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Abstract. This paper deals with the problem of characterizing and parametrizing 
the manifold of trifocal tensors that describe the geometry of three views like the 
fundamental matrix characterizes the geometry of two. The paper contains two 
new results. First a new, simpler, set of algebraic constraints that characterizes 
the set of trifocal tensors is presented. Second, we give a new parametrization 
of the trifocal tensor based upon those constraints which is also simpler than 
previously known parametrizations. Some preliminary experimental results of the 
use of these constraints and parametrization to estimate the trifocal tensor from 
image correspondences are presented. 

1 Introduction 

This article deals with the problem of finding a minimal representation of  the trifocal 
tensor and using the representation to estimate the tensor from feature correspondences 
in three views. 

Given three views, it has been shown originally by Shashua [Sha94] that the coor- 
dinates of  three corresponding points satisfied a set of  algebraic relations of  degree 3 
called the trilinear relations. It was later on pointed out by Hartley [Har94] that those 
trilinear relations were in fact arising from a tensor that governed the correspondences 
of  lines between three views which he called the trifocal tensor. Hartley also correctly 
pointed out that this tensor had been used, if not formally identified as such, by re- 
searchers working on the problem of  the estimation of  motion and structure from line 
correspondences [SA90]. Given three views, there are of  course three such tensors, de- 
pending upon which view is selected as the one one wants to predict to. 

The trinocular tensors play the same role in the analysis of  scenes from three views 
as the fundamental matrix play in the two-view case, therefore the question of  their 
estimation from feature correspondences arise naturally. The question of  estimating 
the fundamental matrix between two views has received considerable attention in the 
last few years and robust algorithms have been proposed by a number of  researchers 
[DZLF94,ZDFL95,TZ97b,Har95]. The main difficulty of  the estimation arises from 
the fact that the fundamental matrix must satisfy one nonlinear constraint, i.e. that its 
determinant is equal to 0, which prevents the straightforward application of  quadratic 
least-squares methods. 

* This work was partially supported by the EEC under the reactive LTR project 21914-CUMULI. 
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The related question for the trinocular tensor has received much less attention except 
for the obvious application of quadratic least-squares methods [Har94,Sha95]. What 
makes the use of these methods even more questionable in the case of the trinocular 
tensor is the fact that it is much more constrained than the fundamental matrix: even 
though it superficially seems to depend upon 26 parameters (27 up to scale), these 26 
parameters are not independent since the number of degrees of freedom of three views 
has been shown to be equal to 18 in the projective framework (33 parameters for the 
3 perspective projection matrices minus 15 for an unknown projective transformation) 
[LV94]. Therefore the trifocal tensor can depend upon at most 18 independent param- 
eters and therefore its 27 components must satisfy a number of algebraic constraints, 
some of them have been elucidated [SW95,Hey95,AS96]. 

The contributions of this paper are three-folds. First we give a new set of algebraic 
constraints that characterize the set of trifocal constraints. Those constraints are simpler 
than the ones we derived in [FP97] and used in [FP98]. Second we derive a new minimal 
parametrization of the trifocal tensor that does not suffer from the problems of previous 
ones. Third we present some preliminary experimental results where we use this new 
parametrization to estimate the trifocal tensor from image correspondences. 

We assume that the reader is familiar with elementary Grassmann-Cayley algebra 
since the necessary ingredients have already been presented to the Computer Vision 
community in a number of publications such as, for example, [Car94,FM95]. 

2 A New Formulation of the Trifocal Tensor Constraints 

2.1 The Trifocal Tensors 

Let us consider three views, with projection matrices ~ n ,  n = 1, 2, 3, a 3D line L 
with images ln. We denote b y / ' n ,  An, On the row vectors of ~ n .  They define three 
planes called the principal planes of camera n. The three lines of intersection An A 
On,  O~ A Fn,  F n  A An of those three planes are three optical rays, i.e. lines going 
through the optical center Cn, called the principal rays. 

Given two images lj and Ik of L, L can be defined as the intersection (the meet) of 
the two planes 7:~ylj and "P~lk: L __ 7:~ylj A "PkYlk, where the vector L is the 6 x 1 
vector of Pliicker coordinates of the line L. 

Let us write the right-hand side of this equation explicitly in terms of the row vectors 
of the matrices "Pj and "P k and the coordinates of lj and lk: 

2 z oj) ix 1 2 t ok) I, ~_ ( t~ / ' j  + l jAj  + (lkI'k + lkAk + 

By expanding the meet operator and applying the matrix 7~i defined in [FP97,FP98] to 
the PRicker coordinates of L, we obtain the coordinates of the image li of L: 

li -- 7bi( 'pTlj  iX "pTlk) (1) 

which is valid for i 5s j r k. Note that if we exchange view j and view k, we just 
change the sign of li and therefore we do not change li. A geometric interpretation of 
this is shown in Fig. 1. For convenience, we rewrite (1) in a more compact form: 

li ~-- "T i ( l j ,  lk) �9 
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Fig. 1. The line Ii is the image by camera i of the 3D line L intersection of the planes defined by 
the optical centers of the cameras j and k and the lines lj and lk, respectively. 

This expression can be also put in a slightly less compact  form with the advantage 
of  making the dependency on the projection planes of  the matrices "P,~, n = 1, 2, 3 

T 1 T 3 T explicit:l~ _ [ l j G  i lk r 2 lj G ilk] . This is, in the projective framework, the '-~ lj G~ lk 
exact analog of the equation used in the work of Spetsakis and Aloimonos [SA90] to 
study the structure from motion problem from line correspondences. 

The three 3 • 3 matrices G~,  n = 1, 2, 3 will play an important role in the sequel. 
We do not give their explicit forms which will not be needed in this paper [FP97,FP98]. 

Note that (1) allows us to predict the coordinates of  a line l~ in image i given two 
images lj and Ik of  an unknown 3D line in images 3 and k, except in two cases where 
"Ti (lj ,  lk) = 0 detailed in [FP98]. Except in those cases, we have defined an application 
T / f r o m  ? .2  • ? .2 ,  the Cartesian product of  two duals of  the projective plane, into ? .2.  
A pictorial view is shown in Fig. 2: the tensor is represented as a 3 x 3 cube, the three 
horizontal planes representing the matrices G~ ,  n = 1, 2, 3. It can be thought of  as a 
black box which takes as its input two lines, lj and lk and outputs a third one, li. Hartley 

~= It) ~ 

3 
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," I k 

/ 

Fig. 2. A three-dimensional representation of the trifocal tensor. 



112 

has shown [Har94,Har97] that the trifocal tensors can be very simply parameterized by 
the perspective projection matrices T~,~, n = 1, 2, 3 of the three cameras. This result is 
summarized in the following proposition: 

Proposition 1 (Hartley). Let 7:',~, n = 1, 2, 3 be the three perspective projection ma- 
trices of three cameras in general viewing position. After a change of coordinates, those 
matrices can be written, 7:~t : [I3 0], "P2 = [X e2,1] and "P3 = [Y e3,1] and the ma- 
trices G*~ can be expressed as: 

G~ = e2,1Y (n)T - X(~)e~l n = 1, 2, 3 (2) 

where the vectors X (~) and Y (~) are the column of the matrices X a n d Y ,  respectively. 

We use this proposition as a definition: 

Definition 1. Any tensor of the form (2) is a trifocal tensor. 

2.2 Algebraic and Geometric Properties of the Trifocal Tensors 

The matrices G~, n = 1, 2, 3 have interesting properties which are closely related to the 
epipolar geometry of the views j and k. We start with the following proposition, which 
was proved for example in [Har97]. The proof hopefully gives some more geometric 
insight of what is going on: 

Proposition 2 (Hartley). The matrices G~ ~ are of rank 2 and their nullspaces are the 
three epipolar lines, noted l~ in view k of the three projection rays of camera i. These 
three lines intersect at the epipole ck,i. The corresponding lines in view i are repre- 

n n sented by en • ei,k and can be obtained as T i ( l j ,  1 k), = 1, 2, 3for any lj not equal 
to 17 (see proposition 3). 

n " Y  n Proof The nullspace of G~ is the set of lines l k such that i(lj, 1 k ) has a zero in the 
n-th coordinate for all lines lj. The corresponding lines li such that 1~ = T~(lj ,  11) 
all go through the point represented by e,~, n = 1, 2, 3 in the i-th retinal plane. This 
is true if and only if l~ is the image in the k-th retinal plane of the projection ray 
Ai A Oi  (n = 1), Oi A F i  (n = 2) and Fi  A A~ (n = 3): l~ is an epipolar line with 
respect to view i. Moreover, it is represented by en x e~,k. [] 

A similar reasoning applies to the matrices G~T: 

Proposition 3 (Hartley). The nullspaces of the matrices G~ T are the three epipolar 
lines, noted l~, n = 1, 2, 3, in the j-th retinal plane of  the three projection rays of  
camera i. These three lines intersect at the epipole ej,i, see Fig. 3. The corresponding 
lines in view i are represented by en x ei,j and can be obtained as T i  (17, lk ), n : 1, 2, 3 
for any Ik not equal to l'~. 

This provides a geometric interpretation of the matrices G~: they represent mappings 
from the set of lines in view k to the set of points in view j located on the epipolar 
line l~ defined in proposition 3. This mapping is geometrically defined by taking the 
intersection of the plane defined by the optical center of the kth camera and any line 
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~j(r, a A,) =- l~ 

Fig. 3. The lines lj ~ (resp. l~), n : 1, 2, 3 in the nullspaces of the matrices G~ T (resp. G~) are 
the images of the three projection rays of camera i. Hence, they intersect at the epipole ej,~ (resp. 
ek,0. The corresponding epipolar lines in camera i are obtained as T~(lj ~, Ik) (resp. Ti(lj, I'~)) 
for lk :/: I~ (resp. lj ~ l~). 

of its retinal plane with the nth projection ray of the ith camera and forming the image 
of this point in the j th camera. This point does not exist when the plane contains the 
projection ray. The corresponding line in the kth retinal plane is the epipolar line l~ 
defined in proposition 2. Moreover, the three columns of G~ represent three points 
which all belong to the epipolar line l~. 

We can go a little further in the interpretation of the matrices G~. They also define 
each a collineation from the line l~r ~ to the line l~: given a point ak of l~, the pencil of 
lines going through ak defines a pencil of planes whose axis is the 3D line (Ck, Ak) 
(Ak is the point of the corresponding optical ray of the ith camera). The corresponding 
point bk on l~ is the image of Ak. The correspondence (ak, bk) is the analog for G~ 
of the correspondence between two epipolar lines for the fundamental matrix. Indeed, 
there is a very strong analogy between the matrices G~ and fundamental matrices: both 
are of rank two and both, as we just showed, define collineations between l? 1. 

Since each matrix G~, n --- 1, 2, 3 defines a collineation from l~ to l~, we have three 
such collineations that we denote by h n. Those three collineations are not independent 
and we have the following proposition: 

Proposition 4. The three collineations h ~ satisfy the relations: 

h'~(ek,~) = ej# n : 1,2,3 (3) 

Proof. We know that the three lines l~ (respectively l~) go through the epipole ek,  i 
(respectively ej,O and from the definition of h '~, when the point ak coincides with the 
epipole ek,i, the point bk coincides with the epipole ej,i, hence (3). [3 

Similarly, the matrices G~ T represent mappings from the set of lines in view j to the 
set of points in view k located on the epipolar line l~. From the previous discussion we 
deduce that: 

Proposition 5. The rank of  the matrices [11 12 13] and [I} [~ 13] is 2 in general. 
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Algebraically, this implies that the three determinants det(G~),  n = 1, 2, 3 are 
equal to 0. Another constraint implied by proposition 5 is that the 3 • 3 determinants 
formed with the three vectors in the nullspaces of the G ~ , n  = 1,2, 3 (resp. of the 
Gn T ,  , n = 1, 2, 3) are equal to 0. It turns out that the applications 7-i, i = 1, 2, 3 satisfy 
other algebraic constraints which are relevant for this paper. 

To simplify a bit the notations, we assume in the sequel that i = 1 , j  = 2, k = 3 
and ignore the ith index everywhere, e.g. denote 7-1 by 7-. 

We have already seen several such constraints when we studied the matrixes G'L 
Let us summarize those constraints in the following proposition: 

Proposition 6. Under the general viewpoint assumption, the trifocal tensor 7- satisfies 
the three constraints, called the rank constraints: 

rank(CD = 2 ~ det(G ~') = 0 n = I, 2, 3 

The trifocal tensor 7- satisfies the two constraints, called the epipolar constraints: 

rank( [11 z 3 rank( [11 1~ ::r 121 122 13 [=1 11 z 3 1212] ) =  1 3 ] ) = 2  lzl3 l0  

Those five constraints on the form of the matrices G'* are clearly algebraically inde- 
pendent since the rank constraints say nothing about the way the kernels are related. 

There is a further set of constraints that are satisfied by any trifocal tensor and are 
of great interest for this paper. They are described in the next proposition. 

Proposition 7. The trifocal tensor "1" satisfies the ten algebraic constraints, called the 
extended rank constraints: 

3 

r a n k ( Z  AnG '~) < 2 VA,~ n = 1, 2, 3 
n----1 

Proof Notice that for fixed values (not all zero) of the An's, and for a given line 13 in 
z view 3, the point which is the image in view 2 of line 13 by ~-~-~=1 A,~G'~ is the image of 

the point defined by: A17:'T1 /x (A A 69) + A2T'T1 n (~9 A / ' )  + A3"pT1A (F  A A) 
This expression can be rewritten as: 

7:'T1 A (A1A A 69 + A2~9 A F + A3/" A A) (4) 

The line A1A A ~9 + ~2~9 A F + ~3F A A is an optical ray of the first camera, and 
when 1 varies in view 3, the point defined by (4) is well defined except when l is the 
image of that line in view 3. In that case the meet in (4) is zero and the image of that 

3 line is in the nullspace of ~-'~n= 1 AnG'L [] 

Proposition 7 is equivalent to the vanishing of the 10 coefficients of the homogeneous 
3 polynomial of degree 3 in the three variables A,~, n = 1, 2, 3 equal to det(~-~= 1 A,~G'~). 

The coefficients of the terms A~, n = 1, 2, 3 are the determinants det(G'~), n = 1, 2, 3. 
Therefore the extended rank constraints contain the rank constraints. 

To be complete, we give the expressions of the seven extended rank constraints 
which are different from the three rank constraints: 
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Proposition 

A~A2 

A~A3 

A~A1 

A~A3 

A~A1 

AIA2A3 

~ 

G~ G21 G3 2 

G ~ G ~ G  3 

G~G~G~ 
2 2 

G1 G2 G3 3 

G 3 G ~ G  1 

G3 G ~ G ~  

G~ G~ G~ 

The seven extended rank constraints are given by: 

+ G1 G~ G~ 

3 1 -F G 1 G 2 G31 

+ G1 c~ Gg 
(-23 r r 

-~- ~ 1  " ' 2  "-'3 

+ G1 G~ G~ 
r r r 

(22  f21 f23  
"[- ~ 1  "~2 "-~3 

= o (5) 

= 0 (6) 

= 0 (7) 

= o (8 )  

= 0 (9) 

= o ( l O )  

+ 

IG12 3 1 G: G~ I + I G~ G 1 G~ I + I G~ G~ G 1 I = o (11) 

2.3 New Constraints that Characterize the Tensor 

We now show the new result that the ten extended constraints and the epipolar con- 
straints characterize the trifocal tensors: 

Theorem 1. Let T be a bilinear mapping from ]p.2 x ]?.2 to ]p.2 which satisfies the 
twelve extended rank and epipolar constraints. Then this mapping is a trifocal tensor, 
i.e. it satisfies definition 1. Those twelve algebraic equations are another set of implicit 
equations of  the manifold of trifocal tensors. 

The proof of this theorem is the subject of the rest of this section. We start with a 
proposition that will be used to prove that the three rank constraints and the two epipolar 
constraints are not sufficient to characterize the set of trifocal tensors. Its proof that can 
be found in [FP97]. 

Proposition 9. I f  a tensor ~fl satisfies the three rank constraints and the two epipolar 
constraints, then its matrices G n, n = 1, 2, 3 can be written: 

G '~ = anX(n)Y (n)T + X( '~)e l l  + e2,1Y (n)T, (12) 

where e2,1 (resp. e3,1) is a fixed point of image 2 (resp. of image 3), the three vectors 
X (n) represent three points of image 2, and the three vectors Y(n) represent three points 
of image 3. 

What about the ten extended rank constraints: Are they sufficient to characterize the 
trilinear tensor? the following proposition answers this question negatively. 

Proposition 10. The ten extended rank constraints do not imply the epipolar con- 
straints. 

Proof The proof consists in exhibiting a counterexample. The tensor T defined by: 

[ooi] [ol i] [:o] G 1 = - 1  - 1  G e = 0 G 3 = 1 

1 0 1 0 

satisfies the ten extended rank constraints but the corresponding three left nullspaces do 
not satisfy the left epipolar constraint. [] 
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We are now ready to prove Theorem 1: 

Proof The proof  consists in showing that any bilinear application ~r" that satisfies the 
five rank and epipolar constraints, i.e. whose matrices G ~ can be written as in (12) and 
the remaining seven extended rank constraints (5-11) can be written as in (2), i.e. is 
such that a,~ = O, n = 1, 2, 3. 

I f  we use the parametrization (12) and evaluate the constraints (5-10), we find: 

--a2 

--a3 

- -a  1 

--a3 

- -a l  

--a2 

e2,1 X (1) X (2) l] e3,1 y (1)  y (2)  

e2,1 X(1) X(3) II e3,1 y O )  y(3)  

e2,1 X O) X (2) tl e3,1 y O )  y(2)  

e2,1 X (2) X (3) I I e3,1 y (2)  y (3 )  

e2,1 X (1) X (3) II e3,1 y (1)  y (3)  

e2,1 X (2) X (3) [] e3,1 y(2)  y (3)  

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

In those formulas, our attention is drawn to determinants of  the form ] e2,1 X (/) X (j) ] 
, i 7~ j (type 2) and I e3,1 Y(/) Y(J) I, i # j (type 3). The nullity of  a determinant of  
type 2 (resp. type 3) implies that the epipole e2,1 (resp. e3,1) is on the line defined by the 
two points X (/), X (j) (resp. Y(/), Y(J)), if the corresponding points are distinct. If  all 
determinants are non zero, the constraints (13-18) imply that all a,~'s are zero. Things 
are slightly more complicated if some of the determinants are equal to 0. 

We prove that if the matrices G n are of  rank 2, no more than one of  the three 
determinants of  each of the two types can equal 0. We consider several cases. �9 The 
first case is when all points of  one type are different. Suppose that the three points 
represented by the three vectors X (n) are not aligned. Having two of the determinants 
of  type 2 equal to 0 implies that the point e2,1 is identical to one of the points X (n) 
since it is at the intersection of  two of the lines they define. But, according to (12), this 
implies that the corresponding matrix G n is of  rank 1, contradicting the hypothesis that 
this rank is 2. Similarly, if the three points X (n) are aligned, if one determinant is equal 
to 0, the epipole e2,1 belongs to the line (X  (1), X ( 2 ) X ( 3 ) )  which means that the three 
epipolar lines 11, 2 3 12,12 are identical contradicting the hypothesis that they form a matrix 
of  rank 2. Therefore, in this case, all three determinants are non null. �9 The second 
case is when two of  the points are equal, e.g. X (1) ~ X (2). The third point must then 
be different, otherwise we would only have one epipolar line contradicting the rank 2 
assumption on those epipolar lines, and, if it is different, the epipole e2,1 must not be 
on the line defined by the two points for the same reason. Therefore in this case also at 
most one of the determinants is equal to 0. 

Having at most one determinant of  type 2 and one of type 3 equal to 0 implies that 
at least two of the an are 0. This is seen by inspecting the constraints (13-18). If  we 
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now express the seventh constraint: 

ala2a3 [ y ( 1 ) y ( 2 ) y ( 3 )  II x(1) x(2)x(3) I 
-- ([ e2,1 X (D X (2) [I e3,1 y ( t )  y(3)  [ + I e3,1 y(1)  y(2)  [[ e2,1 X (1) X (3) I)al 

+( I  e3A Y(1)Y(2) II e2,1X(2) X ( 3 ) I + l  ezAY(2) Y(3)II  e2,1 x(1) x(2) I)a2 

- (I e2,1 X (2) X (3) II e3,1 y(1) y(3) I + I e3A y ( 2 ) y ( 3 )  II e2,1 X(1) ,X (3) I)a3 

+([ e2,t X (1) X (2) [[ y(1) y(2) y(3) I + I e3,t y(1) y(2) I[ x(1) x(2) x(3) [)ala2 

+(I e3,1 y(2) y(3) I1 X(1) x(2) x(3) I + I e2,1 X (2) X (3) II V(1) y(2) y(3) Daea 3 

- ( I  e2,1 X (1) X (3) II y ( 1 ) y ( 2 ) y ( 3 )  I + I x(1) X(2) x(3) II e3,1 y(1) V(3) Dale3, 

we find that it is equal to the third an multiplied by two of the nonzero determinants, 
implying that the third an is null and completing the proof. 

Let us give a few examples of the various cases. Assume first that I e2,1 X (1) X (2) t = 
I e3,1 y(1) y(2) i= 0. Then (17), (18) and (16) imply al -- a2 = a3 = 0. The second 
situation occurs if we assume for example I e2,1 X (1) X (2) I=1 e3,1 y(1) y(3) l= 0. 
Then (18) and (16) imply a2 = a3 = 0. Equation (11) takes then the form 
- I e2,1X (1) X (3) l[ e3,1 y(x) y(2) [ al ,  and implies al = 0. [3 

Practically, Theorem 1 provides a simpler set of sufficient constraints than those 
used in [FP98]: The ten extended constraints are of degree 3 in the elements of 7" 
whereas the other constraints are of degree 6 as are the two epipolar constraints. 

3 A New Parameterization 

Having minimal parameterizations of the trifocal tensor is very useful: 
�9 first, the canonical elements emphasized by such parameterizations may help to have 
a better geometrical understanding of the mathematical concept of the trifocal tensor 
(some results of this articles were obtained in this way). 
�9 if we want to use general non-constrained optimization techniques to estimate trifocal 
tensors that are optimal with respect to the data. In the absence of such parameteri- 
zations, one has either to rely on constrained optimization, or to optimize only over a 
subset of the parameters defining the trifocal tensor [Har97]. However, finding a good 
minimal parameterization of the trifocal tensor is not an easy task and to our knowledge 
only two have been proposed to date [TZ97a,FP98]. 
This section presents a new minimal parameterization of the trifocal tensor, that over- 
comes some problems that arise with those. 

3.1 A Few Notations 

There is a common point to the objects introduced to deal with multiple view geometry 
such as fundamental matrices or trifocal tensor: they all involve at some point matrices 
of rank 2. Furthermore, in most cases, the left and right kernels of these matrices are 
attached to geometrical properties of the system of cameras. This suggests that the set 
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A4(L, R)  of  all the matrices that have a given left kernel L = [lx, ls, 13] T ~ 0 and right 

kernel R = Jr1, rs,  r3] T ~ 0 is of  some importance, and it indeed received a lot of  
attention with the study and parameterization of  the fundamental matrix. Most of  this 
section is just a slightly different formulation of  a well-known parameterization of  the 
fundamental matrix, which uses the 2 epipoles and 4 coefficients of  the original matrix 
that describe the homography relating the epipolar lines in the two images [LF96]. 

Obviously, A//(L, R)  is a linear space of  dimension 4. Thinking in terms of  linear 
spaces, a basis can be found and the coordinates of  a given matrix of  A/I(L, R)  in 
that basis correspond to the 4 coefficients of  the fundamental matrix parameterization. 
Unfortunately, there is no systematic way to define a basis for A4(L, R)  that would be 
valid for all choices of  L and R :  different maps cannot be avoided as long as we want a 
minimal basis. To simplify the presentation, we assume that the highest components in 
magnitude of both L and R are in first position: in this case, the four matrices of  rank 1 
M 1 ,  Ms,  M3 and M4 constitute a basis of.A/l(L, R) .  

[r3,3 0 r,,3] r o,3 T,,3 i] 
M 1  : 0 0 0 , M 2  --  0 , 

-r311 0 r t l l  k rs l l  - r i l l  

M3 = r3ll 0 - r i l l  , M 4  = - ll r i l l  (19) 
0 0 0 0 

This basis is valid as long as 11 r 0 and r l  r 0. This explains our choice of  
having maximal magnitudes for those coefficients. The 8 other maps that correspond to 
different choices for the positions of  the highest components are obtained similarly. 

The coordinates of  a matrix M of .M(L,  R)  in this basis are called al ,  as, a3 and 
a4: M = a i M 1  + a s M s  + a 3 M 3  + a 4 M 4 .  M is of  rank 1 i f f a s a 3  -- a l a 4  = O. 

3.2 The  Extended Rank  Constraints  Revisited 

The 3 matrices G i, i : 1 . . .  3 being rank-2, we note L i and R i their respective left and 
right kernels. Each G ~ can thus be represented by its coordinates a t,  a~, a~ and a~ in 
a basis of  .A4(L i, R~). We assume hereafter that the first coordinates of  L ~ and R i are 
those of  highest magnitude, so that we work in the basis described by (19). 

Since L i, i = 1 . . .  3 and R ~, i : 1 . . .  3 are orthogonal to es,1 and e3,1 respectively, 
we can write L i = esA • X( i ) , i  = 1 . . . 3  and R i = e3,1 • Y ( i ) , i  = 1 . . .  3, where 
X( i )  and Y( i )  are the vectors of  formula 2. Plugging these values into the extended 
rank constraints 5-11  and using computer algebra to factorize the results leads to the 
following result which is an algebraic translation of  proposition 4: 

Theorem 2. Assuming that the first coordinates o f  L ~ and R i are those o f  highest mag- 
nitude, The four  coefficients i �9 a j ,  3 : 1 . . .  4 representing G i in .A,4(L 'z, R";) satisfy the 
following linear relation: 

2 2 ~ 2 3 i 3 2 ~ 3 3 i = 0  (20) 
e2,1e3,1a 1 -{- e2,1e3,1a2 --[- e2,1e3,1a 3 --~ e2,1e3,1a 4 
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= 1 2 [e3,1, e3,1, e33,1 ]T. where e2,1 [e2,1, e2,1' e3,1]T and e3,1 : 1 2 

Remarks: 
�9 Equations 20 are only factors that appear in the extended rank constraints, but it can 
be shown that it is the only one that must generically vanish. 
�9 In general, the first coordinates of  L i and R i are not those of  highest magnitude, 

but (20) remains essentially the same with the substitution of  e j and e k by e )d(j) 2,1 3,1 2,1 

and e p~(k) where ,~i and pi 3,1 , are the circular permutations that bring respectively the 

coordinates of  highest magnitude of  L i and R i into first position. 
�9 It is not difficult to show that (20) are never degenerated provided that the proper 
permutations ) i  and pi have been made. 

3.3 A Minimal Parameterization of the Trifocal Tensor 

Let us first assume that the 6 vectors L i, i = 1 . . .  3 and R i, i = 1 . . .  3 are given, we 
show that the three matrices G i , i  = 1 . . .  3 can be parameterized by 8 coefficients. 
To do so, consider the 12 coordinates a}, i  = 1 . . . 3 , j  = 1 . . . 4 .  Since for each i the 

a}, j = 1 . . .  4 are satisfying (20), it is possible to drop one of  those four coordinates: 
for numerical stability, the best choice is to drop the coordinate which has the highest 
coefficient in magnitude in (20). Moreover, since the G ~ are only defined up to a global 
scale factor, we can drop one more of  the 9 remaining coordinates by normalizing it to 
1. This leaves us with 8 coefficients that completely describe the G i, i = 1 . . .  3, given 
the L i , i  = 1 . . . 3  and R~, i  = 1 . . . 3 .  Since 8 parameters have been used, only 10 
parameters remain to parameterize the L i, i = 1 . . .  3 and R i, i = 1 . . .  3. 

We can assume without loss of  generality that IlI?ll = 1,i  = 1 . . . 3 .  These 3 
vectors are orthogonal to the epipole e2,t which can be parameterized by 2 coordinates 
by normalizing its biggest coordinate to 1 (there are thus 3 maps). The vectors L i are 
conveniently represented by 3 angles in a canonical basis of  the plane orthogonal to the 
direction defined by e2,1. All the L i can thus be represented by 5 parameters. A similar 
parameterization can be obtained for the R i, i = 1 . . .  3, which gives the desired result. 

As a consequence, we have obtained a minimal parameterization of  the trifocal 
tensor, i.e by 18 parameters. As the reader may have noticed, the number of  maps of  
this parameterization is very large (9 x 32 x 36) but it is nonetheless easy to define a 
general routine that chooses the best map and computes the parameterization. 

3.4 Relationship with Projection Matrices (Hartley Parameterization) 

Following Hartley's work as described in proposition 1, we choose without loss of  gen- 
erality a projective basis of  the 3D space such that the projection matrix of  the first 
camera P1 = [I]0]. In this basis, we note P2 = [a}] and P3 = [/~j] the projection 

matrices of  the two other cameras. With these notations, the matrices G i, i = 1 . . .  3 
J k J k of the trifocal tensor T1 can be written as G}k = a i f l  4 - o ~ 4 / ~  i . Although not min- 

imal (22 parameters), this parameterization is interesting because it establishes a link 
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between the trifocal tensors and the projection matrices. We now give expressions for 
the parameters introduced in the previous section in terms of those projection matrices. 

3 2 L i [O/40~ i 2 3 1 3 3 1 2 1 1 21T 
= - -  0~4(~ i ~ O/40L i - -  OL4C~ i ~ O~40L i - -  0~40~ i J 

a i [~43~/2 2 3 1 3 3 1 2 1 1 2 = - Z~Z,  9~ Z~ - Z~ Z~ ] T 
Z4 Z~,  - Z~ Z~, 

Using the permutations A i and pi of Sect. 3.2, we can express the coordinates 
i . . . .  G i aj, 3 : 1 4 of in the basis of A4(L ~, p i) defined by those permutations: 

"x~(3)~p~(3)  x ~ ( 3 ) - p i ( 3 )  "~X~(3) f~Pi(2) - -  0 ~  (3) 
i ~i P4 --~4 O ~ " '~i t-'4 /~ 

a l  = D ~a~ : O 

~'~i(2)t~pi(3) o~xi(2)Rpi(3)i - ' X i ( 2 ) ~ t P i ( 2 )  - ot f l  
i " (~i D4 a3  = i ~-4 - 4 ,-- 

D , a~ = D ' 

where D = L ~ R ~ "xi(3)0//~i(2) AI(2) xi(a)~/~)~i(3) '~/Xi(2) (~)~i(2)~)~i(3)~ 
Ai(1) pi(1 ) = ((14 --Ct 4 OQ ) l p  4 P i  - - " 4  t-'i ) 

is the product of the two highest coordinates in magnitude of L i and R i respectively. 
Since the parameters of the parameterization are ratios of coordinates of L i and R i and 
of a}, j = 1 . . .  4, they are projective invariants of the original projection matrices. 

3.5 Comparison with Previous Minimal Parameterizations 

Previously, only two minimal parameterizations have been proposed: in [TZ97a], Tort 
and Zisserman propose a parameterization TZ that is based on 6 corresponding points 
in the 3 images, in [FP98], Faugeras and Papadopoulo use a minimal parameterization 
FP that is based directly on the coefficients of the trifocal tensor. 

In both cases, the parameterization is not one to one, i.e. one vector parameter pa- 
rameterizes more than one trifocal tensor (up to three with TZ and up to two with FP). 
This arises because a polynomial equations of degree 3 for TZ and degree 2 for FP has 
to be solved in order to recover the trifocal tensor. This has two practical consequences: 
�9 The multiple trifocal tensors parameterized by a single vector of 18 values can be dis- 
tinguished only by using the image data. Although, the authors never experienced such 
a behavior, it might be possible to have situations for which this distinction is difficult. 
�9 With a minimization process that updates "blindly" the vector of parameters, it is pos- 
sible to "lose" the trifocal tensor when the solution designated by the data "disappears" 
in the complex plane leaving only one potential candidate with TZ and none with FP. 
In both cases, this is bad and there is no good solution to the problem. This should be a 
rare event but could result in a really bad solution when it happens. The authors experi- 
enced this problem in one case with the FP parameterization. 

Since the new parameterization is one to one (one parameter code for only one 
trifocal tensor), such problems should never happen. Finally, none of the two parame- 
terizations TZ or FP deals very well with map problems: in both case, there is no clear 
way to choose the map to minimize the numerical problems (i.e. what is the best choice 
of point for TZ apart from being in general position, and what columns of the trifocal 
tensor to take as parameters with FP). On the contrary, with our new parameterization, 
there is always a well-defined way to choose the best map for a given trifocal tensor. 
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4 Experimental Results 

We have used our new parameterization in a minimisation process, similar to the one 
described in [FP98]. We start with a set of  point of  three corresponding images for 
which triplets of  corresponding points have been extracted. From an initial linear esti- 
mate that, in general, does not verify the trifocal constraint, we compute an initial tensor 
that satisfies them 1. Then, this initial trifocal tensor is parameterized and this minimal 
description of  the tensor is used in a non-linear optimization process that refines the 
tensor by minimizing a criterion defined as the sum of the squared euclidean distances 
between the predicted and measured points in all the three images. For more details on 
this criterion see [FP98]. 

Fig. 4. One image excerpted of each triplet used for the experiments. In each case, the point 
matches used for the experiments are shown. Notice that the first of these triplets is actually a 
triplet of mosaics made from different pictures. Starting from top to bottom and from left to right 
these experimental sets are called Triplet 1, Triplet 2 and Triplet 3 respectively. 

Figure 4 shows one image of  each of  the three triplets Triplet  1, Triplet  2 and 
Triplet 3 of  real images that we used for our experiments. Each triplet contains about 
30 point matches that are used to estimate the trifocal tensor. Those points were obtained 
using an interactive tool and are of  good quality (reasonable accuracy, of  the order of  .5 
pixels, and no false matches). To check the behavior of  the minimizations in less perfect 
situations, we have also rounded to the closest integer value the pixels coordinates for 
the second and third triplets which are referred to as Triplet 2' and Triplet 3' .  

Table 1 show the residual errors after minimization. For comparison purposes, we 
have also included the results obtained with the F P  parameterization. As it can be seen, 

There are many reliable ways to achieve this step: we can use either a parameterization or 
a minimisation process over the trifocal constraints. The quality of the result varies with the 
method but this is not the topic of this paper. 
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Triplet 1 Triplet 2 Triplet 2' Triplet 3 Triplet 3' 
Average Max. Average Max. Average Max. Average Max. Average Max. 
3.9e -~ 2.2 4.5e -4 0.1 6.9e -3 1.7 3.3e -4 0.1 6.2e -4 i0.2 

F P  3.6e -3 1.6 9.5e -4 0.2 8.1e -3 1.9 1.7e -4 !0.1 6.8e -4 0.7 
8.4e -3 3.6 7.4e -4 0.1 3.0e -3 0.6 2.4e -4 0.1 7.3e -4 0.3 
4.7e -~ 1.3 7.4e -4 0.2 7.9e -~ 2.0 4.3e :4 0.1 1.0e -3 0.3 

N e w  2.1e -3 0.6 8.2e -4 0.2 1.1e -2 2.4 2.9e -4 0.1 6.0e -4 0.3 
5.2e -3 2.2 6.5e -4 0.1 2.7e -3 0.5 3.5e -4 0.2 1.5e -3 0.8 

Table 1. Prediction errors in pixels for all experiments. The rows labelled F P  corresponds to 
the minimization process using the F P  parameterization, whereas N e w  corresponds to the one 
using the new parameterization. For each experiment, both average and maximal errors for each 
image are shown. 

the results are quite comparable even though those obtained with the new method seem 
to be be generally of slightly lower quality. It should be said that during the tunning 
of the whole minimization process (test with different initializations and with different 

setup for the minimization processes), the results were consistently of lower quality 
(sometimes slightly worse than what is happening with the options that have been used 
for the results shown here). However, we have also seen among the hundreds of tests, 
at least three cases for which the F P  based method fails miserably with NaN values 
for the trifocal tensors coefficients. This is because of the phenomenon explained in 
Sect. 3.5. On the contrary, the N e w  method has always given a plausible result. 

5 Conclusion 

We have given a new set of algebraic constraints that characterize the set of trifocal 
constraints (Theorem 1). Those constraints are simpler than the ones we derived in 
[FP97] and used in [FP98]. We have used those constraints to derive a new minimal 

parametrization of the trifocal tensor that does not suffer from the problems of previ- 
ous ones. Finally we have presented some experimental results where we use this new 
parametrization to estimate the trifocal tensor from image correspondences. 
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