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Abstract 

Diffuse interreflections mean that surface shading and shape are related in ways 
that are difficult to untangle; in particular, distant and invisible surfaces may 
affect the shading field that one sees. The effects of distant surfaces are confined 
to relatively low spatial frequencies in the shading field, meaning that we can 
expect signatures, called shading primitives, corresponding to shape properties. 
We demonstrate how these primitives can be used to support the construction 
of useful shape representations. Approaches to this include testing hypotheses 
of geometric primitives for consistency with the shading field, and looking for 
shading events that are distinctive of some shape event. We show that these 
approaches can be composed, leading to an attractive process of representation 
that is intrinsically bottom up. This representation can be extracted from images 
of real scenes, and that the representation is diagnostic. 

1 Background 

Changes in surface brightness are a powerful cue to the shape of a surface; the 
study of extracting shape information from image shading starts with [12] and is 
comprehensively summed up in Brooks' book [13]. The approach views shading 
as a local effect; surface brightness is modelled as a product of a visibility term 
and a non-negative function of the Gauss map, leading to a partial differential 
equat ion-- the  image irradiance equation--which expresses the relationship be- 
tween surface geometry and image brightness. Shape from shading theories that  
view shading as a local effect are now widely agreed to be unsatisfactory, for three 
reasons: the local shading model omits the effects of diffuse interreflections, a 
source of substantial effects in the brightness of surfaces; the underlying shape 
representation, a dense depth map, contains excess detail for most recognition 
applications; and the necessary assumptions are unrealistically restrictive. New 
models of shape from shading can be obtained by changing either the type of 
shape representation sought in the shading field [9], or the model of shading [18, 
19, 16]. 
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Fig. 1. A patch with a frontal view of an infinite plane which is a unit distance away 
and carries a radiosity sin wx is shown on the left; this patch is small enough that its 
contribution to the plane's radiosity can be ignored, l / t h e  patch is slanted by a with 
respect to the plane, it carries radiosity that is nearly periodic, with spatial frequency 
wcos a. We refer to the amplitude of the component at this frequency as the gain of  
the patch. The graph shows numerical estimates of the gain for patches at ten equal 
steps in slant angle, from 0 to rr/2, as a function of spatial frequency on the plane. 
The gain falls extremely fast, meaning that large terms at high spatial frequencies must 
be regional effects, rather than the result of distant radiators. This is why it is hard to 
determine the pattern in a stained glass window by looking at the floor at foot of the 
window. 

1.1 D i s t a n t  sur faces  a n d  t h e i r  effects 

Very few techniques for extracting shape information from shading fields are 
robust to the effects of diffuse interreflections--some approaches appear in [28, 
21,27, 29]. A problem arises outside controlled environments, however, because 
there may be surfaces that  are not visible, but radiate to the objects in view (so 
cMled "distant surfaces"). Mutual illumination has a characteristic smoothing 
effect; as figure 1 shows, shading effects that  have a high spatial frequency and 
a high amplitude generally cannot come from distant surfaces. 

The extremely fast fall-off in amplitude with spatial frequency of terms due 
to distant surfaces (shown in figure 1) means that,  if one observes a high ampli- 
tude term at a high spatial frequency, it  is very  unlikely to have resulted f rom 
the effects o f  distant, passive radiators (because these effects die away quickly). 
This effect suggests that the widely established convention (e.g. [3, 14, 17]) of 
classifying effects in shading as due to reflectance if the spatial frequency is 
high ("edges") and the dynamic range is relatively low, and due to illumination 
otherwise, can be expanded. There is a mid range of spatial frequencies that  
are largely unaffected by mutual illumination from distant surfaces, because the 
gain is small. Spatial frequencies in this range cannot be "transmitted" by dis- 
tant  passive radiators unless these radiators have improbably high radiosity. As 
a result, spatial frequencies in this range can be thought of as regional properties,  
which can result only from interreflection effects within a region. 
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2 P r i m i t i v e s  

Object representation is a fundamental problem in recognition tasks. In partic- 
ular, one would like to have some ability to abstract objects--recognise them at 
a level above that  of specific instances. The classical approach to alleviating dif- 
ficulties with abstraction is to view recognition in terms of assemblies of stylised 
primitives. In this view, which has been espoused in a variety of forms [1, 2, 20, 
22], objects are represented as assemblies of shapes taken fl'om a collection of 
parametric families with "good" properties. A classical difficulty with this view 
of representation is that  it is hard to know what the primitives should be. 

One important  feature of geometric primitives is that their a p p e a r a n c e  is 
s t e r e o t y p e d .  In particular, the most useful form of primitive is one where it 
is possible to test an assembly of image features and say whether it is likely 
to have come from a primitive or not. A second feature of a useful primitive is 
that  it is s igni f icant .  For example, a cylinder is a significant property, because 
many objects are made of crude cylinders. A third useful property is r o b u s t -  
ness;  cylindrical primitives are quite easy to find even in the presence of some 
deformations. 

In the work described in [8], it was shown that  viewing objects as assemblies 
of primitives can be used successfully, if crudely, to find images containing horses. 
The program first finds the primitives--in this case, cylindrical body segments, 
which appear in an image as regions that  are hide-like in colour and texture and 
have nearly parallel and nearly straight sides--and then tries to form assemblies 
of the primitives that  are consistent with the animal's joint kinematics. Our horse 
finder has low recal l --about  15%--but  marks only 0.65% of pictures without 
horses, and has been extensively tested on a large set of images [7]. 

The weakness in this program lies in the fact that  there are so many sets 
of nearly-parallel, nearly-straight edges (potentially body segments) that ,  if the 
number is not reduced, the kinematic tests become overwhelmed. For the horse 
finder, this problem can be alleviated by requiring that  only segments that  have 
hide-like pixels in the interior could be body segments. This approach can be 
made more general, by considering the fact that  shading across a cylinder-like 
surface is quite constrained. 

2.1 S h a d i n g  primitives 

Traditional shape from shading requires an impractical local shading model to 
produce a dense depth map. For our purposes a dense depth map is heavily 
redundant-- instead,  we will concentrate on finding stylised events in the shad- 
ing field that  are strongly coupled to shape, which we call shading primitives. 
In [16], Koenderink observed that deep holes and grooves in surfaces have char- 
acteristic shading propert ies-- they are usually dark, because it is "hard" to get 
light into them. This is clearly an important  component of the appearance of 
surfaces. For example, the lines on human foreheads--geometrically so trivial 
that  they tend not to appear in depth maps- -a re  easily visible and used by 
humans for communication because they almost always have a small attached 
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shadow, which gives them high contrast. These shadows are largely independent 
of the details of the local shape of the surface--a deep groove will be dark, and 
the shape of the bot tom of the groove is irrelevant. The appearance of grooves 
iss tereotyped--grooves almost always appear in images as narrow, dark bars - -  
and so they are easily found. This combination of significance, robustness, and 
stereotypical appearance is precisely what is required from a primitive. 

There are two forms of test in which a shading primitive might appear. In 
the first case, one uses shading to test an hypothesis about shape; the test 
must be constructed to be robust to light reflected from distant surfaces, and to 
yield useful results. As we show, tests meeting these requirements can be built, 
because one knows what kind of shape is expected. In the second case, the shading 
is the primary object that establishes the hypothesis; for example, grooves have 
a characteristic appearance that  can be found using a template matching like 
approach. Typically, complex objects will require multiple tests, and we show in 
section 4 that  one can build composite representations using shading primitives. 

3 S h a d i n g  o n  a p r i m i t i v e  

Cylinders are natural primitives for programs that a t tempt  to find people or 
animals, like the horse-finding program above. The geometric approach to find- 
ing image regions that  could represent cylinders involves finding boundaries, 
constructing local symmetries between boundary points (as in [4, 13]) and then 
constructing collections of symmetries that have the same length and whose 
centers lie roughly on a straight line to which they are roughly perpendicular. 

In this case, exploiting shading is easy because there is already an hypothesis 
as to the underlying geometry (as in [10]). In particular, we can test the shading 
along a symmetry to see whether it is consistent with the shading across a limb. 

3.1 M e t h o d  

Testing whether the shading across a symmetry represents the shading across a 
limb cross-section requires a classifier of some form. To determine this classifier, 
we developed a simple geometric model of a limb cross-section, and then applied 
a simple shading model to the limb model to generate typical shading cross- 
sections. We then used these analytically determined shading cross-sections to 
train a classifier. Passing the segment under test to the classifier tells us whether 
the shading is consistent with that  on a limb. 

The geometrical model of a limb is approximately cylindrical, with a few 
variations. The cross-section of the limb is taken to be elliptical, with a randomly 
chosen aspect ratio, and the major  axis at any angle to the observer. Since limbs 
are certainly not perfectly elliptical in cross-section, we add a couple of bumps 
or grooves to the surface. Using our shading model, we calculate the shading 
distribution on this shape as in figure 2. It is these theoretical predictions of 
shading, rather than experimental data, which are used to train the classifier. 
However, the theoretical model does have some parameters, such as the range 
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of aspect ratios, and number and size of bumps, which were tuned to give a 
reasonable match to the experimental data. 

Fig. 2. Typical limbs from our model. In each case, the plot shows the upper cross- 
section of the limb, while the image below it shows the shading that will be result on a 
limb of that shape. The bumps on the surface are intended to capture muscle definition. 

To predict the shading on our geometrical limb model, we use the same 
shading model as in [11]. The radiosity at any point on the limb is modelled as 
the sum of two components: the first due to distant radiators, which is uniform 
(because any spatial frequency high enough to be non-uniform over the support 
of the cylinder was suppressed by the low gain at high spatial frequencies); and 
the second due to a single point source, modeled as a source at infinity. This is 
a version of a model suggested by Koenderink [15] and also used by Langer et 

a/.[181. 
Because the limb has translational symmetry, we can model the "sky" (dis- 

tant radiators) as an infinitely long half cylinder above the limb with its axis 
collinear with that  of the limb. We can then write the brightness at a point u 
on the limb as: 

B(u)  = ~-~ [sin(01 - Ou) - sin(Oo - 0~)] + Ep cos(Op - 0,,) 

where 01 and 00 are the polar angles of the edges of the unobscured sky (measured 
from the zenith), 0~ is the polar angle of the the normal at u, 0p is the polar angle 
of the point light source, and Ea and Ep are the brightnesses of the ambient and 
point light sources. This simple model allows us to predict the radiosity given a 
particular limb shape. 

In images, limbs appear in a variety of sizes. In order to compare limbs of 
different sizes, we linearly interpolate between the samples we have to create 
a cross section of a given width. We then project this cross section onto the 
most significant principal components of the positive training data, in order to 
generate a data  point in a lower-dimensional feature space. In addition to the 
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principal components,  we also consider the residual, a measure of the amount  
of variation in the signal which is not captured by the principal components.  
Signals similar to those yielding the principal components will be described fairly 
completely by the projection onto those principal components.  However, signals 
unlike the positive da ta  will not be described very well by the projection onto 
the principal components,  and the difference between the original signal and its 
projection onto the space of principal components will be quite large. It  is the 
energy of this difference which we call the residual. 

For our classifier, we trained a support  vector machine [5] using the projection 
onto principal components and the residual. In contrast to the use of SVMs in [24] 
and [23], we culled our positive training da ta  from the results of our theoretical 
shading model applied to the geometrical limb model. Negative training da ta  
consisted of randomly oriented lines selected from randomly chosen images. 

3.2  R e s u l t s  

In order to validate our geometric limb model, we compared the principal com- 
ponents of the images from the model, images of real limbs, and real images 
of things that  aren ' t  limbs. The principal components were ordered from most  
significant to least significant, and we then determined the matr ix  which trans- 
forms one set of principal components into another. The first n rows and columns 
of this matr ix  give the best map  from the first n principal components in the 
first set to the first n principal components in the second set. The nth  leading 
principal minor (the determinant  of this n x n matr ix)  indicates the reduction 
in volume of a polytope in the first subspace when projected onto the second 
subspace. If  the two subspaces are similar (so the n • n matr ix  is nearly a ro- 
tation) there will be very little reduction in volume, and the determinant  will 
be close to one. If  the subspaces are orthogonal, the polytope will collapse, and 
the determinant  will be close to zero. Figure 3(a) shows the first thir ty leading 
principM minors for the mappings between the three da ta  sets. While the nega- 
tives and positives cease to describe the same subspace after only a few principal 
components,  the theoretical and real positive da ta  have a very strong correlation 
through fifteen principal components.  This is a strong indication that  our theo- 
retical model is capturing the essential characteristics of shading on real limbs, 
because the principal components span the same space. 

Since we are using this classifier as a tool to discard cross-sections which are 
apparently not from a limb, we require the false negative rate to be low--while  
it is always possible to discard a section at a higher level, once discarded at a 
low level, it will be very difficult to retrieve. Thus, we choose a 5% false negative 
rate on real cross-sections, which allows the classifier to reject 57% of negatives. 
While this is certainly not perfect, this does represent a significant reduction in 
the number  of segments to be passed on for further analysis. 
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Fig. 3. The first thirty leading principal minors of the mappings between negative, real 
positive and theoretical positive data. The determinant is a measure of the similarity 
between the subspaces described by the first n principal components in each set. The 
positives are very similar through the first fifteen components, while the negatives differ 
significantly from both positive sets after only eight components. 

3.3 S h a d i n g  t e s t s  a s  a s y s t e m  c o m p o n e n t  

The contribution of any visual cue should be evaluated in the context of a larger 
task. We have proposed to use shading cues to evaluate the hypothesis that  a 
cylindrical primitive is present in a recognition system to find people or animals. 
It is natural to ask whether this improves the overall recognition process. It is 
difficult to give a precise answer to this question, because the learned predi- 
cates that  determine whether an assembly of segments represents a person or 
animal are currently extremely crude. This means that we have no measure of 
performance that  can be reliably assigned to any particular cause. 

However, it is possible to estimate the extent of the contribution that  testing 
shading makes. The standard problem with assembling symmetries is that  the 
process produces vast numbers of symmetries, which overwhelm later grouping 
stages. One measure of success for measurements of shading is that  they reduce 
this number of symmetries, without removing assemblies that  could represent 
limbs. Since we see a shading test as more likely to be helpful in understand- 
ing large image segments (obtained using, for example, Shi's [25] normalized 
cut method),  rather than in segmentation itself, we can apply this test on im- 
ages of isolated human figures. For each of 20 images showing human figures in 
quite complex poses, taken from [26], we measured the rate at which the shading 
test rejected symmetr ies  without losing body segments. To determine whether 
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Fig.4.  Over a test set of 20 images, symmetries are accepted by the shading test at 
a median rate o] 61~. (a) A typical image from our test set. Notice that there is 
muscle definition, hair and light shadowing on the body segments, and that segments 
shadow other segments. The other figures on the bottom illustrate our process. Edges 
are shown in figure (b); figure (c) shows all symmetries ]ound. Notice the large number 
o] symmetries,  and the spurious symmetries linking the legs. Figure (d) shows the 
symmetries that pass the shading test. Notice that the number of symmetries has gone 
down substantially, and that body segments are all represented. Figure (e) shows the 
segments manually determined to correspond to body segments; we have accepted that 
the arms, being straight, correspond to single long segments, and that one thigh is not 
visible as a segment, so we regard this output as containing all body segments. 

the test rejects important  symmetries, we identified by hand the human body 
segments (upper arm/leg, lower arm/leg and torso) which did not have corre- 
sponding image segments and were visible with clear boundaries in the image. 
The requirement for clear boundaries ensures that errors in edge detection are 
not ascribed to the shading test. While this test is notably subjective, it al- 
lows some assessment of the performance of the shading cue, which is generally 
good-- in  the presence of shadows, muscle definition and the like, about half (me- 
dian rejection rate is 39%) of the set of s y m m e t r i e s  in a given image is rejected. 
The median rate at which segments  are missed in an image is about one per two 
images; 10 of the images have no segments absent, five have one segment absent, 
and five have two absent. There appears to be some correlation with pose, which 
probably has to do with reduced contrast for body segments occluding other 
segments. 

These shading tests are currently being used in a program that  seeks to 
extract  a human figure from an image. The shading test eliminates a large num- 
ber of segments which are clearly not human limbs, without rejected significant 
numbers of actual limb segments. 
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4 Composite shading primitives 

In [11], we developed a technique for finding grooves and folds. We applied our 
shading model to a geometrical model of the shape, and used these theoretical 
predictions to train a support vector machine to recognize grooves or folds. In 
that  work, we were merely concerned with finding isolated shading primitives. 
However, difficult recognition tasks require rich representations (or, equivalently, 
multiple cues with multiple tests). It is therefore natural to compose tests for 
shading primitives. In this section, we demonstrate building a representation for 
a back as a near elliptical cylinder with a groove in it, by composing the tests 
for grooves and for limbs. 

4.1 Loc a l  P r o p e r t i e s  

After finding the groove and localising it, we determine its width. Once we know 
how much of the figure has been affected by the presence of the groove, we can 
discount that  part of the cross-section (which we do by "filling in" the groove) 
and can then determine whether the rest of the cross-section is consistent with 
the shading on a "limb". 

The centre of the groove is easily found by non-maximum suppression. Cur- 
rently, we only find the widths of vertical grooves, but it is easy to perform this 
search at arbitrary orientations, since the groove finder works at all orientations. 

We search for grooves from finest to coarsest scMe, linking response from 
scale to scale. Because the intensity pattern associated with a groove decays fairly 
smoothly at its boundaries, the response to a groove is essentially constant as the 
scale of the matching process increases, until the scale exceeds that  of the groove, 
when the response decays slowly (see figure 5(5)). As a result, by matching 
from finest to coarsest scale we can reject noise responses (which do not have 
corresponding matches at coarser scales) and estimate the width of the groove. 
We fit the groove response data  with two linear segments: the first, horizontal; 
and the second, the true line of best fit to the last values. The intersection 
between these lines gives us an estimate of the width of the groove. 

This procedure actually improves our groove detection ability. While the 
groove finder does respond to the edge of a figure, it responds equally well at 
all scales--since there is no groove, it never sees the edge of the groove (see 
figure 5(c)). This means that,  unlike real grooves, there will be no knee in the 
curve, allowing us to reject boundary points. 

Once we have found a groove and determined its width, we can discount its 
effect on the shading of the back. For simplicity, we set the intensity values within 
the groove by linearly interpolating betwen the intensity values on either side of 
the groove, which gives an effect rather like filling in the groove (figure 6). While 
there are probably better ways of interpolating over the groove--one might use 
the expectation maximisation [6] algorithm to fill in this "missing" da ta - -ou r  
approach gives perfectly acceptable results. In fact, in our current implementa- 
tion, we have not actually found it necessary to discount the effect of the grooves. 
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Fig. 5. The process of finding the width of a groove. (a) The intensity values perpen- 
dicular to the line of the groove. (b) The response of the groove detector at different 
scales to the groove at x = 147 in (a). The response is constant for small groove sizes, 
and then starts to drop when the size of the detector matches the size of the groove. 
We fit two line segments to the data, and their intersection gives the size of the groove. 
The calculated extent of the groove is shown by the bar in (a). (c) The response of the 
groove detector to the putative groove at x ---- 68 in (a). In fact, this is simply the edge of 
the figure, and not a groove. Thus, the groove detector has an almost constant response 
over all widths. Any putative groove with this signature is rejected. 

However, we expect that as our tests become more accurate, it will be necessary 
to account for the presence of the groove in the shading pattern across the back. 

R e s u l t s  Figure 7 shows three typical images in the left column. In the middle 
column, the grey sections indicate cross-sections with limb-like shading. The top 
image, of a back, gives a positive response for most of the length of the back. The 
segments containing hair are not considered to be limb-like. The middle image is 
of a very flat back, with almost uniform shading, which therefore does not match 
the model of shading on a cylinder. It may be possible to extend our model to 
capture this behaviour as well. The bot tom image is a fishing lure, which has 
many sections with limb-like shading, since its shape is roughly cylindrical, with 
a groove-like reflectance pattern in the centre. 

4.2 G l o b a l  p r o p e r t i e s  

As we have seen, the shading field along a single cross-section can give us some 
indication as to whether the cross-section comes from a back. However, it is a 
much more powerful test to look at the global structure, and compare the spatial 
relationship of grooves and limb symmetries. 

M e t h o d  Because the groove detector is sensitive to orientation, we run the 
groove detector over the image at different orientations. Currently, we are do- 
ing this at only one scale. We find the centres of the groove by finding a high 
response, and stepping along the groove in the direction corresponding to the 
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Fig.6 .  The process of groove detection and interpolation. (a) The original image. (b) 
Grooves in the image. The centres of the grooves are marked in black, and the widths are 
marked in grey. Currently, we do not follow the groove down the back while searching 
for widths, but it is expected that this process will allow the groove detector to jump the 
gaps. (c) The image with grooves filled in. The intensities at either side of the groove 
are interpolated linearly across the width of the groove. 

orientation with the highest response. Repeating this process until the response 
drops below a threshold Mlows us to trace out potential  grooves. This process 
yields many  potential  grooves, only some of which correspond to the spine. To 
remove spurious grooves, we trained a support  vector machine on two images, 
where grooves corresponding to the spine are marked as positives, and all others 
are marked as negatives. The features we used in the classifier were the number  
of points in the groove, the ratio of the number  of points to the distance between 
the endpoints, average deviation from a straight line, and average difference be- 
tween the orientation at a given point and the tangent to the groove3 

Using the symmet ry  finder discussed in subsection 3.3, we now determine 
which pairs of possible spine grooves and symmet ry  axes are consistent. The 
spine should be approximately parallel to the sides of the back, close to the 
symmet ry  axis, and have a region of support  overlapping with the region of 
symmetry.  

R e s u l t s  The spine groove classifier is effective at extracting grooves which may  
correspond to the spine. Out of ten images, it fails to find the spine in three cases, 
because the groove making up the spine is incorrectly connected to other grooves 
(see figure 9(a)). However, a better  groove following procedure--one tha t  tries to 

x The orientation is determined by the maximum response at a given point, while the 
flow of the groove is determined by the maximum response at surrounding points. 
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Fig. 7. Testing cross-sections locally for shading patterns. (a) The original image. (b) 
Horizontal cross-sections o] (a) with limb-like shading patterns are marked in grey. 
The breaks in the responses could be corrected by using some sort of hysteresis in the 
matching process. (c) Grooves in the image. The centre of each groove is marked in 
black, and the groove extent is marked in grey. The top row shows a back with a shading 
pattern consistent with the model. The middle row shows a shading pattern inconsistent 
with the model--the back is very flat, which creates very little variation in the intensity 
across the image. The bottom row shows a fishing lure, which has a shading pattern 
somewhat similar to many backs. 
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Fig. 8. By using spatial reasoning, we can find which grooves are consistent with the 
groove due to the spine down the middle of the back. Top row: The original image. 
Bottom row: All grooves are marked with a dotted line. Grooves which could be spine 
grooves are marked with dashed lines. Spine grooves consistent with the axis of symme- 
try are solid lines. The axis of symmetry, with its length and width, are described by 
the rectangle. 

find straight grooves--should allow us to find the spine in these cases. In many 
cases, the classifier picks up the sides of the figure, since these are reasonably 
straight, and, out of context, are similar to spine grooves. However, these are 
rejected using spatial reasoning. 

Overall, the conjunction of the groove primitive and the limb primitive works 
well. Out of seven test images in which we can find the spine, we end up with 
a single consistent axis of symmetry in four cases (figure 8), and two possible 
axes of symmetry in two more cases. In the last case, a single spurious horizontal 
groove allows four symmetry axes to pass the consistency tests, in addition to 
the two symmetry axes consistent with the actual spine groove (figure 9(d)). 
These horizontal symmetries, however, may be considered an artefact of the 
airbrushing of the image. 

Out of four control images, two have one possible spine groove, which is not 
consistent with any axis of symmetry. In the dice example (figure 10), the edge 
of one die is marked as a possible groove, and is consistent with the symmetry  
formed by two parallel edges. However, a test that  compares the orientations 
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F|g.  9. Examples of problems with the symmetry groove reasoning. Image (a) has too 
many other grooves, making it too dipficult to find the spine groove. Image (c) has many 
spurious symmetries (probably due to airbrushing) and one spurious horizontal groove, 
causing several spurious symmetry-groove pairs. This could be rejected by examining 
how the shading pattern changes as one moves up and down the groove. Note that the 
spine grooves are marked, with the symmetry axis that would be consistent with that. 

of the grooves as compared to the orientation of the symmetry cross-sections 
should reject such axis-groove pairs- -a  true groove will have dark and light on 
opposite sides from the dark and light sides from the overall shading pattern.  In 
this case, they are on the same side, so we should be able to reject the image. 

5 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

In this paper, we have demonstrated a practical use for a recognition technique 
based on shape from shading. Using a geometrical model of a limb, and a simple 
shading model, we are able to reject a large number of possible limb segments 
suggested by a symmetry finder. As a part of a program which finds geometric 
primitives and pieces them together to construct a body, this performs the valu- 
able task of reducing the number of image segments which need to be considered 
as part  of the kinematic chain. 

Secondly, we suggested that  it is possible to compose different shading prim- 
itives in order to create a more powerful decision mechanism. We showed the 
feasibility of composing the groove primitive with the limb primitive to get a 
clear description of a back. 

The shading model does not take into account the effects of shadows cast by 
other objects. In general, it is exceedingly difficult to account for such shadows, 
since the object casting the shadow will not always be visible. However, the 
model is robust to the effects of some shadows. In figure 4, the shading test 
does accept even limb segments which are partially in shadow from other limb 
segments. 

In its present form, our shading model assumes that  the reflectance of the 
surface is approximately constant. However, the essential characteristics of shad- 
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Fig. 10. Control images. The edge of the die is marked as a possible groove, and is 
consistent with the symmetries found from the other edges of the die. By testing the 
orientations of the groove and symmetry axis, such false positives should be rejected. 
While the dustpan has a single groove which might be a spine, it is not in the correct 

position with respect to other edges in the images, and is therefore inconsistent with an 
image of a back. 

ing will remain across reflectance boundaries, so, in principle, there is no reason 
why we could not find, for example, a lycra-clad arm (since lycra is tight, the 
shape of the arm wearing lycra will be the same as the naked arm). Because 
changes in reflectance tend to be high-frequency changes, we can isolate these 
changes and concentrate on the mid-frequency shading effects as cues to surface 
shape. 

Up to this point, we have demonstrated three shading primitives: folds, 
grooves, and limbs. We would like to extend the "shading dictionary" to in- 
clude many more primitives which may be combined together to create useful, 
abstract representations of shape to aid in object recognition. Many shading 
primitives likely have very significant spatial relationships, which we would like 
to exploit. For example, it is relatively rare to see a single fold in clothing worn 
by people--typically there are several folds. (See figure 11.) Furthermore, these 
folds do not come in arbitrary orientations; instead, they tend to be approxi- 
mately parallel. Because these spatial relationships between primitives exist, we 
envision a robust description of objects in terms of these groups of primitives. 

The suggestion of extending the shading dictionary to include more primitives 
raises the question about what kinds of things are useful primitives. A useful 
primitive has a distinctive shading pattern which results from some class of 
geometric shapes. Furthermore, once one has selected a primitive, how can one 
best model it? The geometric models for folds, grooves and limbs all had several 
parameters which were tuned to give better performance. It is unclear how to 
tune the parameters for a given model to improve the performance. 

As in all classification problems, the problem of feature selection is a dif- 
ficult one. It is not clear that we have chosen the best features in this work, 
and the question remains as to how to select features that  will best describe a 
given shading primitive. With the set of features we are currently using, when 
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Fig .  11. Folds in clothing have a very characteristic structure, which can be predicted 
from theories of buckling of shells. By grouping sets of folds with common directions, 
we can obtain some clue as to whether a clothed person may be found in an image. The 
figure on the right shows one of about twenty groups of parallel folds that are automat- 
ically extracted from the image. Note that the extent of the folds roughly corresponds to 
the region occupied by the torso in the image. 

the  classifier gives unexpec ted  resul ts  on given da t a ,  i t  can be very difficult  to  
u n d e r s t a n d  this  misclass i f ica t ion.  
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