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A b s t r a c t .  In this paper the motion segmentation and depth ordering 
problem for monocular image sequences with and without camera motion 
is addressed. We show how a new multiscale morphological segmentation 
technique, based on the watershed, can produce a superset of the motion 
boundaries. Regions with similar motion then have to be merged. The 
difficulties of motion estimation at object boundaries with occlusion are 
analyzed and a solution combining segmentation and robust estimation 
is presented. Region merging is then performed using the obtained mo- 
tion parameters. We then present a new technique for the depth ordering 
of the resulting image partition. We show how the modelling error on ei- 
ther side of the motion boundary can be used to indicate the occlusion 
relationship of the objects. The algorithm is then applied to several syn- 
thetic and natural  image sequences. The results demonstrate that  the 
technique is robust and that  the depth ordering requires only minimal 
motion to perform correctly. This is due to the fact that ,  unlike existing 
techniques for depth ordering, the motion between two frames only has to 
be analyzed. We then point out possible improvements and indicate how 
temporal  integration of the information can further increase stability. 

1 I n t r o d u c t i o n  

The  increas ing  ava i lab i l i ty  of audiovisua l  ma te r i a l  in d ig i ta l  form crea tes  a de- 
m a n d  for new funct ional i t ies  like in terac t iv i ty ,  in t eg ra t ion  of ob jec t s  of different  
na tu re ,  etc. .  The  new s t a n d a r d  M P E G - 4  meets  these  d e m a n d s  by  a l lowing a 
scene to  be r ep resen ted  as a compos i t ion  of ob jec t s  r a t h e r  t h a n  jus t  pixels.  I t  
does not  specify, however,  how the  decompos i t ion  of a scene into ob jec t s  is per-  
formed.  

A first  s tep  in the  semant ic  analys is  of a scene is the  s egmen ta t i on  into 
ob jec t s  wi th  coherent  mot ion.  A second s tep then  consists  in es tab l i sh ing  the  
d e p t h  o rder ing  of the  resul t ing  image  pa r t i t i on :  to es tab l i sh  which ob jec t  moves 
in front  of which. 

For  the  mot ion  segmen ta t ion  two poss ible  s t a r t i ng  po in ts  exist .  
We can s t a r t  wi th  a mot ion  field we want  to  segment :  in this  case, the  field 

needs to be dense and  accura te .  Mot ion  e s t ima t ion  un fo r tuna t e ly  p roduces  poor  
resul ts  precisely  at  mo t ion  boundar ies .  
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The use of grey level segmentation is t h e  alternative start ing point. The 
hypothesis underlying this approach is that  such a segmentation produces a 
superset of the motion boundaries: the motion boundaries are contained in the 
segmentation. The problem then consists in merging regions with similar motion, 
which also proves challenging at object boundaries with occlusion. 

The techniques that  perform motion segmentation and depth ordering found 
in li terature rely exclusively on motion information: some approaches t ry to 
detect motion boundaries directly in sparse motion fields calculated through 
token matching [6, 7]. A more recent technique is based on a decomposition of 
the scene into layers with coherent motion. The evolution of these layers in t ime 
is then used to extract  information concerning depth ordering [2]. 

In this paper, we address the motion segmentation and depth ordering prob- 
lem for monocular image sequences with and without camera motion. We use a 
morphological grey level segmentation as our starting point. We then show how 
robust parameter  estimation techniques improve motion estimation at motion 
boundaries and how this permits regions with similar motion to be merged. A 
new technique for the depth ordering of the resulting image parti t ion is then 
presented. 

Figure 1 shows a schematic overview of our algorithm which also corresponds 
to the structure of this article. 

- - I  Segmentation (2) 

Motion Estimation 
(pixcl level) (3.1) 

t Momm Estimation ] (region level) (3.2 - 3.4)[ Region Mcrging (4) Depth Estimatton (5) 

Fig. 1. The steps of the motion segmentation and depth ordering 

2 S e g m e n t a t i o n  

Segmentation generally produces a superset of the motion boundaries: the mo- 
tion boundaries are included in the grey level segmentation. This is due to the 
fact that  the surface properties or the illumination of the objects in the scene 
often differ. 

Figure 2 shows, as an example, image no. 50 from the "Foreman" sequence 
in QCIF format.  Next to the original we see the morphological gradient, the 
difference between the dilated and eroded image, which indicates discontinuities 
in the luminance (shown with 7 = 5 for bet ter  visualization). 

We can confirm that  the motion boundary (the contour of the upper  body) 
corresponds to areas with high gradient almost everywhere. 

The segmentation we have used for this work is a multiscale morphological 
segmentation technique, based on volumic closings of the gradient image and the 
watershed transform [1]. The result is a series of mosaic images with increasing 
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Fig. 2. "Foreman" 

resolution verifying the following property: each contour present in a given mo- 
saic is also present in all finer mosaics. Figure 3 shows such a series of mosaics 
for the above example. 

25 regions 50 regions 
f ~ k /b~k%\--%r 

75 regions 100 regions 

Fig. 3. Hierarchy of segmentations 

This segmentation is extremely fast, since all resolution levels are constructed 
simultaneously in the same run. Hence, it is easy to choose the best s tart ing point 
for studying the motion. 

Two basic strategies are possible: we can choose a segmentation with a reso- 
lution high enough to obtain a superset of the motion boundaries, in which case 
regions have to be successively merge based on their motion. 

Another strategy, which will not be presented in this article, consists in choos- 
ing a segmentation with an intermediate resolution and to split regions if the 
robust motion estimation indicates that  it contains more than a single type of 
motion. The segmentation also allows for this kind of strategy: the resolution 
can simply be increased within the region concerned. This allows a closed loop 
between segmentation and motion estimation to be established. 

3 M o t i o n  E s t i m a t i o n  

The motion information available for an individual pixel is incomplete due to 
the aperture  problem: only the motion component normal to iso-brightness con- 
tours can be measured. Therefore, the measurements of several pixels have to be 
combined to obtain a complete motion vector. The regions of our segmentation 
provide us with an ideal support  for this combination because they generally 
correspond to a single object in the scene. 
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We will first present the technique used to measure the normal motion of 
each pixel and then introduce the model that  is used to integrate the partial 
motion information inside each region. 

3.1 P i x e l  Leve l  

We use a differential technique (without regularization) to estimate the nor- 
real motion at pixel level [4]. This yields higher precision for fine motion than 
standard correlation techniques and is computationally very simple. 

Two images have to be prefiltered to prepare for differentiation and to in- 
crease the signal-to-noise ratio. We use a cube shaped spatio-temporal gaussian 
filter with a side length of 7 pixels / frames (i.e. the filtered value is calculated 
from the values of its neighbours in a cube, which extends 3 frames in time and 
3 pixels in x and y to either side). 

If we now assume that  the intensity is conserved, dI(x, t)/dt = 0, the gradient 
constraint equation can be derived: 

(VI(x, t ) )Tv + It(x,t) = 0 , (1) 

where VI(x ,  t) is the gradient and It the partial temporal derivative of the in- 
tensity. This equation gives us the motion component normal to spatial contours 
with constant intensity: Vn = Vnn, where the normal velocity and the normal 
direction are given by: 

VI(=,  t) 
- I t (x , t )  and n ( x , t ) -  iiVl(x,t)l I Vn(X , t) --  I I V I ( x ,  t)ll (2) 

3.2 R e g i o n  Leve l  

In order to integrate the partial motion information of the individual pixels 
at region level we use a parametric model. We have decided to employ a nodal 
representation. A fixed number of nodes {xi} is chosen depending on the motion 
type and complexity. 

The modelling then consists in computing a "model velocity" q~(xi) at each 
node xi, such that  the interpolated velocity field based on the nodal velocities 
is as close as possible to the observed velocity field within the region [3]. 

Being velocities, the parameters of the model have a small range of variation, 
of the same magnitude as the motion in the sequence, which contributes to the 
robustness of the computations. 

The interpolation technique we use is a linear technique called kriging. The 
velocity of each point of the region is then a linear function of the velocities at 
the fixed nodes: 

v(x, {~b(xi)}) = E Ai(x)O(xi) . (3) 
i 

In this equation the ~b(xi) represent the node velocities that  have to be deter- 
mined, the Ai(x) are the corresponding weights for the interpolation given by 
kriging. 
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Using kriging as interpolation method has two important  advantages. On the 
one hand, it is very flexible: it is possible to model the structure of the motion 
field by choosing an appropriate  covariance model. In our case, we have chosen a 
covariance model yielding a spline interpolation. On the other hand, the weights 
only depend on the geometry, i.e. the position of the pixel and the position of 
the nodes to be interpolated. This allows the interpolation weights Ai(x) to be 
tabulated once and for all. 

The number and the placement of the nodes determines the motion complex- 
ity that  can be represented: a single node corresponds to a simple translation, 
three nodes with a non collinear placement yield an affine model, more than 
three nodes produce models with increasing complexity. 

The number of motion measurements,  which depends on the region's size, 
limits the number of model parameters  that  can be estimated reliably. For the 
integration of the motion information in each region we use models with up to 
four nodes (which corresponds to a maximum of eight parameters  to be esti- 
mated).  Figure 4 shows the chosen node placements for 3 and 4 node models. 

x z  

x 3  _ _  x l  

r - - -  �9 x ~ - -  

x 3  x l  

i 

l x 4  
L .  _ _  o - - -  

Fig. 4. Node placement 

To est imate the motion parameters  of a region R we replace v in the gradient 
constraint (1) with our model v(x, {r  so that  the measurement  in each 
point of R yields a constraint on the motion parameters  r  

( v : ( ~ ,  t))rv(x, { r  + I~ (~ ,  t) = o . (4) 

The over-determined set of linear equations now has to be solved. The s tandard 
least-square approach consists in minimizing the following sum: 

y 2 ( ( v I ( ~ ,  t ) )%(~ ,  {r  + J~(~, t)) ~ , 
R 

(5) 

which with (2) can also be written: 

E I IVI(x '  t)ll2(nv(x' {r  - v,)  2 , 
R 

(6) 

where Vn is the normal velocity and n the normal direction. 
The second expression can be interpreted as a weighted over-determined set 

of equations. In each point of the region the equation 

~ v ( ~ ,  { r  - Vn = 0 (7) 
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gives the normal velocity Vn = vnn. Each of these equations is weighted with 
IIVI(x, t)ll 2. The weight controls the influence of each measurement  in the pa- 
rameter  estimation. 

In general it makes sense to give higher weight to measurements from areas 
with high gradient: noise is less likely to corrupt those measurements (i.e. they 
have a higher signal-to-noise ratio). 

This, however, does not hold true at motion boundaries, as will be shown in 
the following section. 

3.3 M o t i o n  E s t i m a t i o n  a t  O b j e c t  B o u n d a r i e s  w i t h  O c c l u s i o n  

We have seen that  the aperture problem restricts local motion measurement  to 
only the normal component.  But even to estimate this normal component,  esti- 
mation techniques have to take into account a small neighbourhood. Correlation 
techniques, for example, require a minimum window size, differential techniques 
combine information through prefiltering. 

Fig. 5. Occlusion 

The effect that  this has on motion estimation around object boundaries will 
be shown in an example. Figure 5 shows a synthetic sequence (size: 100 • 100) 
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with occlusion: two surfaces move towards each other with the surface on the 
right occluding the surface on the left. The two surfaces have random texture 
with grey values drawn uniformly from the intervals [200,210] and [220,230]. 
Their velocities are (1,0) and ( -1 ,0 )  as shown in Fig. 5(c) (the velocity field 
is subsampled by a factor 3 and scaled by a factor 2). In order to compare 
the measured normal velocity with the known correct velocity, we evaluate the 
following error: 

error = Irtvc - Vnl , (8) 

where vc represents the known correct velocity. This is simply the difference be- 
tween the measured normal velocity/in and the projection of the correct velocity 
v~ onto the normal direction. 

Fig. 6. Error at occlusion Fig. 7. Image profile at y = 50 

Figure 6 shows the situation around the motion boundary at x = 50: the 
error is negligible on the side of the occluding region but significant on the side 
of the occluded region. The error on the side of the occluded object is about 2 
in a narrow band next to the contour: this indicates that the motion measured 
corresponds to the occluding object. This error is due to the small neighbour- 
hood that contributes to the motion information in each pixel. Figure 7 shows 
how filtering affects the motion measurement: the discontinuity is smoothed and 
spread into the occluded region. The motion measured in this area therefore 
corresponds to the occluding object. 

The width of the area with erroneous measurements depends on the size of 
the neighbourhood that contributes to the motion measurement and the relative 
motion of the two regions. We can observe this kind of error even if the grey 
level difference between the regions is very small as long as the relative motion 
of the regions has a non-zero component in the direction normal to the motion 
boundary. 
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The motion parameters for a simple translation estimated through mini- 
mizing (6) are {(-0.942, 0.004), (-0.994, 0.003)}. As expected, the parameters 
calculated for the occluded region do not reflect the correct motion (for this ex- 
ample they are even almost identical with the occluding region). The main reason 
for the bad performance is that  a certain number of measurements contributing 
to the motion estimation are erroneous. The problem is then aggravated by the 
weighting with the square gradient: the erroneous measurements receive higher 
weight since they come from an area with high gradient. The parameters we 
obtain without the weighting are {(0.413, 0.012), (-1.002,0.002)}. 

In the next section we show how robust estimation techniques can help to 
overcome this problem. 

3.4 R o b u s t  R e g r e s s i o n  

In the previous section we saw that the parameter estimation has to be able to 
cope with erroneous motion measurements in order to perform correctly at mo- 
tion boundaries. Those motion boundaries are not the only source for erroneous 
measurements, all kinds of noise can corrupt the motion information. 

In statistics all these erroneous measurements are known as outliers. Robust 
estimation techniques allow outliers to be detected and eliminate (or limit) their 
influence on the estimation: they yield the parameters that best fit the majority 
of the measurements [5, 8]. 

We have concentrated on a class of techniques called M-est imators that  can 
be easily implemented as iterative reweighted least-square estimation. 

First we simplify our notation. Then we show why the least-square approach 
we used above lacks in robustness and how M-estimators cope with outliers. 

In the following we will refer to 

Inv(x, { (~ (x i )} )  - Vnl (9) 

as the absolute residuals which will be noted as r ( x )  or simply as r. 
Instead of noting the motion parameters as vectors (the node velocities ~b(xi)) 

we replace them by a set of scalar parameters pj  with j = 1 , . . . ,  m, where m is 
twice the node number. 

If we now abandon the gradient weighting, for the reasons shown above, (6) 
can now be written as 

min E r2(x ) . (10) 
R 

We see that each residual contributes with its square to the sum we have to 
minimize. This explains why even a single erroneous measurement with a large 
error can wreak havoc on the estimation: due to the squaring of the residuals 
the influence on the sum is so big that the parameters get pulled away from the 
correct solution during minimization. 

M-estimator minimize the following sum: 

min E p ( r / 5 )  . (11) 
R 
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In th is  equa t ion  p is the  funct ion t h a t  replaces  the  square  and  & is a robus t  
e s t i m a t e  for the  s t a n d a r d  dev ia t ion  of the  res iduals  which serves as a scale pa-  
r ame te r .  The  robus t  e s t ima te  ~ is given by  

= 1.482611 + 5 / ( n  - m)] m e d i a n ( r )  , (12) 

where  m is the  n u m b e r  of  p a r a m e t e r s  to  be e s t i m a t e d  and  n t he  n u m b e r  of 
measu remen t s  in the  region.  

In  o rde r  to  be  able  to  cope wi th  out l iers ,  the  funct ion p has  to  be less increas-  
ing t han  square.  The  l i t e r a tu re  proposes  a mu l t i t ude  of funct ions  from which we 
have r e t a ined  the  funct ions  F a i r  and  G e m a n - M c C l u r e  whose formulas  a re  given 
in Table  1 and  which are  dep ic ted  in Fig. 8. 

type IJ p(x) I r I w(x) I 
L2 =--~ x 1 

Fair c 2 [-~ - log(1 + I~l)] ~ 1 
c a 1 - F l ~ l / c  l + l ' ~ l / c  

Geman-McClure ~ = 1 1+=- ~ 

T a b l e  1. Least-square and used M-Estimators 

FAIR 

p r weight 

GEMAN-MCCLURE 

p r 

Fig .  8. Plots of the used M-Estimators 

weight 

We will now show how the  min imiza t ion  of (11) can be solved as an i t e r a t e d  
reweighted  l eas t - square  p rob lem.  
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The minimization of (11) is equivalent to the solution of the following linear 
system: 

Or 
~ - - ~ r  = 0, j = 1 , . . . , m  , (13) 

v / ~ j  
R 

where r = dp(x)/dx is called the influence function. If we then define a weight 
function 

r  , (14) 
X 

(13) can be written as 

~ r  
= 0, j = 1 , . . .  (15) 

op ;  

The previous equation is now equivalent to the, following weighted least-square 
problem 

min ~ w(r /?r)r 2 , (16) 
R 

where w(r/~r) represents the weight for each of the residuals. 
Figure 9 illustrates the iterative nature of the solution. 

~t  all weights to I pa,amclc,~ calculate residuals standard deviation update weights 

Fig. 9. Robust regression scheme 

Without  any prior knowledge about  the reliability of the individual measure- 
ments or the model parameters,  we start  by setting all the weights to 1. We 
then calculate the parameters  pj and the corresponding residuals. The robust 
est imate for the standard deviation is evaluated and serves to scale the residuals 
for the weight computation.  

In Fig. 8 we can see that  large residuals are assigned low weights for the next 
iteration and therefore their influence is reduced. 

The main difference between the two functions p we use is that  the Geman-  
McClure flmction can completely exclude residuals from the modelling by assign- 
ing zero weights, whereas the Fair function always yields non-zero weights. The 
Geman-McClure function is more severe but does not always guarantee good 
convergence: we therefore use the Fair function at the beginning of the iteration. 

The iteration stops when 5- no longer decreases or when a fixed number of 
iteration is reached. 

If we apply the robust approach to our occlusion problem we, in fact, obtain 
the correct motion parameters  {(1,0), ( - 1 ,  0)}. 

Let us now look at a more challenging problem with multiple occlusions and 
added random noise. 



541 

Fig. 10. Multiple occlusions 

Figure 10 (a) and (b) show two diagonally translating squares in front of a 
stationary background. Their velocities are (1 , -1 )  for square 1 (top left) and 
( -1 ,  1) square 2 (bottom right) as shown in (c). As for the previous synthetic 
example, the different textures are obtained by drawing grey values uniformly 
from the intervals [180,190], [200,210] and [220, 230]. To all the pixels of the 
resulting sequence Gaussian noise with a = 5 is added independently (Fig. 11 
shows the histogram before and after the addition of the noise). 

ii 
(a) Without noise (b) With noise 

Fig. 11. Histograms 
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This noise introduces significant error into tile normal motion measurements 
(c.f. Fig. 10 (d)). 

The following table compares the translation calculated with the least-square 
(with and without gradient weighting) and the robust parameter estimation: 

Background Square 1 Square 2 

'Least-square (weighted) (0.032,-0.062) (0.273,-0.266) (-0.037, 0.035) 
JLeast-square (-0.016, -0.071)!(0'.548, -0.670) (-0.369, 0.296) 
Robust (0.032, -0.070) (0.993, -0.999) (-0.940, 0.960) 

The fact that  the background motion is well estimated in all three cases is due 
to the opposed motion of the identical squares whose influence on the occluded 
background cancels itself out. 

Figure 12 shows the location of the measurements that  have been classified 
as outliers (in grey) along with the contours of the objects (in black). Most of the 
outliers fall into areas with low gradient where the signal-to-noise ratio is very 
low. We can also see a high concentration of outliers where square 1 occludes 
square 2: as expected, the outliers are found on the side of the boundary that  
corresponds to the occluded object. 

Fig. 12. Outliers 

4 R e g i o n  M e r g i n g  

Now that  we are able to calculate the correct motion parameters for the regions 
of the segmentation, we can group the regions that have similar motion. This 
will be done as an iterative region merging: at each iteration, all pairs of adjacent 
regions are candidates for merging. Instead of trying to compare the motion in 
the parameter space, we calculate a new set of motion parameters for each of 
the region pairs and evaluate the resulting modelling quality. Quality measures 
based on the motion compensated images (i.e. PSNR) have been tested but  have 
proven inconsistent and time consuming. We use the mean modelling error of 
the motion instead: 

1 
~ - ~ O f l ( X ) ( ' ~ v ( p )  - -  Vn) 2 , (17) error(R,p)  - size(R) n 

where a~(x) are the weights we have calculated through robust regression and p 
our m motion parameters. 
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The merging criterion can then be based on the individual errors before the 
merging {error(Rx, Pl) ,  error(R2,p2)} and the modelling errors when the joint 
model parameters have been used {error(R1, P12), error(R2, P12)}. 

If two regions have similar motion, the jointly calculated motion parameters 
yield small errors {error(R1, P12), error(R2, P12)} when applied to the individual 
regions: we therefore consider the motion of two regions as similar if the following 
criterion 

C = max {error(R1, P12), error(R2, P12)} (18) 

is small. 
The different steps of the merging procedure with an exhaustive evaluation 

of the similarity criterion C for all region couples are the following: 

1. Evaluation of the similarity criterion C for all couples of adjacent regions, 
2. merging of the couple with the most similar motion (smallest C), 
3. updating of the criteria for all the region pairs involved in the merging (i.e. 

all the region couples that contained one of the two merged regions), 
4. iteration from point 2. 

This exhaustive approach at first seems very costly. However this is not the 
case: the joint modelling of two regions requires only the solution of one over- 
determined linear system in the least-square sense (since we keep the weights 
already established through robust estimation) for which efficient numerical tools 
exist. In particular, we may reuse parts of the calculus for the individual motion 
parameters to calculate the joint parameters. 

The merging will be stopped when a predefined error threshold is exceeded 
or when the criterion rises abruptly. The functioning of the merging will be 
shown along with the results of the depth ordering we shall introduce in the 
next section. 

5 D e p t h  O r d e r i n g  

As seen in Sect. 3.3, occlusion causes significant error on the side of the occluded 
object. This error makes it possible to deduce the depth ordering of the involved 
objects. 

As mentioned before, measurements at locations with high gradient are less 
sensitive to noise and thus yield more reliable values. We therefore have to dis- 
tinguish two main classes of outliers: regions with low gradient which are likely 
to be corrupted by noise and regions with high gradient which generally corre- 
spond to occluded objects (or if the segmentation is not fine enough they might 
also indicate multiple types of motion in a region). 

Figure 12, which we have already seen, shows both types: spread unevenly 
across the image we find outliers that  correspond to the first class; at the motion 
boundary between the two squares the outliers are due to occlusion. 

A simple and elegant way to separate the two types of outliers is to make 
use of the gradient information: we weight the absolute residuals r(x) obtained 
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through robust estimation with the modulus of the gradient 

f 'weighted(X) = I V I (  x ,  t)lr(x) , (19)  

and reestimate ~. We then recalculate the weights co(r/~) with the chosen weight 
flmction. The measurements which are now classified as outliers (i.e. have zero 
weight) correspond to true modelling errors: the occluded regions. 

The location of the measurements that  are classified as outliers in this way 
are shown in Fig. 13. 

In order to quantify this information we compute the spatial outlier density 
in a narrow band on either side of the motion frontier. The width of the band 
depends linearly on the relative motion of the two regions normal to the contour 
and on the size of the prefilter used. For our test we have used a width of three 
pixels. 

Figure 14(a) shows these bands for the occluding square example. 

Fig. 13, Outliers (weighted) Fig, 14. Bands used in the depth evaluation 

We now have to establish an ordering based on these two densities. If we 
define two thresholds how and thig h we  can distinguish between situations with 
and without a clear depth ordering. A clear ordering exists when one density 
is below tlow and the other above thigh. In all other cases, we cannot make any 
s ta tement  about  the ordering. The low threshold allows for a certain number of 
false outliers and the high threshold indicates the minimum number of outliers 
for a region to be considered occluded. 

In this initial form, the approach only works for simple cases. Let us consider 
the situation where a narrow rectangle translates in the direction of its longer 
sides in front of a s tat ionary background. Error due to occlusion can only be 
observed at the short sides: the outlier density in the background therefore will 
be very small and normally does not exceed thigh. This is why we part i t ion the 
bands into short strips (c.f. Fig. 14(b)) and use a kind of "voting" mechanism: 
only the pairs of strips with a clear ordering contribute to the depth detection. 
With this approach, a correct depth ordering becomes possible for the previous 
example and for most natural  scenes. 

In our examples, we have used a length of 20 pixels for the parti t ioning of 
the bands and we set the threshold to flow = 0.2 and thigh = 0.8. 

This relative ordering is represented in the form of a directed graph: nodes 
correspond to the regions and the edges indicate relative depth. We can now 
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perform (if there are no cycles) a topological sort on the graph: as a result, we 
obtain an image in which low grey values correspond to objects close to the 
observer and high grey values to more distant ones. 

Figure 15 shows the different depths for the translating square sequence (with 
white indicating the most distant object). 

Fig. 15. Depth 

Let us now see how the algorithm performs on natural  scenes. The results 
for the image sequences "Foreman" and "Claire" are show in Fig. 16 and 17 (the 
velocity fields are subsampled by a factor 5 and scaled by a factor 4). The image 
size, the number of the frame treated in the sequence and the number of regions 
used in the segmentation are given in the following table: 

name [ size Iframe no.lregion no.I 

'Claire" QCIF (176 • 144) 

For these examples a model with three nodes which is capable of representing 
affine motion has been used. 

The normal velocity for "Foreman" in Fig. 16(b) shows two different types 
of motion: the upper body moves to the left and the background moves up to 
the right (due to the camera motion down to the left). As we have already seen, 
the segmentation with 75 regions contains the major  motion boundaries. We can 
also see that  the region merging is then correctly performed. Note however that  
there is a small region on the right that  has merged with the person's shoulder 
although it belongs to the background. This is due the fact that  the region is rel- 
atively narrow: the majori ty  of its motion measurements yield the motion of the 
occluding object, in which case the robust estimation produces the foreground 
motion. This problem can easily be resolved by imposing a minimum region size 
or a morphological constraint on the segmentation's  regions. The depth ordering 
then yields the correct depths: the person shown in grey is si tuated in front of 
the background in white. 

The motion in the sequence "Claire" (Fig. 17(b)) is quite small. We can see 
that  the head moves downwards and that  the upper body and the background 
are practically still. Also note that  some of the motion measurements in the 
background (mostly at the top and on the right), due to some form of inter- 
ference, indicate large motion. Due to the relative simplicity of the grey-level 
image, a region number of 20 is sufficient for the segmentation. The correct re- 
sult of the merging shows that  the robust technique has coped well with the 
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Fig. 16. "Foremam" 

erroneous measurements in the background. The calculated depth correctly re- 
flects the structure of the scene, which demonstrates that  the depth ordering 
also performs well for small motion. 

6 C o n c l u s i o n  

We have shown how morphological segmentation, combined with robust param- 
eter estimation techniques, can be used to segment the motion of a scene with 
multiple occluding objects. We have then presented a new technique that  per- 
forms depth ordering of the resulting image partition: the modelling error at the 
motion boundaries is used to indicate the occlusion relationship. 

The main advantage of this approach lies in the fact that  the motion has 
to be analyzed between only two frames to perform the depth ordering, unlike 
existing techniques [2, 6, 7] which require three frames. 

This becomes possible through the combination of the morphological seg- 
mentation, which provides precise contour placement, and the robust estimation, 
which indicates modelling errors due to occlusion. 

The effect that  this has on performance is twofold. It allows to deduce depth 
ordering even if the motion is very small and it provides high robustness. 

The use of a closed loop containing segmentation and motion estimation, as 
mentioned above, is a step towards more flexibility. A step towards more stability 
then consists of the integration of motion and depth information across several 
image frames. The information at time t can be used to initialize segmentation, 
robust motion estimation and depth ordering at time t + 1. All this information 
can then be accumulated over multiple frames which will allow a scene to be 
segmented correctly into objects even if, temporarily, no motion is present. 
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Fig .  17. "Claire" 
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