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A b s t r a c t .  This paper presents a new framework for analyzing the ge- 
ometry of multiple 3D scene points from multiple uncalibrated images, 
based on decomposing the projection of these points on the images into 
two stages: (i) the projection of the scene points onto a (real or vir- 
tual) physical reference planar surface in the scene; this creates a vir tual  
"image" on the reference plane, and (ii) the re-projection of the virtual  
image onto the actual  image plane of the camera. The positions of the 
vir tual  image points are directly related to the 3D locations of the scene 
points and the camera centers relative to the reference plane alone. All 
dependency on the internal camera calibration parameters  and the ori- 
entation of the camera are folded into homographies relating each image 
plane to the reference plane. 
Bi-linear and tri-linear constraints involving multiple points and views 
are given a concrete physical interpretat ion in terms of geometric rela- 
tions on the physical reference plane. In particular,  the possible duali- 
ties in the relations between scene points and camera centers are shown 
to have simple and symmetric mathematical  forms. In contrast to the 
plane+parallax (p+p) representation, which also uses a reference plane, 
the approach described here removes the dependency on a reference im- 
age plane and extends the analysis to multiple views. This leads to sim- 
pler geometric relations and complete symmetry in multi-point multi- 
view duality. 
The simple and intuitive expressions derived in the reference-plane based 
formulation lead to useful applications in 3D scene analysis. In particular,  
simpler tri-focal constraints are derived that  lead to simple methods for 
New View Synthesis. Moreover, the separation and compact packing of 
the unknown camera calibration and orientation into the 2D projection 
transformation (a homography) allows also part ia l  reconstruction using 
par t ia l  calibration information. 

K e y w o r d s :  Mu l t i - po in t  mul t i -v iew geometry ,  u n c a l i b r a t e d  images,  new view 
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1 I n t r o d u c t i o n  

The analysis of 3D scenes from multiple perspective images has been a topic of 
considerable interest in the vision literature. Given two calibrated cameras, their 
relative orientations can be determined by applying the epipolar constraint to 
the observed image points, and the 3D structure of the scene can be recovered 
relative to the coordinate frame of a reference camera (referred to here as the 
reference frame-e.g., see [13, 6]). This is done by using the epipolar constraint 
and recovering the "Essential Matrix" E which depends on the rotation R and 
translation T between the two cameras. Constraints directly involving the image 
positions of a point in three calibrated views of a point have also been derived 
[19]. 

If the calibration of the cameras is unavailable, then it is known that  re- 
construction is still possible from two views, but only up to a 3D projective 
transformation [4]. In this case the epipolar constraint still holds, but the Essen- 
tial Matrix is replaced by the "Fundamental Matrix", which also incorporates 
the unknown camera calibration information. The 3D scene points, the camera 
centers and their image positions are represented in 3D and 2D projective spaces 
(using homogeneous projective coordinates). In this case, the r e fe rence  f r ame  
reconstruction may either be a reference camera coordinate frame [8], or as de- 
fined by a set of 5 basis points in the 3D world [14]. A complete set of constraints 
relating the image positions of multiple points in multiple views have been de- 
rived [5, 15]. Alternatively, given a projective coordinate system specified by 5 
basis points, the set of constraints directly relating the projective coordinates of 
the camera centers to the image measurements (in 2D projective coordinates) 
and their dual constraints relating to the projective coordinates of the 3D scene 
points have also been derived [2, 20]. 

Alternatively, multiple uncalibrated images can be handled using the "plane 
+ parallax" (P+P) approach, which analyzes the parallax displacements of a 
point between two views relative to a (real or virtual) physical planar surface H 
in the scene [16, 12, 11]. The magnitude of the parallax displacement is called the 
"relative-affine structure" in [16]. [12] shows that  this quantity depends both, on 
the "Height" H of P f rom/7  and its depth Z relative to the reference camera. 
Since the relative-a]:fine-structure measure is relative to both the reference frame 
(through Z) and the reference plane (through H), we refer to the P + P  frame- 
work also as the r e f e r ence - f r ame  -t- r e f e r ence -p l ane  formulation. The P + P  
has the practical advantage that  it avoids the inherent ambiguities associated 
with estimating the relative orientation (rotation + translation) between the 
cameras; this is because it requires only estimating the homography induced by 
the reference plane between the two views, which folds together the rotation and 
translation. Also, when the scene is "fiat", the F matrix estimation is unstable, 
whereas the planar homography can be reliably recovered [18]. 

In this paper, we remove the dependency on the reference frame of the anal- 
ysis of multi-point multi-view geometry. We break down the projection from 3D 
to 2D into 2 operations: the projection of the 3D world onto the 2D reference 
plane Lr, followed by a 2D projective transformation (homography) which maps 
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the reference plane to the image plane. Given the "virtual images" formed by 
the projection onto the reference plane, we derive algebraic and geometric rela- 
tions involving the image locations of multiple points in multiple views in these 
virtual images. The positions of virtual image points are directly related to the 
3D locations of the scene points and the camera centers relative to the reference 
plane alone. All dependency on the internal camera calibration parameters and 
the orientation of the camera are folded into homographies relating each image 
plane to the reference plane. We obtain a structure measure that depends only 
on the heights of the scene points relative to the reference plane 

In this paper, we derive a complete set dual relationships involving 2 and 
3 points in 2 and 3 views. On the reference plane the multi-point multi-view 
geometry is simple and intuitive. These relations are directly related to phys- 
ical points on the reference plane such as the epipole and the dual-epipole[9]. 
We identify these points, and also two new entities called the tri-focal line and 
the dual trifocal-line which are analogous to the epipole and the dual-epipole 
when considering three-view and three-point geometries on the reference plane. 
Structures such as the fundamental matrix and the trilinear tensor have a rather 
simple form and depend only on the epipoles, and nothing else. The symmetry 
between points and cameras is complete, and they can be simply switched around 
to get from the epipolar geometry to the dual-epipolar geometry. 

The simple and intuitive expressions derived in the reference-plane based 
formulation in this paper lead to useful applications in 3D scene analysis. In 
particular, simpler tri-focal constraints are derived, and these lead to simple 
methods for New View Synthesis. Also, the separation and compact packing of 
the unknown camera calibration and orientation into the 2D projection transfor- 
mation (a homography) that relates the image plane to the reference plane, leads 
to potentially powerful reconstruction and calibration algorithms. For instance, 
based on minimal partial domain information, partial calibration and partial 
reconstruction can be achieved. This is also briefly discussed in this paper. 

The remainder of this paper is organized as follows: Section 2 introduces our 
notations, and describes the two-view geometric and algebraic constraints (bi- 
linearity and parallax) in the reference plane representation. Section 3 describes 
duality (between scene points and camera centers) on the reference plane. Sec- 
tion 4 examines the relations involving 3 views and the corresponding dual re- 
lations. Section 5 discusses applications of this representation and shows initial 
results for one particular application, namely new-view synthesis. 

2 T w o  V i e w  G e o m e t r y  on  t h e  R e f e r e n c e  P l a n e  

Figure 1 illustrates the two stage decomposition of the image formation process. 
Figure la  shows the projection of one scene point from two camera centers onto 
the reference p lane/ / .  Figure lb shows the re-projection from the plane to one 
of the camera image planes (the "reference frame"). In this and in all subsequent 
figures in this paper, we adopt the following notations: P denotes scene points 
in 3D, C denotes camera centers; i,j, k are indices used for scene points (e.g., 
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Fig. 1. The  reference  p lane  represen ta t ion :  (a) the projection of the 
points onto the reference plane itself, removing the dependency on the refer- 
ence image plane, pt~ is the epipole, and the red line is the epipolar line. (b) 
the re-projection of the reference plane image onto a reference image frame 
(camera "t"). 

Pi) and r, s, t are indices used for camera centers (e.g., Cr). Also, Pit denotes the 
projection of the scene point Pi through camera center Ct. It  is the intersection 
of the ray PiCt with the reference p l ane /7 .  Similarly Pis is the intersection of 
PiC~ with the reference plane. We define Pit and Pis as the "virtual-images" of 
Pi on the reference plane from cameras Ct and C~ respectively. We define the 
intersection of CtC~ with /7 as the e p i p o l e  on H.  We use Pt~ to denote the 
epipole. Note tha t  the location of the epipole Pts on the reference p l a n e / 7  is is 
independent of the orientations and the internal calibration parameters  of the 
cameras s and t. 

To derive the algebraic constraints involving multiple points in multiple 
views, we define a coordinate system (x,y, Z) relative to the reference plane 
/7, where (x, y) are parallel to H and Z is perpendicular to it. For points on 
the reference plane, we define Z = 1, for other points we define Z = H + 1, 
where H denotes the height (i.e., the perpendicular distance) of the point from 
the p lane /7 .  Thus, Pi = (xi,yi, Zi), where Zi = Hi + 1, denotes the 3D coordi- 
nates of the scene point Pi. Similarly Ct = (xt, Y t ,  Zt) T, where Zt = Ht + 1, and 
and C~ = (x~,y~,Z~) T, where Z~ = Hs + 1. The points Pit,pis and Pt~ on the 
reference plane are the intersections of the lines CtPi, C~Pi, and CtC~ with the 
reference plane F/: 

P i t  = 

P t 8  

X i t  H~ - H~ 

(1) P i s  : t --~ H . ~ - H s  

1 

= H s y t - H t y s  (2) 
1 

Note tha t  the expressions given above do not involve any of the camera internal 
calibration parameters  or the orientations of the image planes. Also note that  
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there is only a single epipole, which is unlike the case of the reference-frame 
based formulation, which involves two epipoles, one on each image frame. 

The points Pit,Pis and Pts on the reference plane are related to their cor- 
responding points on an image plane (e.g., a reference image) via a single 2D 
projective transformation,  which is the homography between tha t  image plane 
and the plane H.  Figure lb  shows the re-projection onto the reference image t 
- -  the points p , p ~ ,  and e are the projections of the image points pi t ,Pis ,  and 
the epipole pts respectively. 

There are two basic results concerning two views of a point as observed on the 
reference plane H.  The first is the expression for the "parallax" on the reference 
plane, and the second is the bilinear constraint involving the two image locations 
of the scene point and the epipole. These are described below. 

P a r a l l a x  o n  t h e  R e f e r e n c e  P l a n e :  Given the expressions in Equations 1 and 
2 , it can be easily verified tha t  

Pis -- Pit = "/(Pis -- Pts), (3) 

H~(Ht-H~) 
where V = (Ht-Hi)H~ 

Note tha t  this expression for parallax (Equation 3) involves only the heights 
of the scene point and of the camera centers relative to the reference plane 
H.  I t  does not  include any quantities relative to any of the camera coordinate 
systems (e.g., the reference frame) such as Z or T z  as before. Also, the parallax 
magnitude V does not depend on the x, y locations of either the camera centers 
or the scene point 1. 

T h e  B i l inea r  C o n s t r a i n t :  Equation 3 implies tha t  Pit, Pis, and Pts are collinear. 
Similar to the definition of the epipolar line on the image plane, the line contain- 
ing these three points on H is the intersection of the epipolar plane containing 
Pi, Ct ,  and C~ with H.  Thus, this is the epipolarl ine as observed on the reference- 
plane. The collinearity of these three points can be expressed as p i tTFp i s  = 0 

where F = 0 xts  is the "Fundamental  Matrix".  As opposed to the 

s --Xts 
reference frame based formulation, where the fundamental  matr ix  depends on 
the camera rotations and the internal calibration parameters  of the camera,  here 
it depends only on the epipole. Moreover, the epipole is explicit  in the F matr ix  
here, whereas, it is implici t  in the s tandard formulation. 

HTz in the P+P case can be related to the current expression 1 The expression for V = zd~ 
as follows: Consider a virtual camera centered at Ct, whose image plane is the plane 
H, and its optical axis coincides with the H direction. Then H = Hi, Z = Ht - H/, 
Tz  = Ht - -  Hs and d~ = Hs. 
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W h a t  h a p p e n s  w h e n  t h e  ep ipo le  goes  t o  co? In Equation 2, it can be seen 
that  when H~ = Ht, the epipole Pts goes to co. In this case, 

0 

Hi and the expression for parallax can be rewritten as: (Pis - P i t )  - ~ P t s .  
In other words, all the parallax vectors are parallel to each other (i.e., meet at 

oo). The Fundamental Matrix F = 0 0 s . We can, of course, unify 
Yts  - - X t s  

the finite and the infinite case by using 2D projective notations. However, in 
this paper we choose to use 2D Euclidean coordinate representations, in order to 
emphasize the physical meaning of the various observed and derived quantities. 
Moreover, the parallax expression in Equation 3, which involves metric relations 
is meaningless in a projective coordinate representation. 

Also, when Ht = Hi or Hs = Hi, then pit or Pis go to co respectively. This 
occurs when, fortuitously, the plane H is chosen to be parallel to the optic ray 
from the scene point to one of the cameras. In this case, the corresponding image 
point cannot be observed on the reference plane, and our analysis does not apply. 

3 D u a l i t y  o n  t h e  R e f e r e n c e  P l a n e  

In this section, we derive a set of dual relations on the reference-plane by switch- 
ing the roles of camera centers and scene points as was previously done in [2, 
2O]. 

Consider two points Pi and Pj and one camera center Ct. Consider the in- 
tersection of the rays PiPj, PiCt and PjCt with the reference plane H (see 
Figure 2a). These occur respectively at Pij,pit and Pit. In a manner analogous 
to the "epipolar plane" (defined by 2 camera centers and a scene point), we de- 
fine the plane containing Pi, Pj and Ct (2 scene points and a camera center) as 
the "dual epipolar plane". By the same analogy, we define its intersection with 
/7 (i.e., the line connecting Pit, Pit and p~j) as the "dual epipolar line", and Pij 
as the "dual epipole". Note that  the dual-epipole, the dual-epipolar lines, and 
the dual-epipolar planes relate to a pair of scene points over multiple views, in 
the same way the epipole, the epipolar lines, and the epipolar planes relate to 
multiple scene points over a pair of views. 

By applying the duality of scene points and camera centers, we can derive 
the dual of the bilinear constraint and the parallax expressions in algebraic form. 
They are: 

H t ( H 3 - H I )  
D u a l  P a r a l l a x :  Pit-Pit  = " / d ( P i t - - P i j ) ,  where ~d - -  (Hj-Ht)H~ ' 
and 
D u a l  B i l i n e a r i t y  C o n s t r a i n t :  p~tT FdPjt -= O, 
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Fig. 2. Dual i ty  on the reference plane: (a) the dual-epipolar geometry 
associated with two points in one view. pij is the dual-epipole, and the blue 
line going through plj is the dual-epipolar line. (b) both sets of epipolar 
lines (shown in red) and duat-epipolar lines (shown in blue) that arise when 
considering two points in two views. 

[;1 
where Fd = 0 xij is (defined as) the "Dual Fundamental  Matrix". 

j - x i j  
The duality of the bilinear constraint has been previously explored - e.g., 

Carlsson[2] and Weinshall, et al.[20] derive dual bilinear and trilinear relations 
in terms of the projective coordinate representations of the scene points, camera 
centers, and image points. Here, however, we derive these relations in the context 
of the reference plane images, and provide physical meaning to the dual relations. 
Also, Irani and Anandan [9] pointed out the dual epipole in the context of the 
plane+parallax representation. In that  case, since the projection on a camera 
image plane ("reference frame") is included in the formulation, there exists an 
asymmetry in the various constraints and their dual constraints. Here, complete 
symmetry is achieved by projecting all the observed quantities onto the reference 
plane itself. 

Figure 2b completes the picture by considering two points (Pi, Pj) in two 
views (Ct, C8). This configuration gives rise to one set of epipolar lines (corre- 
sponding to each scene point) going through the epipole Pts, and one set of dual- 
epipolar lines (corresponding to each camera) going through the dual-epipole 

Pij. 

4 T h r e e  V i e w  G e o m e t r y  o n  t h e  R e f e r e n c e  P l a n e  

In this section we extend our treatment to three views. [5] shows that  there are no 
additional independent constraints that  can be derived in more than three views. 
In this section we present a geometric interpretation of the three-view constraints 
in terms of physical quantities on the reference plane H. We derive the algebraic 
three-view constraints and show that  they have a very simple mathematical  
form. We will also show that  the tensor-representation of these constraints in 
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the reference-plane has a very simple mathematical form when compared to the 
tensors in the standard formulations[15, 7, 5]. 

4.1 G e o m e t r i c  O b s e r v a t i o n s  

Figure 3 shows three views pis,pit, and Pit of a point Pi as projected onto the 
reference p l a n e / / .  The new camera center is labeled as Cr, and the two new 
epipoles as Prt and psr 2. 

Fig. 3. G e o m e t r y  of three views on the reference plane - a 3D view. 
The 3 red lines are the epipolar lines of pairs of views, and the turquoise 
line the trifocal-line. The 6 points on /7 lie on 4 lines forming a "complete 
quadrilateral". 

Taken pairwise at a time, the three views give rise to three epipolar con- 
straints: 

pit, pis, pts are collinear, pis ~ pi~, ps~ are collinear. 
Pit, Pit, Prt are collinear. 

There is, however, a fourth collinearity constraint, namely: 

The epipoles Pts, Psr,Prt are collinear. 

This line is simply the intersection of the plane containing the three camera 
centers Ct, C~ and C~ wi th / - /  (see Figure 3). This plane is referred to as the 
tri-focal plane. Based on this definition we define the line connecting the three 
epipoles as the "tri-focal line". 

The fact that  the six points lie on four lines is fundamental to the projection 
of three views of a point onto a reference p l ane / / .  Note that  this figure on the 

2 Note that geometrically this figure is identical to Figure 2b, but the labeling of the 
point is different. The scene point Pj in Figure 2b has been replaced by a camera 
center Cr. In fact, this is because of the complete symmetry between scene points 
and camera centers in our representation. 
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plane (Figure 4a) is known as the "complete quadrilateral" and plays a central 
role in plane projective geometry [3]. 

Given the three cameras, every point in the scene forms a triangle (e.g., 
with vertices Pit,Pis and Pi~. Different points (e.g., indexed i , j ,  etc.) will form 
different triangles, all of which share the same tri-focal line (see Figure 4b). In 
other words, all these triangles are perspective from the tri-focal line 3. 

4.2 T h e  Tr i foca l  R a t i o  

Each pair of views from the three views provides an expression for parallax 
similar to Equation 3. For example, consider: 

H i ( H ,  - 

H i ( H t  - 
- p i t  - - ni)r l~  

From these equations we can eliminate H i / ( H t  - Hi) to obtain: 

(4) 

where A~st = (Ht-H~)H~ (HtHr-Hr)" The above equation is true upto a sign change. 
Note that  A~st does not depend on the point i. In other words, for every scene 
point, the locations of its image from the three views on the reference plane is 
related by the same Equation 5. 

This constraint is further explored in Section 4.3. 
Given two "images" of the point Pi on H,  e.g., Pis and Pi~, and the corre- 

sponding epipoles, Prt and Pts, we can determine the location of the third "image" 
pit by intersecting the two epipolar lines Pispt~ and Pi~P~t (see Figure 4a). 

There are, however, two cases in which the three epipolar lines collapse into 
a single line (and hence, their intersection is not unique). These are the same 
situations noted in [5, 15], but here we examine it in the context of the reference- 
plane images. The first is the case when the three camera centers are collinear 
(see Figure 5) - in this case the three epipoles collapse into a single point (denoted 
as e in Figure 5). The three epipolar lines also collapse into a single line, and 
therefore Pit cannot be determined by the intersection of the epipolar lines. 
However, given the common epipole e and A~t, Pit can be recovered from pi~ 
and Pi~ using Equation 5. In fact, in this case, )~rst is the cross ratio of these 
four points (the three image points and the epipole). 

3 It is known in plane-projective geometry that if two triangles are perspective from a 
line they are also perspective from a point [3] - this is the converse of the Desargues' 
Theorem. Given the two triangles corresponding to i and j as in Figure 4b, then the 
point of perspectivity is in fact the dual-epipole pij. 



838 

t p~ t 
p. ~ Pjs 

Pii~." P"_L- . ' ' /  ~ ' ~  psr_/~p,. 

(a) �9 (b)  

Fig. 4. T h r e e  view g e o m e t r y  on the  reference  plane:  (a) the complete 
quadrilateral formed by the image of a single point in three views and the trifocal- 
line (shown as a dashed line) containing the three epipoles. (b) different triangles 
due to different scene points share the same trifocM-line. 

Another interesting case is when the scene point Pi lies on the "tri-focal 
plane" of the three cameras. In this case the three image points Pit,Pi~ and Pit 
all lie on the tri-focal line itself, i.e., once again the three epipolar lines collapse 
onto the tri-focal line. Hence we cannot use the intersection of epipolar lines to 
determine Pit. In this case too, Pit can be determined by Equation 5, using A~t. 

The ratio A~t has a special significance. If we consider the tri-focal line, we 
can show (by replacing Pi with C~ in Equation 3)that: 

p ~  - p~t  = ~ r s t ( p ~  - p ~ )  (6 )  

(Hence, the name "tr i focal-rat io".)  In other words, in the general case: 

)~rst - IJPsr - PrtlJ 

= JJPis-P~tJl  J lP i r -Pr tJ[  (7) 

Ilpis - pt~lJ Ilpi~ - P.I I  

Note tha t  in the singular case, when the epipoles collapse, the ratio of the dis- 
tances between the epipoles (the top equation) is undefined, but  the bo t tom 
equation is still valid and can be used. 

4.3 T h e  T r i f o c a l  T e n s o r  

Returning to Equation 5, we can write down component  equalities as follows: 

. . . .  X i s  - -  X i t  Y i s  - -  Y i t  __  ) ~ r s t  x i r  - -  x i t  - -  ) ~ r s t  Y i r  - -  Y i t  (8) 
X i s  - -  X t s  Y i s  - -  Y t s  X i r  - -  X r t  Y i r  - -  Y r t  

By taking two of these equalities at a t ime and cross-multiplying by the denomi- 
nators we can get six linear constraints. Of these two are the same as the bilinear 
(epipolar) constraints involving only two views at a time. The other four, which 
involve all three views are: 

( x .  - x . ) ( x i r  - x r t )  = ~ r ~ t ( X i r  - -  X . ) r  - -  ~ t~ )  

( X .  - -  Xi~)(Yi~ --  Y~t) = ~ t ( Y i ~  - -  Y i d ( ~ .  - -  ~ s )  

(yi~ - y~ t ) (y i~  - y~ t )  = ~ s t ( y i ~  - y ~ t ) ( y ~  - y t~ )  (9 )  
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e = Pts = Psr = Prt 
~ e  / 

Ois 

Fig.  5. T h e  E p i p o l a r  Lines  Co l l apse  

Note  t h a t  these three  view constra ints  are ac tua l ly  only bil inear in the  image  
locat ions of the scene point  (as opposed  to the  t r i l inear  cons t ra in ts  in [15])). 
This  is because  by considering the  pro jec t ion  of the  points  on the  reference 
plane itself, we e l iminate  the homographies  induced be tween  the  views (which 
appea r  in [16]). 

The  tr i l inear forms given in Equa t ion  9 can be unified into a single tensor  
equat ion  in a manne r  analogous to  [17]: 

where  

(s'~p~t) (r~p~t) - . k~t  ( r~p i t ) ( s "p t~ )  = 0 (lO) 

[o, 0 x,sl iol 0 s---- - l y i s j '  r =  - l y i r  

and c~, fl --- 1, 2 indicate  the row indices of s and r (e.g., s 1 -- [ - 1  0 xis]) 4. 
Based on fur ther  algebraic manipula t ion ,  Equa t ion  10 can be rewr i t ten  as: 

3 3 3 

a = l  b = l  c = l  

3 3 3 
fl a r s t  

a = l  b = l  c = l  

where  5 follows the  s t anda rd  definition: 5pq -- 1 if p -- q and 0 otherwise.  
T rst is 3 • 3 • 3 tensor  

In the  above equat ions,  (Pit)l,  (Pit)2, (Pit)3, etc. denote  the  first (i.e., x),  the 
second (i.e., y), and the  third (i.e, 1) componen t s  of pit ,  etc. Similar ly (TrSt)ab~ 
denotes  the  en t ry  indexed 'by  a, b, c in the  Tensor.  

a Note that  as in [17], s I is the vertical line on H passing through p~ and s e is the 
horizontal line on /7 passing through p~. Similarly r 1 and r 2 a r e  the vertical and 
horizontal lines o n / 7  passing through pi~. Also, as in [17] the relationships in Equa- 
tion 10 are valid for any line passing through pi~ and any other line passing through 
pi~. In other words, Equation 10 captures the same point-line-line relationship de- 
scribed in [17] and [5]. 
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Note that  the elements of T ~st depend on the two epipoles P~t and Pts and 
A~t. This is in contrast  to the general form of the trifocal tensor - for example, 
the trilinear tensor in [15] also depends on the homographies due to the plane 
H between the different cameras and the tensor described in [5] which depends 
on the camera projection matrices. As in the case of the Fundamental  Matrix 
F in our formulation, the epipoles are explicit within the Tensor T, whereas in 
the general formulation, the tensor is implicitly related to the epipole. Given the 
Tensor T TM we can recover the two epipoles Prt and Pts and the trifocal-ration 
A~st; using Equation 6 we can recover the third epipole p ~ .  

4.4 D u a l s  o f  t h e  T h r e e  V i e w  C o n s t r a i n t s  

3 S c e n e  P o i n t s  + 1 C a m e r a :  As in the case of two-view analysis, the duality 
between scene points and camera centers also applies to three-view analysis. 
By switching the roles of scene points and camera centers in Figure 3 (i.e., 
Pi -~ Ct, Ct --* Pi, Cs --* Pj, Cr -~ Pk ) we can derive new constraints involving 
one camera center and three points. The resulting geometric configuration is also 
a complete quadrilateral, but with a different labeling of the points. Figure 6a 
indicates the labeling corresponding to one view of three points. In this case 
the dual-trifocal-line contains the dual-epipoles Pij,Pjk, and Pki. The three-view 
constraint given in Equation 5 is replaced by 

l lp j t  - p i t  II I Ipkt - (12) 

where Aijk : ( H i - H I )  H k Hj (Hk-H~)' is the dual to the trifocal-ratio Arst. Dual 

to the other forms of the three-view constraints, (e.g., Equation 9) can also be 
obtained by the same substitution of indices (i.e, i -* t, t -~ i, s -~ j ,  r --* k), 
leading to the dual-tensor form: 

and the corresponding constraint set: 

3 3 3 

Vc~,/3 = 1, 2 0 = E E E (pit)a(kf~)b(j'~)c(Tijk)abc (13) 
a = l  b = l  c = 1  

where the definitions of the 2 • 3 matrices k and s are analogous to the definitions 
of r and s given earlier. Note that  the the three-view constraints and their dual, 
the three-point constraints are completely symmetric.  The dual-tensor depends 
on the dual-epipoles and the dual to the trifocal-ratio, 

O t h e r  C o m b i n a t i o n s  o f  3 + 1  Po in t s :  The complete symmet ry  between scene 
points and camera centers implies that  we can arbitrari ly choose the label (either 
as a scene point or as a camera center) for each of the four 3D points in Fig- 
ure 3. So far, we have considered two choices: 3 camera center + 1 scene point, 
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_Ir p p,, 
Pkt ~ / 

(a) ' p,,, (b) 

Fig. 6. Duals  to the  Th ree  View G e o m e t r y :  (a) the complete quadri- 
lateral formed by 3 points + 1 camera center. (b) the quadrilateral formed by 
2 points + 2 cameras. Note that the epipolar-lines (thin lines) intersect at an 
epipole, the dual-epipolar lines (thick lines) intersect at a dual-epipole, and an 
epipolar line intersects a dual-epipolar line at an image-point. 

and 3 scene points + 1 camera center. The basic s tructure is tha t  four points 
are divided into a group of 3 and a single point. We can obtain other duals 
by choosing the four points to consist of 2 camera centers + 2 scene points and 
grouping them as 2 camera centers and a scene point + 1 scene point 
or as 2 scene points and a camera center + 1 camera center. 

In Figure 6b we show the resulting quadrilateral corresponding to the first 
of these groupings. Since the configuration shown in this figure is based on 2 
camera centers and 2 scene points, the six points on the quadrilateral consist of 
four image points, one epipole, and one dual-epipole. Note tha t  the two epipolar 
lines intersect at an epipole, the two dual-epipolar lines intersect at a dual-epipole, 
and each epipolar line intersects each dual-epipolar line at an image point. 

Unlike the 3D world, where there are two types of points, camera centers and 
scene points, on the reference-plane, there are three-types of points - epipoles, 
dual-epipoles, and image points. Each of these form the center of a radial field 
of lines tha t  go through that  point, all three have completely dual-roles on H.  

5 A p p l i c a t i o n s  

The simple and intuitive expressions derived in the reference-plane based formu- 
lation in this paper  lead to useful applications in 3D scene analysis. In particular, 
the simpler (bilinear) tri-focal constraints with the identified tri-focM ratio lead 
to a simple method for New View Synthesis. Initial experimental  results are 
shown in this section. Moreover, the separation and compact  packing of the un- 
known camera calibration and orientation into the 2D projection t ransformation 
(a homography) tha t  relates the image plane to the reference plane, leads to 
potentially powerful reconstruction and calibration algorithms. These are briefly 
discussed in this section. 

5.1 N e w  V i e w  G e n e r a t i o n  U s i n g  t h e  T h r e e - V i e w  C o n s t r a i n t s  

In this section we show that  the reference-plane based formulation provides a 
simple and intuitive way to generate new views from a given set of views. 

We first show some results, followed by an explanation how they were ob- 
tained. 
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Figure 7a and 7b display two images taken by a hand-held camera. The scene 
contained toys which were placed on a rug on the floor. The camera translated 
and rotated between the two views. The 3D parallax effects due to the camera 
translation are apparent in the change of the 2D distance (on the image) between 

the clown's hat and the upper-right corner of the rug. 

Figure 7c is a new synthesized view of the scene, as if obtained from a vir- 
tual camera positioned farther to the left of the scene relative to the two original 
views (and rotated, to compensate for the translation). Note the smaller distance 

between the clown's hat and the corner of the rug. For comparison and verifica- 
tion, Figure 7d shows an actual view obtained from the same viewing direction 
and orientation. Also, note the differences between the actual and synthesized 
view. There are image distortions where the flow was inaccurate (at depth dis- 
continuities, e.g., on the rug around the clowns head, and near the ears of the 
smaller doll). Also, the synthesized view is missing the left part of the rug, as 

this portion of the rug was not viewed in any of the 2 input images. 

Fig. 7. New View Synthesis. 
(a) and (b) show two images taken by a hand-held camera. The camera translated and 
rotated between the two views. The 3D parallax effects due to the camera translation 
are apparent by the change in the 219 distance (on the image) between the clown's hat 
and the upper-right corner of the rug. (c) A new synthesized view of the scene, Note 
the smaller distance between the clown's hat and the corner of the rug. (d) an actual 
view obtained from the same viewing direction and orientation. Note the differences 
between the actual and synthesized view: There are image distortions where the flow 
was inaccurate (e.g., on the rug around the clowns head, and near the ears of the 
smaller doll). Also, the synthesized view is missing the left part of the rug, as this 
portion of the rug was not viewed in any of the 2 input images, (a and b). 



843 

Below is a brief description of how the synthesized view was generated. To 
work directly with quantities on the reference plane/7  would require partial cal- 
ibration information about the input views. But as explained below, new view 
synthesis is possible even without such information. 

S tep  I: One of the two input images (camera "s") is first warped towards the 
other input image (camera "t"; the reference image) via a 2D projective trans- 
formation to align the images of the plane H in the two input image s and t. (/-/ 
is the plane of the rug, in our case). The corresponding 2D projective transfor- 
mation is computed automatically, without any prior or additional information, 
using a 2D registration technique described in [10]. This method locks onto a 
dominant 2D parametric transformation between a pair of images, even in the 
presence of moving objects or other outliers (such as the toys, in our case). For 
more details see [10]. 

Note that  after such 2D warping, the two plane-stabilized images are in full 
alignment in all image regions which correspond to the rug, and are misaligned 
in all other (i.e., out-of-plane) image points (i.e., the toys). The farther a scene 
point is from the planar surface (rug), the larger its residual misalignment. We 
refer to these as planar-parallax displacements (see [11, 12, 9]). 

Note that the plane-stabilized sequence is in fact a 2]) re-projection of the 
corresponding "virtual images" on the reference plane/7 onto the reference im- 
age plane, t (See Figure 1.b). Therefore, a "quadrilateral" on / - /wi l l  project to 
a "quadrilateral" on the image plane; different triangles on H corresponding to 
different scene points and sharing a common tri-focal line will preserve this rela- 
tion on the reference image plane t. It can be shown that  for any quadrilateral, 
there exists some A~st such that  Equation (7) holds. In fact, it can be shown 
that  

;~'r~t- TZt~ Hr 
Hs Tz tr' (14) 

where Tz t~ is the component of the translation between cameras t and s along 
the optical (Z) axis of the reference camera t. Similarly Tz t~ for the third camera 
r. Hs and Hr are as before (i.e., heights relative to /7 ) .  

S tep  II:  Dense flow is estimated between the two plane-stabilized images (us- 
ing the method described in [12]). Note that  after plane stabilization, the flow 
field between the two images reduces to a radial epipolar field centered at the 
epipole (see Equation (3); see also [11, 12, 9]). The cancellation of the plane ho- 
mography removes all effects of camera rotation and changes in calibration. This 
allows to compute the flow field between a plane-stabilized image pair more reli- 
ably than general flow, as it is constrained to satisfy a global epipolar constraint. 

S tep  III :  We estimate the epipole (pts) from the radial flow field between the 
two input plane-stabilized images. 

We then specify: (i) the virtual epipole (e.g., Prt) between the reference image 
and the virtual "plane-stabilized" image, (ii) a virtual tri-focal ratio A~st in the 
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reference frame. Given the virtual tri-focal ratio A~t, the virtual epipole Prt, 
the actual epipole Pts, and the dense flow field between the two plane-stabilized 
images (between Pit's and corresponding Pis's), we can estimate all image points 
in the virtual (plane-stabilized) image (namely, all pit's) using Equation 8. 

The virtual tri-focal ratio A~st and the virtual epipole P~t can either be spec- 
ified directly (e.g., via Equation (14)), or else by specifying the location of two 
or more image points in the virtual (plane-stabilized) view, and estimate them 
accordingly. 

S tep  IV" Note that  the synthesized plane-stabilized image is the same for any 
camera centered at Cr. In other words, it is independent of the internal parame- 
ters and the orientation of that  camera. By specifying a homography that  relates 
the image plane of the virtual camera to the stabilized image from the reference 
view, we have the complete flexibility to generate an image obtained by any cam- 
era situated at Cr. This is done by unwarping the synthesized plane-stabilized 
image via the corresponding 2D projective transformation. 

5.2 3D R e c o n s t r u c t i o n  a n d  C a m e r a  C a l i b r a t i o n  

Given uncalibrated images, any approach for obtaining Euclidean (or Affine) 
reconstruction requires some type of calibration. One of the benefits of our ap- 
proach is that  this process is factored into two separate stages, each of which 
has a simple and intuitive solution. First, given the input images, the "virtual- 
images" on /-/ must be determined. This can be done by taking advantage of 
the P + P  method[12]-(i) determine the planar homography for H between an 
arbitrarily chosen reference image and each other image, and (ii) determine the 
homography between the reference image and H. Note that  the parallax Equa- 
tion 3 is valid even if the image locations on H are known only upto a 2D a]flne 
transformation. This means that  just by indicating two sets of parallel lines (that 
are in different orientations) /-/, the 3D Heights relative to the reference plane 
can be recovered. From this information, the parallax magnitude ~/ (in Equa- 
tion 3) can be determined. (Note that  by speci~ing the 2D coordinates of four 
points on the reference plane, the homography can fully determined, leading to 
Euclidean reconstruction.) 

Given ~ and the height of one 3D scene point relative to H the Heights of all 
other points can be determined upto a global scale factor. Both these calibration 
steps are simple and intuitive and require minimal specification of information. 
The resulting reconstruction is with respect to the reference plane H and does 
not involve the camera reference frames. 

The foregoing outline for a reconstruction method assumes that  the cor- 
respondences of each point across the multiple-views can be estimated. This 
involves computing the parallax flow-field(s), and the epipole(s)- these can be 
done in the same manner as described in [11, 12]. It is worth noting, however, 
the removal of the planar homography allows the parallax computation to be 
more robust and accurate [11, 12]. 
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