  (31) 

To determine F, let us assume that  the affine camera model corresponds to 
scaled orthographic projection, and that internal calibration is available. Then, 
the camera matrices can be written (with .N" analogously) 

b i ' = a ' ( l o O O o )  ~ ,P '~P2P '  ' (32) 

where p d y  = (p'{, P'i, P'~) are the row vectors in the three-dimensional rotation 
matrix R', while a '  is a scaling factor. Since the rows of R' are orthogonal, 

#j T _#k 
Pi Pi = 5jk, where 5jk is the Kronecker delta symbol, we have 

N ' j ~ '  T = N ' F F T  N 'T = (a')2/2x2, (33) 

where/2 x2 represents a unit matrix of size 2 x 2. With 

) (i0 ) F F  T = 0 I'2 = 1 77 

"yl "Y2 "y~ + "yl + "~ ,7 
(34) 
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we rewrite (33) as 

[ ,, ;~ / 
2c2c3 (c~) 2 - 1  0 

1 2  1 2  1 2  12 1 2 0 0  
ClC 3 "-{- C3C 1 C2C 3 + C3C 2 C3C 3 

o 2c~c 2 2c~c~ (c~) 2 - 1  
2dld I 2d~d I (dl) 2 0 

1 2 1 2 1 2 1 2 1 2 did3 + d3dl d2d3 + d3d 2 d3d 3 0 
2d~d 2 2 2  2d2d3 (d32) 2 0 

( )2 
\(~,,)2 

(el) 2 + (cl) 2 
1 2 1 2 +C2C 2 I CIC 1 

( 4 )  2 + (c~) 2 I 
(d~) 2 + (dl)2 / 

i 2 i 2 dl dl + d2 d2 I 
(d~) 2 + (d~) 2 ] 

(35) 

Solving this system of equations in the least squares sense gives (~, r h r (a~) 2 , (a") 2) 
as function of ca,.." and d k determined from (28) and (29). Then, F is given by 

(i0 0 ) 
F =  1 = 1 0 , 

71 72 73 r /+  v/~ " - ,~2 _ rt2 
(36) 

and we estimate the first two rows of R' in (32) by N '  = a'N'F.  The third row 
is then easily obtained as the cross product of the first two rows: p,3 = p,1 x p,2. 
The ambiguity in the determination of 7a in F corresponds to a sign change in 
the last component of the first two rows of R' and R", and a corresponding sign 
change in the last row, i.e., the following solutions: 

P = I P ~ P ~ P ~ 2 ) ,  ~ =  p~ p~ -p~ . (37) 

This ambiguity reflects the fact that for scaled orthographic projection we cannot 
distinguish between positive rotation of a point in front of the center of rotation 
and negative rotation of a similar point behind the center of rotation. To choose 
between the two possible solutions, we can either assume similarity between 
adjacent rotations, or use the size variations of the tracked image features. 

The matrices obtained from (37) depend upon F and (~,r/,~, (a ')  2, (a") 2) 
and are not guaranteed to be orthogonal matrices, since ((, 7, ~, (#)2,  (#,)2) is 
computed from an overdetermined system of equations. Given an estimate p of 
the rotation matrix R, a singular value decomposition is carried out of p, and R 
is determined from p = U•V T, which gives R = UV T. This choice minimizes 
the difference between p and R in the Frobenius norm. 

5 J o i n t  f a c t o r i z a t i o n  o f  p o i n t  a n d  l i n e  c o r r e s p o n d e n c e s  

The treatment so far shows how changes in the orientation of an unknown three- 
dimensional point and line configuration can be computed from three affine 
views. To derive corresponding motion descriptors from time sequences, we shall 
in this section develop a factorization approach, which treats point features and 
line features together. In this way, we shall combine several of the ideas in the 
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factorization methods for either point features or line features (Tomasi & Kanade 
1992, Quan& Kanade 1997, Sturm & Triggs 1996). It should be noticed, however, 
that  the main intention here is not to separate the motion information from 
structural information a priori as in (Tomasi & Kanade 1992). The goal is to 
exploit the redundancy between point features and line features over multiple 
frames, and to avoid the degenerate cases that  are likely to occur if we compute 
three-dimensional motion using image triplets only. 

Let us introduce a slightly different notion (and do away with the Einstein 
summation convention). The centered affine projection of a three-dimensional 
point Pk = (Xk ,Yk ,  Zk) T in image n shall be written 

i (38)  

t ,~l)  m 

where the suppression of (Xz,o, Yl,0, Z0,z)T and the introduction of the scale factor 
A~ account for the fact that the position of the line is unimportant, the length 

art n of ( t , Vk ) is unknown, and only the orientation of the line is significant. 
Given K point correspondences and L line correspondences over N image 

frames, we model these measurements together 

, x ll [ . . . . . .  ~k~tk ~ otIT 
[ 11 11 / Y{ Y~c AlVl "XLVL / 31T 

|Xl ~ x~af~l ~ N'N AL U L  I a N T  

\ yl,< y~ ~7~1 ~ N N 

by a matrix G 

Z 1  Z K  W 1  W L  

(40)  

Since the rank of the matrices on the right hand side is maximally three, it follows 
that  any 4x4-minor must be zero, and we can, for example, form selections of 
k, U, k" e [1..K], l e [1..L] and n, n' e [1..N], with 

n n n ~ u ~  
X k X k, X k .  
y~ yk n, yk~,, A'~v~ 

n ~ n ~ n ~ n'  n ~ 
X k  X M  X k "  "~l ~tl 

n I n t rJ n t n t 
Yk Yk, xk,, )~l vl 

= 0. (41) 

K N If we would have K _> 4 point correspondences, this would give us up to (3) (2) L 
linear relationships, out of which a subset could be selected for determining the 

(39) 

while the (centered) affine projection of a line Pl = ( Xt,o, Yl,o , ZO,t ) T-t-T ( Ut , Yl , wI  ) T _.~ 
Pl,o + TQI in inlage n shall be represented by the directional vector 
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scale factors A~ ~ from an overdetermined system of homogeneous linear equations. 
Approaches closely related to this have been applied to line features by (Quan 
& Kanade 1997) and to point features by (Stnrm &: Triggs 1996). 

Given only three points, however, as in our test problem, these linear rela- 
tionships degenerate, since any minor with K = 3 point features is zero (due to 
centering, all the K points together will be linearly dependent). 

To determine A~ (totally N L  scaling factors) in this case, we instead apply 
the affine trifocal tensor to a set of randomly selected triplets of image frames 
as a preprocessing stage. In analogy with (Quan& Kanade 1997) let us for each 
such triplet n, n', n" C [1..N], insert the following shape matrix 

(i00) Y1 ]72 Y3 = 1 0 (42) 
Z1 Z2 Za 0 1 

into the projection equation (40) for K = 3 point features: 

_ oLn T 

_ ~72T 

_ Ol n ,  T 

H72'72"72" = _ /~n,T 

_ o~n  ' ' T  

__ ~72,, T 

?% 72 n ?% 
- -  A 1Ul . . .  ~ L U L  

72 72 72 72 
- -  /~1Vl  " ' "  "~LVL 

72' n'  72' n' 
- -  ~1 Ul  " ' "  /~L UL 

n l  72! I - )h v l  " .  .XZv; 
n" n" 72" 72" 

- - A  1 U 1 . . .  A L U L 
7211 ~,~ I I  �9 ?~ 721l 

- -  A 1 V 1 . .  A L V  L 

(43) 

Three consecutive rows in Di correspond to one image triplet, and the entries 
in the matrix Dt have just been indicated by ' . '  symbols. In practice, we let the 
number of triplets be substantially larger than the number of image frames (by 
a factor from 2 to 4). Moreover, a ranking of the image triplets is carried out 
based on sorting and thresholding with respect to a condition number. 

Then, Al is determined from the overconstrained system of equations using 
a singular value decomposition of Dr: 

Dl : Ul.~IYll T :=~ Al = the last row of Vl. (44) 

Then, since the rank of the right hand side in (40) is maximally three, it follows 
that any 4x4-minor of this matrix must be zero. For each line feature 1 E [1..L], 
we consider three algebraically independent minors. Given three camera matrices 
M72, M72' and M72", these minors define three homogeneous linear relations 

72t t between A~, A~' and At for each I 6 [1..L]. The camera matrices for stating these 
relations are determined by computing the trifocal tensor for the corresponding 
triplets of image features as described in section 4. 

From a set of such (randomly selected) triplets, we then for each 1 define a 
homogeneous system of equations of the following type for determining A~: 
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The ~ values are inserted into G in (40) and a singular value decomposition is 
computed G = U a Z a V  T.  All elements except the three first ones in &a are set 
to zero to reduce the rank to three, and finally the ambiguity in the separation of 
motion information from structure information G = M S  = M L L - 1 S  is resolved 
in a similar fashion as in (Tomasi &: Kanade 1992, Quan&: Kanade 1997). 

6 Experiments 

To investigate the properties of this framework for computing relative orienta- 
tion, let us first apply it to synthetic data,  which will be generated by the follow- 
ing procedure: A three-dimensional point and line model is generated from three 
lines and three points with the approximate  shape of the thumb, the index fin- 
ger and the middle finger of a hand. This configuration is subjected to a smooth 
rotation, where the mean of the three directional vectors rotates by Ar ~ 2 
degrees between each frame, while the configuration also rotates by A~b ~ 2 
degrees per frame around this moving axis. For each frame, an affine projection 
is computed involving variations in scale and translation. White Gaussian noise 
with zero mean and standard deviation & is added to the image projections, 
where s is determined from a noise level y according to s = L,D/2 and D is the 
diameter  of the circle that  interpolates the three (undistorted) image points. 

The difference between the orientation estimates and the true orientation is 
measured in the following ways: (i) the Frobenius norm of the difference between 
the true and the estimated rotat ion matrix,  (ii) two geometric angles defined 
as follows: 0 is the angle between the true and the est imate rotation axis (this 
rotat ion axis is the real eigenvector of the rotat ion matr ix) ,  and r is the difference 
between the est imated and the real rotation around this rotation axis. 

Figure 1 shows the result of estimating rotations from these point and line 
features using the affine trifocal tensor applied to triplets of frames only. The 
distance between adjacent frames varies from An = 2 to 20 frames, and all 
results are average values over 10 experiments. 

Figure 2 shows a corresponding evaluation of the joint factorization approach. 
Here, the error is shown as function of the number of frames for computing the 

Noise level Error measure in 3-D Noise level Error measure in 3-D 
= 0.002 Frobenius 0 gb ~, = 0.005 Frobenius 0 

An = 2 0.22 31.00 5.92 An = 2 0.27 48.74 6.18 
An ---- 5 0.39 20.35 13.15 An ---- 5 0.50 35.33 17.18 
An = 10 0.11 2.69 3.35 An---- 10 0.29 11.58 8.85 
An = 20 0.02 0.46 0.30 An = 20 0.08 1.58 1.30 

Fig. 1: Experimental evaluation of the noise sensitivity when computing 3-D orientation 
estimates by determining the atone trifocal tensor from three point correspondences 
and three line correspondences over three affine views. From left to right, the tables 
show the following error measures: (left) the Frobenius norm, (middle) the rotation 
axis 0, and (right) the rotation angle r The results are shown for two noise levels. 
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i4:t 

Fig. 2: Experimental evaluation of the noise sensitivity when computing 3-D orientation 
using the joint factorization of point features and line features. From left to right, the 
graphs how the following error measures depend on the number of frames: (left) the 
Frobenius norm, (middle) the rotation axis 8, and (right) the rotation angle r Three 
curves are shown in each graph, for noise levels ~ = 0.002 and 0.005, respectively. 

factorization. (The results are averages over 8 experiments with incremental com- 
putations.) As expected, the error decreases with the number of image frames. 

Finally, figure 3 shows the result of computing corresponding estimates by 
applying the joint factorization approach to the feature trajectories obtained 
by tracking blob and ridge features of a human hand as described in section 2. 
Here, since no ground truth is available, the result is illustrated by subjecting a 
synthetic cube to the rotation estimates computed from the feature trajectories. 

7 Summary and discussion 

We have presented a framework for capturing point and line correspondences 
over multiple affine views. This framework is closely connected to and builds 
upon several previous works concerning the affine projection model (Koenderink 

van Doorn 1991, Mundy & Zisserman 1992, Shapiro 1995, Faugeras 1995), 
perspective point correspondences (Ullman 1979, Huang ~: Netravali 1994) and 
line correspondences (Spetsakis & Aloimonos 1990, Weng et al. 1992) as can 
be modelled by the trilinear tensor (Shashua 1995, Hartley 1995, Faugeras &: 
Mourrain 1995, Shashua 1997). It also builds upon factorization approaches for 
affine (Tomasi &: Kanade 1992, Quan& Kanade 1997, Morita & Kanade 1997) 
and perspective (Sturm & Triggs 1996) projection. 

We propose that  the (centered) affine trifocal tensor constitutes a canonical 
tool to model point and line correspondences in triplets of affine views (section 3). 
This extends the advances by (Tort 1995) as well as the abovementioned works, 
and we show how the trifocal affine tensor relates to the perspective trilinear 
tensor. Indeed, the algebraic structure of the affine trifocal tensor can be mapped 
to the algebraic structure of the perspective trilinear tensor. The centered affine 
trifocal tensor makes it possible to explore sparse sets of point and line features, 
since it contains 12 non-zero coefficients compared to the 27 coefficients in the 
trilinear tensor. The computation of motion parameters from the affine trifocal 
sensor (section 4) is also more straightforward. 

To capture point and line correspondences in dense time sequences, we have 
also applied a factorization approach (section 5), to which the affine trifocal 
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Feature trajectories Estimated rotation 

Fig. 3: Estimates of relative orientation from hand gestures. The left column shows 
point features and line features obtained from a feature tracker with automatic  scale 
selection (Bretzner & Lindeberg 1997). The right column shows the result of computing 
changes in 3-D orientation using the joint factorization of point and line features in 
section 5. The results are il lustrated by subjecting a three-dimensional cube to the 
est imated rotations. 
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tensor serves as an important  processing step for computing the scaling factors 
of line correspondences when three or less point correspondences are available. 
When four or more point correspondences are given, these scaling factors can be 
determined directly from a system of linear equations. 

The abovementioned theory has been combined with a framework for fea- 
ture tracking with automatic scale selection (section 2), which has the attractive 
property that  it adapts the scale levels to the local image structure and allows 
image features to be tracked over large size variations. The extended feature tra- 
jectories obtained in this way allow for higher accuracy in the motion estimates, 
since the relative influence of position errors decreases as the motion gets larger 
over time. The scale information associated with the image features also resolves 
the inherent reversal ambiguity of scaled orthographic projection. 

Specifically, we have considered a problem in human-computer interaction of 
transferring three-dimensional orientation to a computer using no other equip- 
ment than the operator 's  own hand (Lindeberg s Bretzner 1998). Contrary to 
the more common approach of using detailed geometric hand models (Lee ~z 
Kunii 1995), we have here illustrated how changes in three-dimensional orien- 
tat ion can be computed using a qualitative model, based on blob features and 
ridge features from three fingers. Whereas a more detailed model could possi- 
bly allow for higher accuracy in the motion estimates, the simplicity and the 
generic nature of this module for motion estimation makes it straightforward to 
implement and lends itself easily to extensions to other problems. 
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