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Abs t rac t .  We investigate the geometry of two views of seven points, 
four of which are coptanar, and the geometry of three views of six points, 
four of which axe coplanar. We prove that the two are dual, and that the 
fundamental geometric constraints in each case are encapsulated by a 
planar homology. The work unifies a number of previously diverse results 
related to planar parallax, duality and planar homologies. 
In addition, we make a number of practical contributions, including for- 
mulae for computing the distance of the cameras from a distinguished 
world plane and formulae for structure computations. We show that the 
trifocal tensor is obtained uniquely from three views of six points, four 
of which axe coplanar, and give a simple interpretation of the trifocal 
geometry. 
We give examples of these computations on real images. 

1 I n t r o d u c t i o n  

In recent work Carlsson and Weinshall et al. [2,3, 18, 19] have demonstrated 
the fundamental  duality of the 3D reconstruction problem. They show that  for 
points and camera in general position, the problem of computing camera posi- 
tions from n points in m views is mathematical ly  equivalent to the problem of 
reconstructing m + 4 points in n - 4 views. 

In this paper  we investigate the case where the points are not in general 
position, but  where four of the space points are coptanar (which we refer to 
as the plane + points configuration). We show that  in this case there exists 
an additional dual relationship which is described by a planar homology [13, 
17], which encapsulates the fundamental  geometric constraints which can be 
obtained. A summary  of the duality results contrasted with the general position 
cases is shown in table 1. 

The plane + points configuration has received significant at tention in the 
past,  not least because it arises frequently in everyday scenes. A useful and 
popular approach to the problem decomposes the image motion into a planar 
homographic transfer plus a residual image parallax vector [7, 8, 12]. This de- 
composition has the advantage that  it partially factors out dependence on the 
camera relative rotation and internal parameters.  Furthermore it can be shown 
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?i2 n 

views pts 

2 7 

3 6 

general position 

3n + 7 = 28 d.o.f. 

2mn = 28 constraints 

F determined up to a 
3-fold ambiguity 

no further constraints 

3n + 18 = 36 d.o.f. 

2ran = 36 constraints 

T determined up to a 
3-fold ambiguity 

no further constraints 

coplanar 

3 n -  1 + 7 = 27 d.o.f. 

2ran = 28 constraints 

F determined uniquely 
motion constraint (one) in addition 

3 homology: maps between views, 
vertex is epipole, i.e. intersection of plane 

and camera baseline, 
axis is intersection of plane with plane 

containing remaining three points. 

3n - 1 + 18 = 35 d.o.f. 

2ran = 36 constraints 

T determined uniquely 
structure constraint (one) in addition 

homology: maps between points, 
vertex is intersection of plane and line 

joining the remaining two points, 
axis is intersection of plane and plane 

containing the camera centres. 

Table  1. Camera/point duality results for (i) points in general position and (ii) four 
points lying on a distinguished plane. The fundamental matrix F has 7 degrees of 
freedom (d.o.f.) and the trifocal tensor T has 18 d.o.f. 

[7] t ha t  the relative s t ructure  of points, and the rigidity of a scene, can be deter- 
mined directly f rom the image measurements  - i.e. the paral lax vectors - wi thout  
needing to compute  the epipolar geometry.  We show tha t  these constraints ,  and 
other  equivalent and dual ones, are consequences of the planar  homology. 

In  fact, the work here unifies a number  of previously diverse results related 
to planar  paral lax [7, 8, 12], duali ty [2, 3, 18, 19] and planar  homologies [17]. In  
addi t ion to this theoretical  contr ibution,  we make a number  of  pract ical  con- 
tr ibutions,  including formulae for comput ing  the distance of the cameras  f rom 
a distinguished world plane, formulae for s t ructure  computa t ions ,  and we de- 
rive the trifocal tensor [6, 15, 16] in the plane + points  case, showing t h a t  it is 
obta ined  uniquely. 

The  remainder  of the paper  is organised as follows. We begin with a discussion 
of background  material  - notat ion,  parallax geometry  and, planar  homologies. 
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We then turn to the geometry of two views, seven points, four of which are 
coplanar. We show that  there exists a homology on the plane relating the two 
views and derive necessary conditions for the homology directly in terms of the 
parallax measurements. In section 4 we show the duality of the geometry of three 
views, six points (four coplanar) to the two view, seven point case, and hence 
obtain analogous necessary conditions. We also derive the trifocal tensor and 
show that  it is over-constrained. In section 5 we derive expressions for the height 
of the cameras from the distinguished plane and the structure of points in terms 
of affine invariants, and give examples of various applications. We conclude with 
a discussion and directions for future study in section 6. 

2 B a c k g r o u n d  

2.1 N o t a t i o n  

We denote 3D points in general position by upper case bold symbols (e.g. P)  and 
image positions and vectors by lower case bold symbols (e.g. p, tip) and scalars 
by lower case normal symbols (e.g. d, hp). Matrices are denoted by typewriter 
style capitals (e.g. A, S). 

The area of a triangle on a plane with vertices p, q, and r is denoted Apqr,  
and can be determined via the formula Apq r : �89 where the points p, q, 
and r are represented as homogeneous 3-vectors with last component equal to 
one. 

Numbered subscripts are used to distinguish different views, with the first 
camera centre given by O1, the second by 02  and the third by 03.  The projec- 
tion of an image point onto the distinguished world plane from the i ~h view is 
denoted Pi. 

2.2 P l a n a r  p a r a l l a x  

The underlying parallax geometry is shown in figure 1. The distinguished world 
plane induces a homography between the views meaning that  the images of 
points on the plane can be transferred via the homography between views 1 and 
2. The homography can be determined from a minimum of four correspondences 
in the two views of points (or lines) on the distinguished plane [11]. 

The parallax vector in the first view is the vector joining the image of a 
world point P with the transferred location of P ' s  image in the other view (i.e. 
the image of P2). Furthermore, since the three planes (distinguished world plane 
and two image planes) are equivalent up to a plane projectivity, we can also 
measure parallax in the second view, or - if we know the image to world plane 
homographies - on the distinguished world plane. In fact it is particularly elegant 
to work with the world plane. In this case all dependence on the rotational and 
internal parameters of the cameras is removed (aggregated into the image plane 
to world plane homographies) leaving only a dependence on the camera centres. 

Since the clarity of the underlying geometry is greatly increased, we depict 
all relevant points and vectors on the world plane in all of our figures. However 
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the computations in general do not require the image to world homographies to 
be known. 

The parallax vector is directed towards (or away from) the epipole, so two 
such vectors are sufficient to compute its position, and the full epipolar geom- 
etry follows [1, 9, 10]. The magnitude of the parallax vector is related to the 
distance of the world point and cameras from the world plane. Although others 
have described this function in detail [7, 8, 12], we re-derive the relationship in 
section 5. 

Fig. 1. Parallax geometry: (a) general configuration; (b) viewed on the distinguished 
plane. The parallax vector < pl, p~ > passes through the epipole e12. 

2.3 P l a n a r  h o m o l o g i e s  

A planar homology is a plane projective transformation with five degrees of 
freedom, having a line of fixed points, called the axis and a distinct fixed point not 
on the axis known as the vertex (figure 2). Algebraically, such a transformation 
has one distinct eigenvalue, with corresponding eigenvector being the vertex, 
and two repeated eigenvalues, whose corresponding eigenvectors span the axis. 
Planar homologies arise naturally in an image when two planes related by a 
perspectivity in 3-space are imaged [17]. 

If two triangles on a plane are related such that  the lines joining their cor- 
responding vertices are concurrent, then they are said to be in a Desargues 
configuration, and Desargues' Theorem states that  the intersections of their cor- 
responding sides are collinear [13] (figures 4, 6). Such triangles are related by 
a planar homology, with the common point of intersection being the vertex of 
the transformation, and the axis being the line containing the intersections of 
corresponding sides. Conversely, any triple of points in correspondence under a 
homology must be in a Desargues configuration. 

The projective transformation representing the homology can be parametrized 
directly in terms of the 3-vector representing the axis a, the 3-vector representing 
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vertex v 

/ ~ axis 

i, q 

Fig. 2. A planar homology is defined by a vertex and an axis. Its characteristic in- 
variant is given by the cross-ratio < v, p l ,p2 , ip  > where p l  and p2 are any pair of 
corresponding points and ip is the intersection of the line through pl  and p2 and the 
axis. The point p l  is projected onto the point p2 under the homology, and similarly 
for ql and q2. 

the vertex v, and the characteristic cross-ratio # as: 

v a  T 
H = + - 1 ) - -  

v . a  

Having five degrees of freedom (the scales of v and a have no effect), a 
homology can be determined by 2.5 point correspondences. Three point corre- 
spondences therefore, provide an additional constraint. In the next section we 
derive the link between homologies and the structure and motion. 

3 G e o m e t r y  o f  t w o  v i e w s  

We consider the case of imaging seven points, four of which are coplanar from 
two distinct viewpoints. Each of the three points P , Q  and R not on the plane 
gives rise to a parallax vector, which is depicted on the world plane in figure 3. 

The plane P Q R  intersects the world plane in a line, and the camera baseline 
intersects the world plane in a point. It  can be seen by inspection of figures 3 
and 4 tha t  the geometry under consideration (seven points, two views) leads 
directly to a Desargues configuration in which the epipole is the vertex of the 
homology and the intersection of plane P Q R  with the world plane is the axis 
of the homology. The two triangles in the Desargues configuration are the two 
images of the space triangle P Q R .  This key observation underpins the results 
which follow. 

As stated in the previous section, a homology has five degrees of freedom, 
and therefore three point correspondences over-determine the homology. The 
extra  constraint available can be used as a test for the rigidity of the scene and 
is equivalent to the epipolar constraint. 
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Fig. 3. (a) The geometry of three points in two views. The triangle plqlrl  is the 
"shadow" of P Q R  under the camera Oi; (b) The axis of the homology is given by the 
intersection of the plane P Q R  with the world plane, and the vertex (epipole e12) by 
the intersection of the baseline with the world plane. 

Clearly the constraint can be tested geometrically by using point correspon- 
dences either to construct the intersections of corresponding sides and testing 
their collinearity, or testing the concurrence of the parallax vectors. Alternatively 
an algebraic test  could, for example, compute the epipole using two point corre- 
spondences, use the epipole plus the three point correspondences to solve for a 
general homography, then test  the homography to determine if it is a homology. 

The former has the disadvantage of requiring the construction of features 
which may be far removed from the measured image features themselves, while 
the lat ter  gives little insight into the underlying geometry. 

Below we derive novel bilinear and trilinear constraints which are necessary 
conditions on the homology. We refer to these as motion constraints and they 
are equivalent to the epipolar constraint, but  have the advantage tha t  the com- 
putat ions involve only those features which can be measured directly, namely 
the paral lax vectors. 

3.1 M o t i o n  c o n s t r a i n t s  

Here we give necessary conditions for the homology (which are therefore neces- 
sary for scene rigidity in two views) in the form of an identity involving only 
areas computable from the parallax vectors. Two such conditions and their sym- 
metric forms can be determined. The first is derived from the collinearity of the 
points aqr, apt and apq and leads to a constraint which is trilinear in the areas. 
The second is derived from the collinearity of the epipole e12 and corresponding 
points and is bilinear in the areas. The results are summarised in table 2. 

The a r e a s  Apqr can be computed either in the image or on the distinguished 
plane. The lat ter  requires knowledge of the world to image homography, the 
former only the homography between images. 
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Fig. 4. Three points in two views relative to a known plane leads directly to a Desargues 
configuration on the plane. 

Violation of any of (1) - (5) is a clear indication tha t  there has been non-rigid 
motion between the views. However if any (or all) of the points P ,  Q, R moves 
in its own epipolar planes then the equations are still satisfied and non-rigidity 
is not detected. 

[ MOTION CONSTRAINTS 

T1 A p l p a r l A q l q 2 p l A q l v l r  2 = A p l p 2 q x A q l q 2 r l A p l v l r 2  (1) 

Tz  Ap2p l r2Aq2qlp2Aq2r2r  I : Ap2pxqaAq2qlraAp2r2r  I (2) 

B1 Araplp2Arlqxq2 = ArlplpaAraqlq2 (3) 

B2 Ap2rlraApaqlq2 : Aplrlr2Apaqlq2 (4) 

B3 Aq2plp2Aqlrlr.~ : Aqlplp2Aq2rlr 2 (5) 

Table 2. Two view bilinear (B~) and trilinear (Ti) motion constraints equivalent to 
the epipolar constraint. 

4 G e o m e t r y  of  three  v iews  

We now consider the geometry of six points, four of which are coplanar, in three 
views. This is the situation addressed by Irani and Anandan [7]. The geometry 
is shown in figure 5. 
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Fig. 5. The geometry of three views with two points off the plane. The three epipoles 
are collinear, lying on the line which is the intersection of the plane O10203 with the 
world plane. The point apz is the intersection of the line PQ with the world plane. 

We begin by demonstrating the duality of this case to the two view case in 
section 3, and obtain a structural constraint directly from the measured image 
features. We then derive the trifocal tensor for the three view, six point (four 
coplanar) case. Since the trifocal tensor is over-constrained by six points, four 
of which are coplanar, we also obtain another form of the structure constraint. 

4.1 D u a l i t y  

It is clear by inspection of figure 5 that  the three view geometry is dual to tha t  
of figure 3 in which we have directly exchanged points off the plane for camera 
positions. The vertex of the homology is given by the intersection of the line 
P Q  with the world plane, and the axis by the intersection of the trifocal plane 
containing the three camera centres O1, 02 ,  03  with the world plane (figure 6). 

Having established the duality of the two situations, we are now in a position 
to invoke duality in order to prove further results. We make the substitutions: 

3v!ews e12 P i P 2  r l  r2 ql  q2 apt apq aqr 
views apq Pl ql  P2 q2 P3 q3 el2 e13 e23 

and the dual trilinear and bilinear constraints given in table 3 follow. Note that  
the bilinear constraints (8) - (10) are exactly the constraints given by Irani and 
Anandan [7]. The trilinear constraints are new. 

4.2 T h e  t r i f oca l  t e n s o r  

In this section it is shown that  the trifocal tensor is uniquely determined from 
three views of six points, four of which are coplanar. We begin with a familiar 
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Fig. 6. The planar geometry in the three view two point case is also clearly a Desargues 
configuration and point correspondences pl  -~ ql,  p2 -+ q2 and pa -+ qa are related 
by a homology. This situation is clearly dual to that in figure 4. 

STRUCTURAL CONSTRAINTS 

T1 Aplqlp2Ap3qaplAp3p2q2 : AplqlpaAp3qapaAplp2q2 (6) 

T2 Aqlplq2Aq3p3ql Aq3q2p2 = Aqlplq3Aq3p3q2Aqlq2p2 (7) 

B1 Aq2plqlAp2paqz =Ap2paqlAq2p3q3 (8) 

Aqlp2q2Aplp3q3 =Aplp2q2Aqlp3qz (9) B2 

83! Aqzpl ql Apsp2q2 = Ap3plql Aqsp2q2 (10) 

Table  3. Three view bilinear (Bi) and trilinear (T~) structure constraints. 

form of the trifocal tensor (after [5]) in which we consider the image projection 
matrices and image point locations. We then show how the form of the tensor is 
simplified when we consider all geometric objects (lines, points, etc) projected 
onto the distinguished plane. 

I m a g e  f o r m :  In order to discriminate between points (and epipoles) in images, 
as opposed to their projections onto the distinguished plane, we use primes to 
indicate the image in which the points appear; i.e. the images of P in views 1, 
2 and 3 are, respectively, p, p '  and p" .  Suppose the homographies induced by 
the plane of the points are A and B, so that  p '  = t p  and p"  = Bp for images of 
points on the plane. These homographies are computed from the images of the 
four coplanar points. 
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The images of the first camera centre in the second and third images, denoted 
e ~ and e" respectively, are the epipoles. They are determined using parallax 
vectors, as described in section 3, so that  F12 = [e'] • A, and F13 = [e"] • It can 
be shown that  the three camera projection matrices can be chosen as 

P : [I ]0], P' = [Ale'],  P" = [B ] Ae"] (11) 

up to a homography of 3-space, where A is an unknown scalar. This unknown 
scalar is determined by line transfer. 

The line through the (non-coplanar) points P,  Q, is imaged as 1 = p x q, 
1' = p '  x q', l" = p"  x q"  in the first, second and third views respectively. It is 
then straightforward to show that  lines transfer as follows (we could alternatively 
consider point transfer): 

l = A(e".I")AT1 ' -  (e'.I')BT1 '' (12) 

The scalar A is the only unknown in this equation. It is determined by taking 
the vector product with 1. 

)~(e".l")l • (AT1 ') = (e' . l ')l  x (BT1 '') (13) 

This provides two equations in the one unknown A and so we can solve uniquely 
for the trifocal tensor and obtain one further constraint, namely the rigidity 
condition that  the imaged intersection of the line through P ,  Q is the same 
when computed from views one and two ( 1 x (AVl~)) as from views one and 
three (1 • (BTI")). This is yet another form of the constraints (6) - (10). The 
scale factor lambda is obtained by normalising both sides of (13): 

II(e'.l')l x (BTI")[I (14) 
A = [[(e".l")l x (ATI')I[ 

D i s t i n g u i s h e d  p l a n e  fo rm:  On the distinguished plane A = B = I,  so the 
equivalent of (12) for point transfer is 

r3 = ),e13(12.rl) - (e12.12)rl (15) 

where r l ,  r2, r3 are the distinguished plane images of a general 3D point R,  
and 12 is any line through r2. This equation depends only on the positions of the 
epipoles on the distinguished plane, with all dependence on camera internals and 
relative rotations having been factored out into the image to plane homographies. 

Additionally the projection matrices have the very simple form 

P1 = [I 10], P2 = [I[e12],  e3 = [I [Ael3] (16) 

. o n c o   oner  : wo  

tingished plane images to be: 

r l  = P 1 R ,  , r 2 = P 2 R = r l + p e 1 2 ,  r s = P 3 R = r l + p A e l s  (17) 
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We now give an interpretation of p and A on the distinguished plane (see figure 
7). 

The ratio A depends only on the camera centres, not on the points, and can be 
determined as A = d(e12, e23)/d(e13, e23) where d 0 is the distance between the 
points on the distinguished plane. The parameter p is the relative affine invariant 
of Shashua [14], and is related to the point depth. On the distinguished plane it 
is obtained as p - -  d(r2, r l ) /d ( r2 ,  e12). 

So point transfer using the trifocal tensor simply involves computing the ratio 
p from r l ,  r2 and el2 and employing A to define the transferred point r 3 on the 
line between e13 and r l  as r3 = r l  + pAe13 in (17). This is identical to the point 
transfer of (15), as can be seen by considering similar triangles in figure 7. In 
the case that  the three camera centres are collinear there is no degeneracy in 
point/ l ine transfer. The ratio A is still defined and can be obtained using the 
distinguished plane equivalent of (14). 

~ 
".~ r2 

. . . . . . . . . . . . . .  . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  

e12 ~ .  

Fig. 7. Point transfer: the ratios of the distances between rl ,  r2 and el2 and the three 
epipoles define the transfer of the point rl to r3. 

5 Structural computations and applications 

In this section we discuss a number of useful structural computations which can 
be achieved using ratios of areas. We require alpine measurements on the world 
plane, which can be obtained either from four world plane points known up to 
an affinity (and hence the image to world plane homographies), or from the 
inter-image homography and vanishing line of the world plane in each image. 
In either case we obtain results for the scene structure without resorting first 
to computing the epipolar geometry. A significant novel aspect of the formulae 
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given in sections 5.1 and 5.2 is that  the vanishing point for the direction of 
measurement need not he known. 

The results are derived for the two view, seven point case. However because 
of the fundamental duality proved in section 4.1, they are equally valid (with 
appropriate symbol substitutions) in the three view, six point case. For example 
(22) can be used to compute the height of a third point given two other known 
heights in the two view, seven point case; dually, in the three view, six point 
case, it can be used to obtain the height of a third camera given the other two 
camera heights. 

We begin by re-deriving the basic parallax relationship for the case where 
the parallax is measured on the distinguished world plane (18). 

Fig. 8. Parallax geometry of two points. 

Considering figure 8 and writing Pl ---- O1-1- d~d--~_h (P - O 1 ) ,  P2 = 02  + d2d--~_h (P - 

02)  and e12 = 02  + d2-~_h(O1 -- 02).  Then eliminating O1 and 02  yields 

hp A,  
~_2 (Pl -- el2) I~p - -  d2 ~ hp a l  

(18) 

where ~p ~--- P2 - P l  is the planar parallax vector and z~ d : d l  - d2 is the 
component of camera translation towards the plane. 

Let "7 be the ratio of the distance of a point to the plane and the point to the 
h~ and 7q hq first camera (measured in the same direction), i.e ~p ~-  d l - - h p  = dl--hq 

then combining the basic parallax equation (18) for two points P and Q gives 

A d 

"yqttp - %t~q = %%-~-2 (p2 - q2) (19) 

Finally, taking the cross product of both sides of the equation with P2 - q2 and 
taking magnitudes yields an expression for ~ as a ratio of areas (see figure 9) q'p 
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of the form 

~q : IP'q • ( P 2 -  q2)l _ Aqlq.~p.~ 

",/p I/~p x (P2 -- q2)[ Ap~p2q2 
(20) 

This ratio is computable solely from the parallax measurements, and is clearly 
affine invariant, being a ratio of areas. Our derivation is equivalent to Irani and 
Anandan's  construction [7], but note that  in our formulation we have used only 
affine constructs (no perpendicularity has been assumed and the formulae are 
homogeneous). 

Fig. 9. The relative structure ~ can be expressed as a ratio of areas. 7p 

5.1 C a m e r a  distance  to world p l ane  

Here we show that: given the parallax vectors of two world points P and Q, 
the Euclidean distances of these points from the world plane (measured in the 
same but  arbi trary direction), hp and hq, and affine measurements on the world 
plane, then we can determine the Euclidean distance of either camera to the 
world plane (measured in the same direction as hp and hq). 

We can rearrange (20) to give an expression for the distance of the first 
camera from the plane (a similar formula can be derived for the second camera): 

dl = h p h q ( A p ' P a q 2  - Aqlq2P2)  
h q A p l p 2 q ~  - h p A q l  q2p2 

(21) 

In figure 11 we have used the formulae to compute the heights of the camera 
above the floor as 566cm and 586cm (left and right views respectively). 

5.2 Measur ing  the  s tructure  of  o ther  po ints  

Here we show that: given the parallax vectors of three world points P ,  Q and R,  
the Euclidean distances of two of these points from the world plane (measured in 
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the same but  arbitrary direction), hp and h a (hp # ha) , and affine measurements 
on the world plane, then we can determine the Euclidean distance of the third 
point from the plane (measured in the same direction as hp and ha). 

From (20) we have that  7r 7 Arlr2Pl and 7r -- 7 Arl~ql After eliminat- 
= p A p l P 2 r  I q A q l q 2 r  1 " 

ing the camera distance d between these equations we obtain an expression for 
hr: 

  p q Arl2qlAqlq2rl I JAr1 2ql Aqlq rl Aqlq2rl] 
h, = IM21 , LArlr2pl Aplp2r 1 , M2 = hp 0 - h  a 

Aplp2rl Aplp2rl Arxr2pl 
(22) 

Note that  if hp and hq are equal then the formulae above degenerate, however 
this situation can be avoided in practice. The degeneracy is understood in terms 
of the geometry as follows: in general we obtain projective structure (since F is 
determined uniquely). If in addition hp # hq, the line P Q  intersects lro~ in a 
point which can be identified in both images (details omitted). This point and 
the vanishing line of the world plane, l~ ,  determine 7r~, hence we can obtain 
affine structure. When hp = h a then the line P Q  intersects 7r~ on 1~ and so no 
additional information about ~-~ is obtained; it is determined only up to a one 
parameter  family (the pencil of planes with loo as its axis). 

Figure 10 shows an example in which point heights have been estimated. The 
floor tiling and the perpendicular heights of two other points were measured by 
hand with a tape measure. A second example is shown in Figure 11. As before, 
we have used the patterned floor tiling to compute the image to world plane 
homography, and measured the heights of two points with a tape measure as 
reference heights. 

6 D i s c u s s i o n  

We have considered the geometry of two views of seven points, four of which 
are coplanar, and the geometry of three views of six points, four of which are 
coplanar. These configurations were shown to be dual to one another and that  
the fundamental geometric constraints are captured by a planar homology re- 
lating the images of points across views. Consequently a number of previously 
diverse results related to planar parallax, duality and planar homologies have 
been unified. 

The constraints derived from the homology are easily computed from directly 
measured image features, and have been tested on real imagery. Formulae for 
determining the height of the cameras from the world plane, and the heights 
of points from the plane have been developed and tested on real imagery. We 
are currently evaluating the accuracy of the method. In particular we are in- 
vestigating how uncertainty and errors in image measurements propagate to 3D 
measurements [4]. A subject of further investigation will be the sensitivity of the 
structure and motion constraints. 
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Fig .  10. Estimating the heights of points from two views of the lecturn in The Queen's 
College chapel. The heights of the reference points, shown black on white, were mea- 
sured by hand (• to be 150cm (top edge of lecturn), and 35cm (height of foot 
stool). In (c), all heights axe given in centimetres. The error between the computed and 
measured heights is always less than one centimetre. 

F ig .  11. Estimating the heights of points from two views of The Queen's College dining 
hall. The heights of the reference points, shown black on white, were measured by hand 
(• to be 76cm (table top), and 230cm (fireplace). The step was computed to be 
11.4cm high and measured by hand as l l .0cm.  
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