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Abstrac t .  This article describes an architecture for the recognition of 
three-dimensional objects on the basis of viewer centred representations 
and temporal associations. Considering evidence from psychophysics, 
neurophysiology, as well as computer science we have decided to use 
a viewer centred approach for the representation of three-dimensional 
objects. Even though this concept quite naturally suggests utilizing the 
temporal order of the views for learning and recognition, this aspect is of- 
ten neglected. Therefore we will pay special attention to the evaluation 
of the temporal information and embed it into the conceptual frame- 
work of biological findings and computational advantages. The proposed 
recognition system consists of four stages and includes different kinds 
of artificial neural networks: Preprocessing is done by a Gabor-based 
wavelet transform. A Dynamic Link Matching algorithm, extended by 
several modifications, forms the second stage. It implements recognition 
and learning of the view classes. The temporal order of the views is 
recorded by a STORE network which transforms the output for a pre- 
sented sequence of views into an item-and-order coding. A subsequent 
Gaussian-ARTMAP architecture is used for the classification of the se- 
quences and for their mapping onto object classes by means of supervised 
learning. The results achieved with this system show its capability to 
autonomously learn and to recognize considerably similar objects. Fur- 
thermore the given examples illustrate the benefits for object recognition 
stemming from the utilization of the temporal context. Ambiguous views 
become manageable and a higher degree of robustness against misclassi- 
fications can be accomplished. 

1 I n t r o d u c t i o n  

The utilization of image processing seems promising for the development of ma- 
chines capable of circumspect, flexible, or even autonomous interactions with 
their environment. As scenes are usually composed of objects, artificial image 
understanding needs the implementation of a functioning object recognition sys- 
tem. The latter is the main topic of the presented work which aims at the recogni- 
tion of real three-dimensional objects. Special attention is given to the evaluation 
of the temporal dimension for the representation as well as for the recognition. 
Hereby, ambiguous views become manageable and a higher degree of robustness 
can be achieved for the recognition process. 

Recent studies in psychophysics and neurophysiology stress the advantages 
and plausibility of viewer centred representations in contrast to object centred 
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models. These biological findings together with computational aspects give rea- 
son for the usage of a view-based representation scheme as presented here. 

Another important concern is the realization of a system equipped with learn- 
ing abilities to ensure adaptability to newly perceived views of known objects 
and to allow the addition of previously unknown objects. With respect to the 
desired properties of the solution, we focus on a universality regarding the kind 
of objects, features, and restrictions. 

Facing the complexity of the subject we only can propose one possible way 
based on a sufficient number of arguments. Accordingly, the selection, interpre- 
tation, evaluation, and connection of various approaches are regarded as main 
components of this study. 

2 R e p r e s e n t i n g  3 -D  O b j e c t s  

2.1 Viewer Cen t red  vs. Object  Cen t red  Represen ta t ions  

The implementation of an object recognition necessarily requires the definition 
of a representation scheme for the objects, which does not only determine the 
type of storage but even the manner of the recognition process. Special attention 
shall be paid to the representation schemes because of considerable contradic- 
tions between the concepts of object centred and viewer centred descriptions. 
Object centred models store a single representation for each object (e. g. Marr 
and Nishihara 1978; Biederman 1985; Thompson and Mundy 1987; Lowe 1986). 
Accordingly, such a representation has to be three-dimensional and often resem- 
bles models used in computer graphics, esp. CAD. In contrast, viewer centred 
models contain collections of representations for the different perspectives under 
which the object appears to a (virtual) viewer. Thus a self-contained descrip- 
tion of an object is embodied in the combination of its views, which can be 
three-dimensional as well as two-dimensional. Concerning invariance it has been 
argued for the usage of object centred models. Likewise the anticipation of a 
combinatorial explosion, caused by the multitude of imaginable views, lead to 
the rejection of viewer centred representations. Object centred models have the 
one purpose in common: the description of objects by high level features which 
provide stability over all perspectives. These features, however, involve a high 
degree of complexity and computational efforts. As a matter of fact, a great 
number of representation schemes is merely designed for theoretical treatments 
without being implemented, not even for testing purposes. 

Recent studies in computer science as well as in psychology and neurophysi- 
ology support the notion of viewer centred models by not only refuting the fear 
of a combinatorial explosion but even stating several advantages over object cen- 
tred representations. Therefore a short review of the relevant work will be given 
together with the corresponding implications. 

Ullman and Basri (1991) propose a viewer centred model based on two- 
dimensional views: It is not restricted to rigid transformations, does not involve 
the explicit reconstruction and representation of the three-dimensional structure 
for storing the objects. Another noteworthy aspect is the proof that under certain 
assumptions all the views of a three-dimensional object, which may arise by affine 
transformations, can be derived from the linear combination of a few 2D views. 
On the other hand this method presupposes the visibility of all object points 
from every perspective. Even though these assumptions must be regarded as 
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hardly realizable for real scenes or automated model acquisition, the scheme 
gives impressive hints of the potential informat~n content of two-dimensional 
views. 

An early implementation of a view based recognition system by means of 
an artificial neural network is presented by Poggio and Edelman (1990). They 
postulate that for every object an appropriate function can be found which is 
capable of transforming all possible views into a single standard view. The ap- 
proximations of these functions are expected to be evolved by RBF networks 
(Radial Basis Functions) after separately training them on different views of 
their corresponding object. Recognition involves the application of the transfor- 
mation functions to the input view and the comparison of the resulting outputs 
with the stored standard views. Because of the necessity of a constant number 
of feature points together with an exact correspondence relation between image 
and model, the previously mentioned drawbacks also hold for this approach. 

In contrast, the CLF network (Conjunctions of Localized Features) suggested 
by Edelman and Weinshall (1991) does not need the computation of an explicit 
correspondence but uses topological feature maps. While CLF networks have the 
capability to simulate error rates and recognition measures found in psychological 
tests, they seem to be inadequate for general image processing purposes because 
of their generalization method, which is mainly based on gaussian blurring of 
the stored model representations. Therefore, preliminary experiments with real 
images instead of artificially designed objects showed the tendency towards im- 
proper matches with models containing a higher number of feature points. This 
systematic fault is caused by single feature points in the input image overlapping 
with several widened model points simultaneously and can only be circumvented 
by a constant number of feature points over all views and all objects as it was 
the case in the study of Edelman and Weinshall. 

More realistic input images are processed by the VIEWNET architecture 
( View Information Encoded with NETworks) described by Grossberg and Brad- 
ski (1995). The view based model includes a biologically motivated preprocessing 
chain to convert the input images into a representation invariant under illumi- 
nation changes, translation, plane rotation, and scaling. The classification of the 
resulting patterns is done by a Fuzzy-ARTMAP network (cf. Carpenter et al. 
1992), an artificial neural network stemming from the adaptive resonance theory 
(ART). While this study hints at the advantages resulting from the consideration 
of view sequences instead of single images, it still neglects the order in which the 
views appear. 

Such an evaluation of the serial information can be found in Seibert and 
Waxman (1992). Their system is able to create transition matrices from view 
sequences and thus offers a method for the automated construction of aspect 
graphs as defined by Koenderink and van Doom (1979). However, the edges of 
an aspect graph indicate the transition between merely two views. The assembly 
of longer sequences requires the implicit assumption of transitivity along edges. 
Although the connections are augmented by the relative frequency of the ac- 
cording transition, detailed information about longer sequences is not provided 
because of the missing serial relations. 

Viewer centred representations not only give rise to these successful technical 
implementations but even have a close relationship to biological findings. Yet, 
the existence of so-called canonical and accidental views has diverging interpre- 
tations. Supporters of object centred representations might argue that accidental 
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views coincide with mathematical singularities which impair the reconstruction 
of a three-dimensional model. However, this hypothesis cannot account for the 
continuously decreasing recognition rates reported by Edelman and Weinshall 
(1991), which show obvious dependencies from the distance to previously trained 
views. These results were obtained for monocular as well as for stereoscopic pre- 
sentation. 

The outcome of the psychological experiments may be explained by Perret t  
et al. (1991) on a neurophysical level. Single cell recordings in the macaque 
superior temporal sulcus (STS) showed some cells with clear viewer centred be- 
haviour. They were only stimulated by certain perspectives of familiar faces. 
Another kind of cells reacted nearly uniformly over all the views of a person and 
can therefore be considered as an object centred representation. The discovery 
of two cell types does not unveil a contradiction but  rather demonstrates that  
object centred outputs can be interpreted as the simple supposition of several 
viewer centred cells. Tanaka (1996) gives an account of face sensitive cells in 
another brain area, the anterior inferotemporal cortex (AIT), which not only 
react in a viewer centred fashion but even show a systematic arrangement with 
locations for neighbouring views being structured in columns. Additionally, the 
neurophysiological evidence seems to reveal a universal principle: The search for 
a highly invariant recognition mechanism is solved in a way which represents a 
trade-off between memory and computation. 

2.2 U t i l i z i ng  T e m p o r a l  A s s o c i a t i o n s  for  Viewer Centred Represent 

Although viewer centred representations are frequently implemented as the sim- 
ple accumulation of the different aspects, a structured description showing the 
interrelations between the stored views is expected to be more beneficial. Time 
has proven to be a good guideline because the knowledge of temporal  neigh- 
bourhood naturally facilitates the deduction of causal and spatial relationships. 
Therefore, the assumption of continuity leads to the conclusion that  views ap- 
pearing adjacently will probably stem from the same object. 

Especially within the framework 
of viewer centred representations in- 
formation about temporal relations 
is important  to resolve ambiguities 
of single views since the models of 
similar objects may contain indis- 
tinguishable aspects as depicted in 
Fig. 1. Furthermore recognition of 
single views is always subject to in- 
evitable errors which become reme- 

Fig. 1: The consideration of the tempo- diable by the evaluation of view se- 
ral context allows to resolve ambiguities as quences: A higher number of aspects 
illustrated for the fourth view of the se- 
quence. (The depicted planes are kindly assigned to the same object indicates 
provided by the authors of Seibert and a higher propability for the correct- 
Waxman 1992). ness of the classification. Moreover, 

recording the occurrence of the se- 
quences makes it possible to define a measure which denotes how typical is 
a certain motion of an object. In addition the deduction of exceptional situa- 
tions is facilitated, hence allowing the detection of possible dangers or required 
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interventions. Given the example of a car, a rotation about the horizontal axis 
(fortunately) occurs less often than a turning about its vertical axis and may 
therefore be regarded as an exception. 

There are several neurophysical and psychological experiments hinting at 
the utilization of temporal associations in biology. Miyashita (1988) reports the 
training of macaque monkeys with a set of 97 randomly generated fractal images. 
Conducting delayed matching to sample (DMS) tasks the animals had to decide 
whether two consecutively presented patterns were the same or not. Training was 
performed over quite a long period of time by presenting a circular repetition 
of the images and thus maintaining the order of the training set. Subsequent 
single cell recordings in the inferotemporal cortex exhibited neurons with ef- 
fective stimuli formed by clusters of consecutive patterns of the training set. 
Accordingly these randomly generated patterns established associations not for 
their geometric similarity but for their temporal connections. This conclusion 
is affirmed by further experiments of Sakai and Miyashita (1991) who managed 
to create associations between any pairs of shapes on the basis of a consecutive 
presentation. 

Psychophysical evidence for the existence of temporal associations can be 
found in Wallis (in press). His study makes use of training sequences which are 
artificially created by the combination of consecutive faces belonging to different 
persons. Assuming the development of temporal associations, one would suppose 
interconnections between the views of a sequence possibly leading to the fusion 
of a single virtual face. In fact, recognition errors showed more often a confusion 
between faces belonging to a common artificial sequence than between faces of 
different sequences. In other words the subjects formed associations between 
views because of their coincident appearance and not because of their similarity. 

Summarizing the findings about temporal associations, Stryker (1991) de- 
duces a powerful scheme which seems to supersede the need for mechanisms of 
geometric transformations or hierarchical connections of so-called trigger fea- 
tures. As previously mentioned for viewer centred representations, he considers 
temporal associations to be a trade-off between memory and computation pro- 
viding a means for the brain to accomplish perceptual constancy. 

3 R e c o g n i z i n g  3 - D  O b j e c t s  f r o m  V i e w  S e q u e n c e s  

3.1 Overview of  the Recognit ion System 

The design of our object recognition system is based on the combination of viewer 
centred representations and temporal associations. According to the notion of 
viewer centred representations discussed in Sect. 2.1, it is possible to store three- 
dimensional objects as collections of two-dimensional views and to achieve an 
invariant object recognition by the connection of several variant view classes 
with broadly tuned outputs. Hence the need arises for mechanisms capable of 
generalizing across a range of vantage points, which is a task suggesting the use 
of artificial neural networks. However, objects do not come into sight as single 
views, instead they axe naturally embedded into a temporal context. The stated 
advantages of a hypothesized continuity for a view based recognition propose the 
utilization of temporal information by the integration of view sequences into the 
representation scheme. Therefore the model will be augmented by mechanisms 
with the capacity to record the temporal order of successive views and to divide 
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these sequences into classes. Thus object classes can be built upon collections of 
sequence classes. By defining a single view to be a special case of a (very short) 
sequence, one can drop the additional shortcut connections between views and 
object classes as depicted in Fig. 2. 

Obviously the use of long sequences yields a high number of possible se- 
quence classes. In anticipation of an objection to a combinatorial explosion, it 
is important  to notice that  in practice only a very limited subset of the theo- 
retically possible sequences will appear. Constraints originate from natural  laws 
or conditions: gravity, for example, affects the viewer as well as the objects and 
considerably restricts the motions under which objects can be perceived; living 
beings show characteristic movements determinded by morphology or learnt be- 
haviour. Matsakis et al. (1990) report investigations of cosmonauts of the space 
station MIR obtaining improved capabilities in mental rotation experiments un- 
der weightlessness. They presume the improvements to be effected by learning 
and to be part ly caused by physiological processes in conjunction with the lost 
sense of gravity which make it easier to mentally relate the positions of object 
and viewer. Evidence for the relevancy of certain kinds of movements can be 
found in Perret t  et al. (1990) where neurophysiological experiments exhibited 
cells of the macaque temporal  cortex selectively reacting on complex movements 
or actions. Furthermore the number of cells coding compatible movements (e. 
g. the left profile of a person walking to left) was noticeably higher than the 
number of cells representing unusual movements (e. g. the left profile of a per- 
son moving to the right, i. e. walking backwards). Similarly Sumi (1984) reports 
higher recognition rates for normally presented biological motion stimuli than 
for inverted sequences. 

,,,,," ~ Objects 

, ~ ~ '  ..................... . Sequences 
/: _ _  " ...................... 

| | | i iii(1)ii'i::iiiiiiilLiiiiiilZ Views Directions 

F i g .  2 :  Relations between the elements of 
the representation scheme, which comprises 
classes of views, sequences and objects. The 
system can be extended by direction classes 
indicating whether a rotation is right-, left-, 
up-, or downwards. 

Moreover, the number of sequence 
classes can be reduced by the in- 
clusion of mechanisms for invariance 
against modifications of the temporal 
patterns. The proposed system does 
explicitly not aim at storing all pos- 
sible view sequences into the object 
model, instead it is designed to em- 
ploy its learning capabilities in order 
to extract characteristics of the ob- 
jects from the presented training se- 
quences, to weigh them, and to use 
them for future recognition tasks. 

Although spatial information is 
not necessarily required for the object 
recognition intended here, it should 

be included later to complete the concept of the object model: We suggest to 
seek the useful spatial information of an object in the relationship of its views. 
For this the sequence classes could be augmented by a small number of detec- 
tors indicating some basic directions of rotation about the main axes. Assuming 
mutually exclusive direction classes, such a modelling will be in agreement with 
the results of mental rotation experiments (cf. Metzler and Shepard 1974) in 
which the subjects have more difficulties in the simultaneous rotation of three- 
dimensional objects about more than one axis than in rotations about  a single 
main axis. 
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Based on the proposed representation scheme the structure of the recognition 
system is implemented as depicted in Fig. 3. The process starts with the extrac- 
tion of local features resulting from a Gaborjet  transform applied to the input 
images. The inclusion of a visual attention algorithm to select a subset of these 
features for further processing would be beyond the scope of this article and is 
therefore preliminarily integrated as relatively simple method for the selection 
of a window around the interesting object within the input scene. 

Usually the following steps em- 
ploy a kind of coordinate transform 
and the computation of global fea- 
tures in order to yield an invariant 
representation as the foundation of 
a subsequent view classification. In 
Sect. 3.3 we will discuss why such 
a technique has serious drawbacks. 
Therefore we have chosen another 
approach which combines several of 
the processing steps and profits from 
the consideration of the topological 
information coded in feature maps. 
This so-called Dynamic Link Match- 
ing (DLM) has its origin in yon der 
Malsburg (1981), however several ex- 
tensions had to be applied to this ba- 
sic concept before it could be used in 
the given context for the foundation 
of view classes. 

The temporal  recording of the 
view classes is done by a STORE 
network according to Bradski et al. 

Classification: Objects I I Gaussian- 
ARTMAP T 

Classification: Sequences [ 

I Temporal recording 

T 
I Classification: Views I 

T 
Extraction of global features I 

T [ Coordinate transform I 
.............. -S;ie!iion ............... . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  _, 

LExtraetion of local features I 

"] STORE- 
Network 

extended 
~ Dynamic 

Link 
Matching 

Gabor 
transform 

Fig. 3: Simplified block diagram of the 
recognition system depicting the relations 
of the processing steps to the implemented 
algorithms. 

(1992) which transforms the patterns 
into an item-and-order coding as described in Sect. 3.4. A Gaussian-ARTMAP 
architecture, which was introduced by Williamson (1996), divides the outputs 
from the STORE network into sequence classes and maps them onto object 
classes by means of a supervised training method. Section 3.5 deals with the 
details of this stage. 

3.2 Feature Extract ion:  Gaborjet  Transform 

In principle, the generality of the DLM algorithm allows to use every kind of 
input tha t  is organized in feature maps. Even though DLM is designed to toler- 
ate variations of the feature positions, it is necessary to find features which are 
stable under a large range of varying conditions and on the other hand not too 
widespread in order to reduce the number of initial ambiguities. Wiirtz (1994) 
suggests the usage of a Gabor-wavelet transform because Gabor filters are well 
known to have computational advantages and to give a theoretical account for 
findings about  biological visual systems. Accordingly, preprocessing is imple- 
mented as the convolution of the input images with a number of ndir different 
oriented kernels on ntev resolution levels defined as 
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(gvCk) ( ~ )  ---- exp  . ( 2 ~  -- exp  2k 2 \ klr sin edit ] 

/ ~ l e v  
where k~ev = n l e v / x / 2  ~ ed i t  = ~r. d i r / n a ~ r ,  and 2- denotes the Fourier transform. 
The resulting amplitudes of the filter outputs form a feature vector f ,  called 
Gaborjet, of the dimension ndir �9 nl~v = 12.2. An additional subsampling yields 
patterns of the size 64 x 64 pixels from the input images of 256 • 256 pixels. 

3.3 Classifying Views: Extended Dynamic  Link Matching 

It is common practice to transform the input patterns into a special representa- 
tion invariant against certain kinds of mathematically defined operations (e. g. 
the magnitudes of the Fourier transform or a centred log-polar transform) or to 
predetermine a transforming function (e. g. an affine transform) and compute its 
parameters for the mapping of the current input image onto the stored patterns. 
However, the success and the applicability of these approaches are limited be- 
cause an appropriate formal description for real scenes is still to be found. Serious 
problems arise for example from noise, occlusions, distortions, non-rigid objects, 
changes of illumination or background. In its most general formulation match- 
ing consists in mapping local features of the input pattern onto corresponding 
features of a trained pattern and thus yielding a global transformation between 
both patterns. In this process ambiguities of local features have to be solved by 
the consideration of neighbouring features. Therefore, special attention is paid 
to the information contained by the topological structure of the patterns. 

Konen et al. (1994) present a neural formulation of such a match process, 
called Dynamic Link Matching, which uses topography as a guideline on the 
assumption that a transformation needed to map a local feature of the stored 
pattern onto its counterpart in the input pattern is very likely to be applicable to 
match the neighbours onto their counterparts. The system consists of two layers, 
the image layer X representing the current input pattern and the model layer Y 
storing the pattern against which the input is to be matched. The neurons of each 
layer are labeled by local features. Both layers are connected by interlayer links 
Jba carrying information about the correspondence between each cell b of layer 
Y and each cell a of layer X. These connections, called dynamic links, model a 
kind of working memory with rapid weight changes and can be understood as 
a measure for the probability that a cell a is the correct correspondence for b. 
Additionally, the wiring contains static intralayer weights in both layers which 
couple each cell with its local neighbours by excitatory connections and with 
more distant cells by inhibitory connections. The process for self-organization 
of the dynamic links has two formulations, a description of the neural activity 
by dynamic equations and a simplified algorithm based on the blob equilibrium 
solution, which proves the emergence of a connected active region in each layer. 
Our discussion will be focussed on this Fast DLM (FDLM) algorithm outlined 
in Fig. 4. 

This basic DLM concept was usually applied to sets of quite dissimilar objects 
whereas our application has additionally to cope with similar views depicting the 
same objects under different perspectives. By separately applying the DLM to 
every model, we frequently obtained high correspondences between a given in- 
put image and several models. Neither the correlation value of the blob regions 



707 

1 Init dynamic links according to the similarity S(fb~ fa) between the 
:features .fb and f~ with Jb~ = T b ~ / ~ , r  Tb,, where Tba = S(J:b, fa). 

2 Choose a random centre ac E X and place the blob there: x~ = 
B(a - ac). Compute the resulting input of each cell b E Y: Ib ---- 
~a. Jb~Tb~B(a -- ar 

3 Use Ib to compute the maximum b~ C Y of the potential V: V(b~) = 
~-]b6Y B(b - b~)Ib and place the blob there: Yb = B(b -- b~). 

4 Update the links between the active blob regions and renormalize: 
Jb~ + AJba with AJba = cJb~Tb~YbXa. iJbo := ~ . ,~x ( jbo ,  + Z~Jbo,) 

5 Proceed with step 2 until stop criterion is true (e. g. t > tmax : 2000). 

Fig. 4: Fast Dynamic Link Matching according to Konen et al. (1994). The blob solu- 
tion B can be of arbitrary and simple shape, e. g. a rectangular window function. 

nor the structure of the dynamic links allowed the definition of a measure to 
discern between them. Therefore, the algorithm has to be modified to competi-  
tively match  all stored models against the current input. In contrast  to Wiskott  
and v o n d e r  Malsburg (1996) we will maintain the principle of the FDLM algo- 
ri thm. The scheme of Fig. 4 is extended to consider m layers Ym simultaneously, 
where m denotes the number of stored models. Step 3 now has to compute the 
max imum of V over all models m. Only the layer Ym' containing the region of 
highest activation will form a blob and update  its weights to the current blob in 
X (step 4). 

The modification makes it possible to define a useful recognition measure 
r m (t) for a model m and an iteration step t by 

rm(to) = 1 

where F "~ denotes the ,;fitness" of the layer m, computed as total  activity 
of all its cells, and Ar is a t ime constant. The right equation expresses a com- 
petit ion between the model with the highest fitness and all the weaker models, 
which will be further suppressed by the last t e rm becoming negative. During the 
recognition process the recognition value of the best fitting model approaches 
one while the remaining values decrease to zero. A speed up of recognition is 
achieved by ignoring models which have dropped under a threshold r m ( t )  < ~r.  
Additionally, we demand a certain significance of the max imum found in step 3 
before admit t ing the weight updates of step 4, i. e. there has to be a sufficient dis- 
tance to the second best value V(b~c). A precondition defined as V(bc)/V(b~c) >_ k 
(e. g. k = 1.1) intensifies the competi t ion and ensures tha t  connections are only 
made between characteristic regions and not between areas belonging to several 
models (e. g. some background pixels which are inaccurately included in the 
models). 

A full connectivity between the model layers y m  and the input layer X yields 
large matrices Jb~a for the links and Tbma for the similarity values. To save mem- 
ory and to reduce computat ion Wiskott  and v o n d e r  Malsburg (1996) propose 
to restrict the receptive field of each cell b to patches of the size Wpatch " hpa t ch ,  
which are evenly distributed over the image layer. In addition to the primarily 
intended increase of performance, this restriction has great advantages for the ar- 
rangement  of the generated correspondences: The feature extraction can roughly 
be interpreted as a kind of edge detector, therefore the DLM process sometimes 
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finds implicit symmetries (e. g. by matching opponent parts of a lengthy edge 
and thus creating a intersection of the links) which are then gradually extended 
over the complete image. The local bounding of the weights prevents such effects 
by initially excluding connections between too distant features. 

The size of the patches must be chosen very carefully: On the one hand 
performance depends on small sizes, on the other hand the patches have to be 
large enough to allow displacements of the stored model in larger input scenes. 
For tha t  reason the size of the patches is individually computed for each model 
according to its size (note: smaller models need larger patches). 

Generally the model layers y m  will be much smaller than the image layer 
X,  for example when the system has to search an object within a scene. In 
this case the results of the DLM can be further enhanced by the introduction 
of an at tention window which limits the positions of blobs in layer X to the 
region of a presumed object. After a predefined number of iterations (e. g. t~ = 
800) we set the region of interest by considering the model m ~ with the highest 
recognition value and computing the centre ( ~ ,  5y) of the window on the basis 
of its link matrix Jbm, a aS ~tx/y ~- ~tb~ ~a=/~, a~/y  �9 Jb,~,a=/~ , height and width 

of the window are deduced from the standard deviations (2aa~, 2aa~) .  
The extended DLM algorithm described above forms the first stage of the 

matching process. For a given input image it returns the best fitting model from 
the set of known views. In a second stage we have to test whether the selected 
model is sufficiently similar to the input. If this is true we will update the model 
else we will create a new model to hold the current view. The definition of an 
appropriate similarity measure is facilitated by the DLM algorithm and can be 
derived from the smoothness of the correspondence grids as depicted in Fig. 5. 
We have implemented two different distortion measures yielding comparable 
results, one based on the normalized standard deviation of the node distances 
and another indicating the perpendicularity of the grid by summing up the 
deviations of the angles from 90 degrees. 

Fig. 5: Two different kinds of correspondence grids as exhibited while training of view 
sequences. Each node corresponds to a cell of the model layer Y, edges connect neigh- 
bouring neurons. The positions of the nodes indicate the best corresponding location 
within the image layer X. This correspondence is based on the correlation values Cb~ 
between a model neuron b and an image neuron a. In order to reduce small irregulari- 
ties an additional smoothing has been applied to the grid. Nodes b with no sufficiently 
correlated cell within X are positioned by interpolation with their matching neigh- 
bouts and connected by light-grey edges, a) Example of a view sequence taken from 
object 1. b) Regular correspondence grid stemming from the match of view 4 onto the 
previously learnt model view 2. c) Irregular grid originating from the match of view 9 
onto view 2 for the lack of a more similar candidate within the model database. 

If the second stage requires the update of an existing model an adaptation of 
this model to the current input will be performed by placing the feature vector 
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located at (bx, by) to (bx, by)' := (bx, by) + )~[(c,, Cy) - (b~, by)]where A denotes 
the learn rate and (cz, Cy) is the position of the cell b within the correspondence 
grid. 

3.4 Recording  V iew  Sequences:  Susta ined Temporal  Order Network  

We have chosen to represent the temporal  order of the view sequences by a 
STORE (Sustained Temporal  Order REcurrent) model according to Bradski 
et al. (1992). The network is capable of encoding the invariant temporal  order 
of sequential events (e. g. regardless of their durations and interstimulus inter- 
vals). Basically it transforms the input sequences into an i tem-and-order coding 
which encodes the events that  have occurred and the temporal  order in which 
they have occurred. This coding ensures that  the presentation of new events will 
not invalidate the previously learnt patterns.  We are especially interested in the 
possibility to use a network of the ART architecture for the following classifi- 
cation because this design facilitates fast learning and provides a solution for 
the stabil i ty-plasticity-dilemma of artificial neural networks. Both aspects can 
be regarded as advantages over other kinds of temporal  representations realized 
by t ime shifter networks or the frequently applied JORDAN and ELMAN nets. 
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F 0 input 
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Fig. 6: a) STORE architecture according to Bradski et al. (1992). The bold-faced 
letters denote the sums I ---- )-']k Ik, I c = 1 -- I, and x ---- ~ k  xk; A is an arbitrary factor 
controlling the shape of the generated gradient, b) Representing temporal information 
by means of an item-and-order coding. Top: Primacy gradient for small A. Middle: 
Bowing gradient for 0 < A < 1. Bottom: Recency gradient for A > 1 of the sequence 
A --+ B --~ C --+ D. The arrow indicates the position at which the bowing starts. 

Figure 6a shows the structure of a STORE network. The layer F1 imple- 
ments a short te rm memory  (STM) which represents the temporal  order of the 
input sequence by its activities xi and is regarded as the output  of the STORE 
architecture. The negative feedback of the total  layer activity x ensures a par- 
tial normalization in order to model psychological findings of a limited STM 
capacity. The second layer F2 consists of neurons which track the activities of 
the Fl-cells and function as a kind of memory. Changes in both  layers occur 
mutual ly exclusive in dependence of the gain control I which indicates whether 
an input is present or not. The factor A applied to the inputs controls the shape 
of STM gradients as depicted in Fig. 6b. The following stage of our system will 
receive recency gradients as inputs by setting A = 1.1. 
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3.5 C lass i fy ing  S e q u e n c e s  a n d  O b j e c t s :  G a u s s i a n  A R T M A P  

A Ganssian ARTMAP network as introduced by Williamson (1996) is used for 
incremental learning of the sequences and their mapping onto object classes. This 
architecture implements a combination of a Gaussian classifier and an ART neu- 
ral network which remedies known deficiencies of other ARTMAP architectures, 
especially Fuzzy ARTMAP (Sarle 1995). It is more resistant to noise, prevents 
the proliferation of the generated classes, achieves independence of the order in 
which the patterns are trained, and pays attention to the statistical distribution 
of the patterns stored within the classes. 

Gaussian ARTMAP (Fig. 7) 
is based on the concept of 
the Gaussian ART architecture, 
which defines its classes by Gans- 
sian distributions. Such a class 
j is represented by trainable M- 
dimensional vectors storing the 
mean ttj and standard devia- 
tion a j  together with a scalar nj 
counting the number of coded 
samples. The ART choice func- 
tion and the match function are 
computed by means of the a pri- 
ori probabilities and their nor- 
malization to unit height, respec- 
tively. 

The map field is trained to 
map a class J of F 2 onto its pre- 
dicted class K in Fb 2, a function 

Fig. 7: Gaussian ARTMAP architecture con- which is generally a many-to-one 
sisting of two Gaussian ART nets and a map assignment. If a class J is chosen 
field. ART~ receives at F ~ the STORE patterns during training that  maps onto 
as input and divides them into classes repre- an incorrect prediction K ~ ~ K a 
seated by the cells of F~. Similarly ARTb yields mechanism called match tracking 
object classes at F~ from object features, will be invoked. As a consequence 

of match tracking, the class J will be reset in order to let ARTa bring up an- 
other class which obtains a correct mapping or is an untrained class that  will be 
recruited for the storage of the current input pattern.  

4 Resul ts  and Discuss ion 

4.1 D e m o n s t r a t i o n  o f  t h e  L e a r n -  a n d  R e c o g n i t i o n - P r o c e s s  

In the first example we illustrate the learn-process. Learning of the first ob- 
ject has already been mentioned by Fig. 5; therefore we present the sequence of 
Fig. 9a now. The system is supposed to perform a gradual update of the set of 
model views by means of the extended DLM algorithm. To make the interpre- 
tat ion of the view classes easier, the combination of more than one input image 
into a view class is prevented by demanding very low distortion measures. 

Figure 8a shows the results. The greyed entries mark the stored view which 
is returned by the extended DLM algorithm as the view best matching the 
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Fig. 8: a) Distortion measures of the first stage matches occurring during the successive 
leaxning of object 2. b) Assignments of views to classes resulting from the leaxn-process. 

Fig. 9: Objects used for training. Each object was presented as a sequence of 25 views 
which shows a complete rotation of the object about the vertical axis. Object 1 is 
depicted in Fig. 5a. a) Object 2. b) Object 3. 

current input (first matching stage). The grey level corresponds to the distortion 
measure assigned to the grid of this match. Dotted fields in the upper  right par t  
denote views which have not been included into the set of model views yet. As 
expected most  matches lie on the main diagonal of the table and indicate highest 
similarity with the directly preceding view which has just  been stored into the 
model database.  

The mean of the distortion 
measures on the diagonal is 
0.98, whereas especially aberrant  
matches show higher values. If 
one sets the admissible distor- 
tion to a value less than the 
mean, the system will be allowed 
to combine similar views into a Fig. 10: Example of the classification of a view 
common view class as shown by sequence belonging to object 2. The resulting 
Fig. 8b. It  is noteworthy tha t  view classes and their assignment to objects axe 
slightly changed distortion mea- shown below. 
sures can result from the adaptat ion of the stored views to one another  depen- 
dent on the chosen learn rate. 

The following example will demonstrate  the processes of learning and recog- 
nition for three similar objects. Note that  the resemblance between the objects 
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intentionally sets the system a difficult task. Therefore, we have to expect tha t  
some misclassifications will occur on the view level. They elucidate why it is 
necessary to consider sequences instead of single views. 

The system was trained for the objects depicted in Fig. 5a and Fig. 9. Learn- 
ing created a total  of 55 view classes for the storage of 75 training views. The 
classes are almost evenly spread over the three objects (17, 18, 20 classes respec- 
tively). The presentation of the test  sequence illustrated in Fig. 10 demonstrates  
the advantages of the temporal  context. Despite of an ambiguous view (view 31) 
appearing twice in the sequence, the knowledge about  the preceding views still 
allows a reliable recognition of the object. 

Fig. 11: Example of the classification of view sequence belonging to object 3. a) Pre- 
sented test sequence of object 3. b) Representatives of the view classes matching each 
view of a). The second and the fourth view have been erroneously mapped onto similar 
views of other objects. The third image yields a wrong view class of the corresponding 
object, c) Classification output, which is stable despite of the misclassified views. 

In addition to the manageabil i ty of un- 
certain views, an object recognition based on 
sequences facilitates an improved tolerance 
against misclassifications of single views: Fig- 
ure 11 shows a test  sequence of object 3 to- 
gether with the views matching each input 
image. Although two of five views (2 nd and 
4 th view) are mapped onto an incorrect ob- 
ject, the outputs resulting from the sequence 
classification yield the actual object class over 
all inputs. 

Fig. 12: Example for the recogni- A test with cluttered scenes is depicted 
tion of object 3 within a cluttered in Fig. 12. After approx. 2000 iteration steps 
scene. The correspondence grid is the correspondence grid is unfolded and po- 
overlayed over the scene, sitioned over the known object. Some distor- 
tions can be noted. However, they are restricted to the boundary  nodes and 
still allow to localize the object within the scene. The effects of occlusion can 
be handled similarily. Further investigations of these aspects are currently in 
progress. 

4.2 Compar i son  with  Re lated  Work 

We have presented an image processing system for the recognition of three- 
dimensional objects which is based on the approach of viewer centred repre- 
sentations and on the utilization of temporal  associations between the views. 
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To our knowledge the outlined architecture is unique with respect to the com- 
bination of its modules while particular elements were adapted from different 
known approaches. However, most implementations of viewer centred represen- 
tations include a direct mapping of view classes onto objects and neglect the 
temporal order of the image sequences. As an example of such a system we 
have already mentioned the VIEWNET architecture of Grossberg and Bradski 
(1995). Figure 13 depicts the trained weights of some view classes generated by 
the Fuzzy-ARTMAP classifier of the VIEWNET system. 

Due to an insufficient position 
invariance, training creates many 
similar classes (e. g. class 1, 2, 
4, 7, and 9) and causes a prolif- 
eration of the number of classes. 
Moreover, the usage of the Fuzzy- 
AND operation produces serious 
,,deletion effects": The rotation 
of an object shows several simi- 
lar images in succession matching 
the same class. This class is then 
trained to store the intersection 
of the subsequent views. Hence, Fig. 13: View classes created by a VIEWNET 
the rotation of the plane yields architecture. The system has been trained for 
classes which represent a virtual the views of an airplane as depicted in Fig. 1. 
image formed by the central region of the object. However, the implied insta- 
bility of the view classes will obviously impede a reliable definition of sequence 
classes. 

The Dynamic Link Matching developed by von der Malsburg et al. deals 
with the achievement of position invariance and robustness against distortion 
but requires that all model views are of the same size and manually aligned (e. g. 
the application to face recognition needed the eyes in all the stored faces to be 
placed at corresponding positions). Furthermore, recent publications focus on the 
computationally more expensive formulation of the DLM in terms of dynamical 
equations whereas our system still relies on the faster FDLM algorithm. Above 
all, the DLM architectures contain no mechanism for an automated learning 
of the models. The only report of an automatic model acquisition is given by 
vonder  Malsburg and Reiser (1995) where the attempt is made to map all the 
views of an object onto a single model view. However, the applicability of this 
approach seems questionable and is not in agreement with the concept of viewer 
centred representations proposed here. 

With respect to the classification of sequences a comparable system can be 
found in Bradski and Grossberg (1993), which is based on a Fuzzy-ART network. 
This implementation has the same drawback of a deletion effect analogous with 
the one explained in the context of view classes: If a sequence misses out a view 
even once, this view will be deleted from the stored sequence class and will never 
be added to this class again. 

Darrell and Pentland (1993) present a system for the processing of view 
sequences. The employed image processing algorithms, however, are quite simple. 
Moreover, training and recognition require an alignment, called dynamic time 
warping, of the current input sequence and all the known sequences. 
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4.3 Further Deve lopment  

We are planning to increase the performance of the system with respect to speed 
as well as concerning its recognition capabilities. Another important  aspect is the 
development of a benchmark test which provides an appropriate image database 
for a quantitative comparison of efficiency and accuracy. Currently none of the 
mentioned references offers such a set of input patterns applicable for testing 
our recognition system. The test sets either do not contain sequences or images 
without interior structure of the objects. 

The results, presented here, indicate tha t  some misclassifications originate 
from the subsampling rates. As the usage of an increased resolution comes along 
with considerably longer response times, certain mechanisms for a speed-up must 
be implemented. The replacement of the fixed stop criterion of the DLM by 
a measure which dynamically ends the recognition process seems promising. 
Furthermore, the use of additional features is possible without changing the 
architecture and should be investigated in the future. Another extension will be 
the embedding of the recognition system into an active stereo vision environment. 
Extract ing information about motion and depth will enable the segmentation of 
the scene into regions of interest and thus speed up the recognition process. 
Moreover, by tracking the objects the system will be allowed to observe moving 
objects on its own instead of being dependent on artificially created training 
sequences. 
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