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A b s t r a c t .  The aim of this paper is to explore intrinsic geometric meth- 
ods of recovering the three dimensional motion of a moving camera from 
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and the differential approach are revealed through a parallel development 
of their analogous motion estimation theories. 
We begin with a brief review of the (discrete) essential matrix approach, 
showing how to recover the 3D displacement from image correspon- 
dences. The space of normalized essential matrices is characterized ge- 
ometrically: the unit tangent bundle of the rotation group is a double 
covering of the space of normalized essential matrices. This character- 
ization naturally explains the geometry of the possible number of 3D 
displacements which can be obtained from the essential matrix. 
Second, a differential version of the essential matrix constraint previously 
explored by [19, 20] is presented. We then present the precise characteri- 
zation of the space of differential essential matrices, which gives rise to a 
novel eigenvector-decomposition-based 3D velocity estimation algorithm 
from the optical flow measurements. This algorithm gives a unique solu- 
tion to the motion estimation problem and serves as a differential coun- 
terpar t  of the SVD-based 3D displacement estimation algorithm from 
the discrete case. 
Finally, simulation results are presented evaluating the performance of 
our algorithm in terms of bias and sensitivity of the estimates with re- 
spect to the noise in optical flow measurements. 
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1 I n t r o d u c t i o n  

The problem of estimating structure and motion from image sequences has been 
studied extensively by the computer vision community in the past decade. Vari- 
ous approaches differ in the types of assumptions they make about the projection 
model, the model of the environment, or the type of algorithms they use for es- 
timating the motion and/or structure. Most of the techniques try to decouple 
the two problems by estimating the motion first, followed by the structure es- 
timation. In spite of the fact that the robustness of existing motion estimation 
algorithms has been studied quite extensively, it has been suggested that the fact 
that the structure and motion estimation are decoupled typically hinders their 
performance [12]. Some algorithms address the problem of motion and structure 
(shape) recovery simultaneously either in batch [16] or recursive fashion [12]. 

The approaches to the motion estimation only, can be partitioned into the 
discrete and differential methods depending on whether they use as an input 
set of point correspondences or image velocities. Among the efforts to solve this 
problem, one of the more appealing approaches is the essential matrix approach, 
proposed by Longuet-Higgins, Huang and Faugeras et al in 1980s [7]. It shows 
that the relative 3D displacement of a camera can be recovered from an intrin- 
sic geometric constraint between two images of the same scene, the so-called 
Longuet-Higgins constraint (also called the epipolar or essential constraint). Es- 
timating 3D motion can therefore be decoupled from estimation of the structure 
of the 3D scene. This endows the resulting motion estimation algorithms with 
some advantageous features: they do not need to assume any a priori knowledge 
of the scene; and are computationally simpler (comparing to most non-intrinsic 
motion estimation algorithms), using mostly linear algebraic techniques. Tsai 
and Huang [18] then proved that, given an essential matrix associated with the 
Longuet-Higgins constraint, there are only two possible 3D displacements. The 
study of the essential matrix then led to a three-step SVD-based algorithm for 
recovering the 3D displacement from noisy image correspondences, proposed in 
1986 by Toscani and Faugeras [17] and later summarized in Maybank [11]. 

Being motivated by recent interests in dynamical motion estimation schemes 
(Soatto, Frezza and Perona [14]) which usually require smoothness and regularity 
of the parameter space, the geometric property of the essential matrix space is 
further explored: the unit tangent bundle of the rotation group, i.e. T1(S0(3)),  
is a double covering of the space of normalized essential matrices (full proofs are 
given in [9]). 

However, the essential matrix approach based on the Longuet-Higgins con- 
straint only recovers discrete 3D displacement. The velocity information can only 
be approximately obtained from the inverse of the exponential map, as Soatto 
et al did in [14]. In principle, the displacement estimation algorithms obtained 
by using epipolar constraints work well when the displacement (especially the 
translation) between the two images is relatively large. However, in real-time 
applications, even if the velocity of the moving camera is not small, the rela- 
tive displacement between two consecutive images might become small due to 
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a high sampling rate. In turn, the algorithms become singular due to the small 
translation and the estimation results become less reliable. 

A differential (or continuous) version of the 3D motion estimation problem 
is to recover the 3D velocity of the camera from optical flow. This problem has 
also been explored by many researchers: an algorithm was proposed in 1984 by 
Zhuang et al [20] with a simplified version given in 1986 [21]; and a first order 
algorithm was given by Waxman et al [8] in 1987. Most of the algorithms start 
from the basic bilinear constraint relating optical flow to the linear and angular 
velocities and solve for rotation and translation separately using either numer- 
ical optimization techniques (Bruss and Horn [2]) or linear subspace methods 
(Heeger and Jepson [3,4]). Kanatani [5] proposed a linear algorithm reformu- 
lating Zhuang's approach in terms of essential parameters and twisted flow. 
However, in these algorithms, the similarities between the discrete case and the 
differential case are not fully revealed and exploited. 

In this paper, we develop in parallel to the discrete essential matrix approach 
developed in the literature, as a review see Ma et al [9] or Maybank [11], a dif- 
ferential essential matrix approach for recovering 3D velocity from optical flow. 
Based on the differential version of the Longuet-Higgins constraint, so called 
differential essential matrices are defined. We then give a complete characteri- 
zation of the space of these matrices and prove that there exists exactly one 3D 
velocity corresponding to a given differential essential matrix. As a differential 
counterpart of the three-step SVD-based 3D displacement estimation algorithm, 
a four-step eigenvector-decomposition-based 3D velocity estimation algorithm is 
proposed. 

2 D i s c r e t e  E s s e n t i a l  M a t r i x  A p p r o a c h  R e v i e w  

We first introduce some notation which will be frequently used in this paper. 
Given a vector p = (pl, p2, p3) T �9 IR3, we define/~ �9 so(3) (the space of skew 
symmetric matrices in IR 3x3) by: (0 

/5 = P3 0 --Pl �9 

-P~ Pl 0 
(1) 

It then follows from the definition of cross product of vectors that, for any two 
vectors p, q ERa: p • q = 15q. The matrices of rotation by 0 radians about y-axis 
and z-axis are respectively denoted by: 

( c o s ( 0 )  0 s i n ( 0 ) ) ( c ~  
R y ( O ) =  0 1 0 , R z ( O ) =  sin(0) cos(0) . (2) 

- sin(0) 0 cos(0) 0 

The camera motion can be modeled as a rigid body motion in N a. The 
displacement of the camera belongs to the special Euclidean group SE(3): 

SE(3) = {(p,R):  p E ]R 3,R e SO(3)} (3) 
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where SO(3) is the space of 3 • 3 rotation matrices (unitary matrices with 
determinant +1) on I~. An element g = (p, R) in this group is used to represent 
the 3D translation and orientation (the displacement) of a coordinate frame Fc 
attached to the camera relative to an inertial frame which is chosen here as the 
initial position of the camera frame Fo. By an'~/buse of notation, the element 
g = (p, R) serves both as a specification of: the configuration of the camera 
and as a transformation taking the coordinates,df a point from Fc to Fo. More 
precisely, let qo, qc E ~3 be the coordinates o f  a point q relative to frames Fo 
and Fc, respectively. Then  the coordinate  transformation between qo and qc is 
given by: 

qo = Rqc-+.p. (4) 

In this paper, we use bold letters to denote quantities associated with the 
image. The imagevf  a point q E ~3 in the scene is then denoted by q E ~3. As the 
model of image formation, we consider both spherical projection and perspective 
projection. For the spherical projection, we simply choose the imaging surface to 
be the unit sphere: S 2 = {q 6 ~ 3 :  Ilqll=-- i}, where the norm I1" II always means 
2-norm unless otherwise stated. Then the~spherical,projection is defined by the 
map zr8 from ~3 to $2: 

q 

zrs: q ~-~.q= [Iqll" 

For the perspective projection, the imaging surface is chosen to be the plane of 
unit distance away from the optical center. The perspective projection onto this 
plane is then defined by the m a p  Trp f rom ~3 to the projective plane ~ C ~3: 

7rp : q = (ql, q2, q3) T ~ q = (q---l, q_22,1)T. 
q3 q3 

The approach taken in this paper on ly  exploits the intrinsic geometric re- 
lations which are preserved by both projection models. Thus, theorems and 
algorithms to be developed are true for both cases. We simply denote both ~rs 
and 7rp by the same letter ~r. The image of the point q taken by the camera at the 
initial position then is qo = ~r(qo),. and the image of the same point taken at the 
current position is qc = ~r(qc). T h e  two corresponding image points qo and qc 
have to satisfy an intrinsic geometric constraint, the so-called Longuet-Higgins 
or epipolar constraint [7]: 

qT~ RT pqo =- O. (5) 

The matrices which have the form E = RTp with R E SO(3) and/~ E so(3) play 
an important  role in recovering the displacement (p, _R). Such matrices are called 
essential matrices; and the set of all essential matrices is called the essential 
space, defined to be 

E = {RS I R E SO(3) ,S  E so(3)}. (6) 

The following theorem is a stronger version of Huang and Faugeras' theorem 
and gives a characterization of the essential space: 
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Theorem 1. (Characterization of the Essential Matrix) 
A non-zero matrix E is an essential matrix if  and only if  the singular value 
decomposition (SVD) of E: E = U ~ V  T satisfies: Z = diag{A, A, 0} for some 
A > 0 and U, V E SO(3). 

The condition U, V E SO(3) was not in the original theorem given by Huang 
or Faugeras, but it is convenient for the following theorem which shows how to 
explicitly recover the displacement from an essential matrix. One may refer to 
the full paper [9] for the proof of this extra condition. 

Theorem 2. (Uniqueness  of the Displacement Recovery from the Es- 
sen t i a l  Matrix) 
There exist exactly two 3D displacements g : (p, R) E SE(3) corresponding 
to a non-zero essential matrix E E E. Further, given the SVD of the matrix 
E = U Z V  T, the two displacements (p, R) that solve E = RT15 are given by: 

RT 7r v T  7r ~ T (R ,151) = (U , VRz(+ ) v ) 

RT zr v T  ?r ~ T (RT,152) = (U z ( - - ~ )  , V R z ( - - ~ )  V ). (7) 

This theorem is a summary of results presented in [18, 14]. A rigorous proof of 
this theorem is given in [9]. A natural consequence of Theorem 1 and 2 is the 
three-step SVD-based displacement estimation algorithm proposed by Toscani 
and Faugeras [17], which is summarized in [11] or [9]. 

Motivated by recent interests in dynamic (or recursive) motion estimation 
schemes [14], differential geometric properties of the essential space E have been 
explored. Since the Longuet-Higgins condition is an homogeneous constraint, the 
essential matrix E can only be recovered up to a scale factor. It is then customary 
to set the norm of the translation vector p to be 1. Thus the normalized essential 
space, defined to be 

E1 = {RS I .R SO(3), S = 15, Ilpll = 1}, (8) 

is of particular interest in motion estimation algorithms. 

Theorem 3. (Characterization of the N o r m a l i z e d  Essen t i a l  Space) 
The unit tangent bundle o/ the rotation group SO(3), i.e. T1(S0(3)) ,  is a double 
covering of the normalized essential space El, or equivalently speaking, E1 -- 
T1(SO(3))/Z2.  

The proof of this theorem, as well as a more detailed differential geometric char- 
acterization of the normalized essential space is given in [9]. As a consequence 
of this theorem, the normalized essential space E1 is a 5-dimensional connected 
compact manifold embedded in ]I~ 3• This property validates estimation algo- 
rithms which require certain smoothness and regularity on the parameter space, 
as dynamic algorithms usually do. 
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3 Dif ferent ia l  Essent ia l  M a t r i x  A p p r o a c h  

The differential case is the infinitesimal version of the discrete case. To reveal 
the similarities between these two cases, we now develop the differential essen- 
tial matrix approach for estimating 3D velocity from optical flow in a parallel 
way as developed in the literature for the discrete essential matrix approach for 
estimating 3D displacement from image correspondences [9, 11]. After deriving a 
differential version of the Longuet-Higgins constraint, the concept of differential 
essential matrix is defined; we then give a thorough characterization for such 
matrices and show that  there exists exactly one 3D velocity corresponding to a 
non-zero differential essential matrix; as a differential version of the three-step 
SVD-based 3D displacement estimation algorithm [11], a four-step eigenvector- 
decomposition-based 3D velocity estimation algorithm is proposed. 

3.1 Differential Longuet-Higgins Constraint 

Suppose the motion of the camera is described by a smooth curve g(t) = 
(p(t), R(t))  �9 SE(3). According to (4), for a point q attached to the inertial frame 
Fo, its coordinates in the inertial frame and the moving camera frame satisfy: 
qo = R(t)qc(t) +. p(t). Differentiating this equation yields: qc = - R T R q c  - RT[9. 

Since - R T R  �9 so(3) and -RT/b �9 ]R 3 (see Murray, Li and Sastry [13]), we 
may define w = (031, W2,033) T �9 I~ 3 and v = (vl, v2, v3) T �9 ~a  to be: 

& = - R T R ,  v=--RT[9 .  (9) 

The interpretation of these velocities is: -w  is the angular velocity of the camera 
frame F~ relative to the inertial frame Fi and - v  is the velocity of the origin of 
the camera frame Fc relative to the inertial frame Fi. Using the new notation, 
we get: 

0~ = ~q~ + v. (10) 

From now on, for convenience we will drop the subscript c from qc. The nota- 
tion q then serves both as a point fixed in the spatial frame and its coordinates 
with respect to the current camera frame Ft. The image of the point q taken by 
the camera is given by projection: q = lr(q), and it's optical flow u, u = cl �9 1R3. 
The following is the differential version of the Longuet-Higgins constraint, which 
has been independently referenced and used by many people in computer vision. 

Theorem 4. (Differential Longuet-Higgins Constraint) 
Consider a camera moving with linear velocity v and angular velocity w with 
respect to the inertial frame. Then the optical flow u at an image point q satisfies: 

(uT,qT) ( : )  q = 0 (11) 

where s is a symmetric matrix defined by s := �89 + ~d~) �9 ]~3• 
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Proof. From the definition of the map ~r's, there exists a real scalar function A(t) 
([Iq(t)ll or q3(t), depending on whether the projection is spherical or perspective) 
such that: q = Aq. Take the inner product of the vectors in (10) with (v x q): 

(tT (v • q) = (&q + v)T (v X q) = qT &T +q. (12) 

Since q = i q  + A~I and qT(v • q) = 0, from (12) we then have: A~lw~q - 
AqT&T~q = 0. When A r 0, we have: u T ~ q + q W & ~ q  -- 0. For any skew 
symmetric matr ix A E ]~3• qTAq = 0. Since �89 - ~dJ) is a skew symmetric 
matrix, qT�89 _ ~&)q = qTsq _ q T ~ q  = 0. Thus, qTsq = qT~b~q. We then 
have: uT~)q q- qT sq =-- O. 

3.2 Character iza t ion  of  the  Differential  Essent ia l  Matr ix  

We define the space of 6 • 3 matrices given by: 

+ ~ )  ~ , v E ~ 3  C~6X3. (13) 

to be the differential essential space. A matrix in this space is called a differential 
essential matrix. Note that  the differential Longuet-Higgins constraint (11) is 
homogeneous in the linear velocity v. Thus v may be recovered only up to a 
constant scale. Consequently, in motion recovery, we will concern ourselves with 
matrices belonging to normalized differential essential space: 

+ ~05) w E N a, v E C 

The skew-symmetric part ~ of a differential essential matr ix  simply corre- 
sponds to the velocity v. The characterization of the (normalized) essential ma- 
trix only focuses on the characterization of the symmetric part of the matrix: 
s = �89 + ~)&). We call the space of all the matrices of such form the special 
symmetric space: 

A matr ix  in this space is called a special symmetric matrix. The motion esti- 
mation problem is now reduced to the one of recovering the velocity (~o, v) with 
w E IRa and v E S 2 from a given special symmetric matrix s. 

The characterization of special symmetric matrices depends on a characteri- 
zation of matrices in the form: dJ~ E IR ax3, which is given in the following lemma. 
This lemma will also be used in the next section to prove the uniqueness of the 
velocity recovery from special symmetric matrices. Like the (discrete) essential 
matrices, matrices with the form ~ are characterized by their singular value 
decomposition (SVD): c?~? = U Z V  T, and moreover, the unitary matrices U and 
V are related. 
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L e m m a  1. A matrix Q E ~3• has the form Q = d;~ with w E ~3, v E S 2 if 
and only if  the SVD of Q has the form: 

Q = - V R y  (O)diag{A,)t cos(P), O)V T (16) 

for some rotation matrix V E SO(3). Further, )t = Ilwl] and cos(0) = wTv/)t.  

Proof. We first prove the necessity. The proof follows from the geometric mean- 
ing of ~b~): for any vector q E ~3, ~b~q = w • (v • q). Let b E S 2 be the unit vector 
perpendicular to both w and v: b = ~ •  (ifv xw = 0, b is not uniquely defined. 
In this case, pick any b orthogonal to v and w, then the rest of the proof still 
holds). Then w = Aeb~ for some A E ~+  and 0 E ~ (according this definition, 
is the length of w; 0 is the angle between w and v, and 0 < 0 < 7r). It is direct 

^ l r  
to check that  if the matr ix  V is defined to be: V = (eb-~v, b, v). Q has the form 
given by (16). 

We now prove the sufficiency. Given a matr ix Q which can be decomposed 
in the form (16), define the unitary matr ix U = - V R y ( O )  E 0(3) .  For matr ix  
Za = diag{0-, 0-, 0} with 0- E ~ ,  it is direct to check that  matrices R z ( + ~ ) Z o  
and R z ( - ~ ) Z o  are skew matrices. So WRz(-4-~)ZoW T are also skew for any 
W E 0(3) .  Let & and ~ given by the formulae: 

~r T ~r T 
5~ = U R z ( + ~ ) ~ x U  , ~ = V R z ( q - ~ ) Z 1 V  (17) 

where E;, = diag{A, A, 0} and E1 = diag{1, 1,0}. Then: 

T ~r T ~r V ( •  T = vnz(• Vnz(• = unz(• 

= Udiag{)t, A cos(P), O}V T = Q. (18) 

Since w and v have to be, respectively, the left and the right zero eigenvectors 
of Q, the reconstruction given in (17) is unique. 

The following theorem gives a characterization of the special symmetric ma- 
trix. 

T h e o r e m  5. ( C h a r a c t e r i z a t i o n  o f  t h e  Spec ia l  S y m m e t r i c  M a t r i x )  
A matrix s E ]~3X3 is a special symmetric matrix if  and only if  s can be di- 
agonalized as s = V ~ V  T with V E SO(3) and: ~ = diag{0-~,0-2,0-3}, with 
0" 1 > 0, 0"3 <~ 0 and 0-2 = 0-1 + 0-3. 

Proof. We first prove the necessity. Suppose s is a special symmetric matrix,  
there exist ~ E 1t~ 3, v E S 2 such that s = 1(~b9 + 9~b). Since s is a symmetric 
matrix,  it is diagonalizable, all its eigenvalues are real and all the eigenvectors 
are orthogonal to each other. It then suffices to check its eigenvalues satisfy the 
given conditions. 

Let the unit vector b and the rotation matr ix  V be the same as in the proof 
of Lemma 1, so are 0 and 7. Then according to Lemma 1: 

= -Vnv(0)diag{ , cos(P), 0}V T 
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Since (~?~)T _ vo3, it yields 

1 ( - R y  (0)diag{~, ~ cos(P), 0} - diag{~, ~ cos(P), 0}R~(8))  V ~ s=-~V 

Define the matr ix  D(A, 8) r It~ 3• to be 

D(A, 8) = - R y  (O)diag{A, A cos(P), 0} - diag{A, A cos(P), 0}RT-(8) 

(_ CoS,0, 0 S o,0, ) 
= A - 2  cos(O) . (19) 

\ sin(O) O 

Directly calculating its eigenvalues and eigenvectors, we obtain that  

x diag { A ( 1 -  cos(0)) ,-2Acos(0),  A ( - 1 - c o s ( P ) ) }  R T ( 2 - 2 )  

% 

(20) 

Thus s = �89 O)V T has eigenvalues: 

{l (l_cos/0/t, / 1t 
which satisfy the given conditions. 

We now prove the sufficiency. Given s = Vldiag{o.1, o.2, o'a}V~ with o.1 >_ 
0, o.3 _< 0 and o'2 = o'1 + o'3 and V~ E S0(3) ,  these three eigenvalues uniquely 
determine A, 0 E IR such that  the o.i's have the form given in (21): 

A = o.1 - o.3, A > O 
0 = arccos(-o'2/~),  0 E [o, ~] 

Define a matr ix  V E SO(3) to be V = V1R T (3 - ~)" Then s = �89 O)V T. 
According to Lemma 1, there exist vectors v E S 2 and w E I~ 3 such that  &9 = 

'(&~ + ~ )  = �89 ~ = s. - V R y  ( O)diag{ A, A cos(P), O } V T. Therefore, 

3.3 U n i q u e n e s s  o f  3D V e l o c i t y  R e c o v e r y  f r o m  t h e  Spec ia l  
S y m m e t r i c  M a t r i x  

Theorem 5 is given in Kanatani [6] as exercise 7.12. However, we are going to 
use this property and its constructive proof to propose a new motion recovery 
algorithm. This algorithm is based upon the following theorem whose proof 
explicitly gives all the possible w's and v's which can be recovered from a special 
symmetric matrix. 

T h e o r e m  6. ( U n i q u e n e s s  o f  t h e  V e l o c i t y  R e c o v e r y  f r o m  t h e  S p ec i a l  
S y m m e t r i c  M a t r i x )  
There exist exactly four 31) velocities (w, v) with w E I~ 3 and v E S 2 correspond- 
ing to a non-zero special symmetric matrix s E S. 
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Proof. Suppose (col, Vl) and (co2, v2) are  both solutions for s = -}(co~? + ~co), we 
have: rico1 + co1~?1 = b2co2 + co2~2. From Lemma 1, we may write: 

col?)I = -V1Ry(O1)diag{Al , /~1  cos(01), 0 ) Y ?  

co2v2 = - V2 R y  ( 02 )diag { A2 , A2 cos(02), 0) V T . (22) 

Let W = vTv2  E SO(3), then: D(.,~I, 01) ---- WD(A2,02)W T. Since both sides 
have the same eigenvalues, according to (20), we have: A1 = ;~2,02 = 01. We 
then can denote both 01 and 02 by 0. It is direct to check that  the only possible 
rotation matrix W which satisfies the preceding equation is given by I3x3 or: 

o  in,O )(cos,O, O-S o,O  1 
- 1  0 or 0 - 1  . 

sin(O) 0 cos(O) -sin(O) 0 - c o s ( O) ]  
(23) 

From the geometric meaning of V1 and V2, all the cases give either col?)I -~ co2V2 

or co1~1 = v2co2. Thus, according to the proof of Lemma 1, if (w, v) is one solution 
and ~oiJ = Udiag{A, A cos(0), 0}V T, then all the solutions are given by: 

= URz(+2)S~,UT , 
7r T 

co = V R z ( + - ~ z X v  
, , 2  / 

Y 7r ~ =  R z ( + ~ ) S I V T ;  

i; = URz( '4-2)~IUT 

where Zx = diag{A, A, 0} and Z1 = dia9{1, 1, 0}. 

(24) 

Given a non-zero differential essential matrix E E s its special symmetric 
part gives four possible solutions for the 3D velocity (w, v). However, only one 
of them has the same linear velocity v as the skew-symmetric part of E does. 
We thus have: 

Theorem 7. ( U n i q u e n e s s  o f  Ve loc i ty  R e c o v e r y  f r o m  t h e  D i f f e r en t i a l  
Essential Matrix) 
There exists only one 31) velocity (w, v) with co E ]~3 and v E ]R 3 corresponding 
to a non-zero differential essential matrix E E g'. 

In the discrete case, there are two 3D displacements corresponding to an 
essential matrix. However, the velocity corresponding to a differential essential 
matrix is unique. This is because, in the differential case, the twist-pair ambiguity 
(see Maybank [11]), which is caused by a 1800 rotation of the camera around 
the translation direction, is avoided. 

It is clear that  the normalized differential essential space g~ is a 5-dimensional 
differentiable submanifold embedded in ]R 6 x 3. Further considering the symmetric 
and anti-symmetric structures in the differential essential matrix, the embedding 
space can be naturally reduced from IR 6x3 to ]R 9, This property is useful when 
using estimation schemes which require some regularity on the parameter space, 
for example, the dynamic estimation scheme proposed by Soatto et al [14]. 
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3.4 A l g o r i t h m  

Based on the previous study of the differential essential matr ix,  in this section, 
we propose an algorithm which recovers the 3D velocity of the camera  from a 
set of (possibly noisy) optical flow vectors. 

(:) Let E = E s with s = �89 + ~d~) be the essential mat r ix  associated 

with the differential Longuet-Higgins constraint (11). Since the submatr ix  ~ is 
skew symmetr ic  and s is symmetric,  they have the following forms: (0 

v =  va  0 - v l  , s =  s 2 s 4 s ~  . ( 2 5 )  

- -v  2 Vl 0 83 85 s6 

Define the (differential) essential vector e E ~9 to be: 

e = (vl, v2, v3, s l ,  s2, s3, s4, sh, s6) T. (26) 

Define a vector a E ~9 associated to optical flow (q ,u)  with q = (x, y, z) T e 
i~3, u = (ul ,u2,  u3) T E ~3 to be1: 

a = (u3~ - u2z ,  u l z  - ~3=, ~2= - ~ l y ,  ~ ,  2~y ,  2 ~ z ,  y~, 2 y z ,  z~)  ~ .  (27)  

The differential Longuet-Higgins constraint (11) can be then rewritten as: a T e  = 
0. Given a set of (possibly noisy) optical flow vectors: (qi ,u i ) ,  i = 1 , . . . ,  m 
generated by the same motion, define a matr ix  A E ~m• associated with these 
measurements  to be: A = (a 1, a ~ , . . . ,  am) T, w h e r e  a i are defined for each pair 
(qi, u ~) using (27). In the absence of noise, the essential vector e has to satisfy: 
Ae = 0. In order for this equation to have a unique solution for e, the rank of the 
mat r ix  A has to be eight. Thus, for  this algorithm, in general, the optical flow 
vectors of at least eight points are needed to recover the 3i) velocity, i.e. m >_ 8, 
although the min imum number of optical flows needed is 5 (see Maybank [11]). 

When the measurements  are noisy, there might be no solution of e for Ae -- 0. 
As in the discrete case, we choose the solution which minimizes the error function 
HAell 2. This can be mechanized using the following lemma. It  is straight forward 
to see that  (Theorem 6.1 of Maybank [11]): 

L e m m a  2. I f  a matrix A E ~ n x n  has the singular value decomposition A = 
U Z V  T and cn(V) is the n th column vector of V (the singular vector associated 
to the smallest singular value ~r,~), then e = cn(V) minimizes HAell 2 subject to 
the condition Ilell = 1. 

Since the differential essential vector e is recovered from noisy measurements,  
the symmetr ic  part  s of E directly recovered from e is not necessarily a special 
symmetr ic  matr ix.  Thus one can not directly use the previously derived results 
for special symmetr ic  matrices to recover the 3D velocity. In the algorithms 

1 For perspective projection, z = 1 and u3 = 0 thus the expression for a can be 
simplified. 
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proposed in Zhuang [20, 21], such s, with the linear velocity v obtained from the 
skew-symmetric part, is directly used to calculate the angular velocity w. This is 
a over-determined problem since three variables are to be determined from six 
independent equations; on the other hand, erroneous v introduces further error 
in the estimation of the angular velocity w. 

We thus propose a different approach: first extract the special symmetric 
component from the first-hand symmetric matr ix s; then recover the four possible 
solutions for the 3D velocity using the results obtained in Theorem 6; finally 
choose the one which has the closest linear velocity to the one given by the 
skew-symmetric part of E.  In order to extract the special symmetric component 
out of a symmetric matrix, we need a projection from the space of all symmetric 
matrices to the special symmetric space S. 

T h e o r e m  8. ( P r o j e c t i o n  t o  t h e  Spec ia l  S y m m e t r i c  Space )  
If a symmetric matrix F E ]~3x3 is diagonalized as F = Vdiag{)~l,)~2, )~3}V T 
with V E SO(3), )h >_ 0,)~3 ~ 0 and )~l >_ )~2 >_ )~3, then the special sym- 
metric matrix E E $ which minimizes the error I}E - FII ) is given by E = 
Vdiag{0.~, 0.~, cr~}V T with: 

2)h + )~2 - A3 ),1 + 2)~2 + ),3 2)~3 + )~2 - )h 
0.1= 3 , 0.2= 3 , 0.3= 3 (28) 

Proof. Define 82  to be the subspace of S whose elements have the same eigen- 
values: ~ = diag{0.1,0.2, 0.3} with 0.1 >_ 0.~ >_ 0.3. Thus every matr ix  E E 8s  has 
the form E = V I ~ V  T for some V1 E S0(3) .  To simplify the notation, define 
~ = diag{Al, ~2, ,k3}. We now prove this theorem by two steps. 

Step One: We prove that  the special symmetric matr ix E E 3~ which mini- 
mizes the error l ie  - F[I ) is given by E = V ~ V  T. Since E E $~ has the form 
E = VI~V1 T, we get: 

IIE - F I I ~  = I I V 1 Z V T  - V~xvTII~ = I I ~  - vTv~EvTvII~" (29) 

Define W = vTv1 E SO(3) .  Then: 

lIE - Fllff - I 1 ~  - W~WTII2j = t r ( ~ )  -- 2 t r ( W Z W T ~ )  + t r ( ~ 2 ) .  (30) 

Using the fact that  0.2 = 0.1 + 0"3 and W is a rotation matrix, we get: 

t r ( W ~ W T  ~ )  = 0.1(~1(1 - w~3) + ~2(1 - w~3) + ~3(1 - w]3)) 

+ 0.3(~1(1 - w~l)  + ~ ( 1  - w~l)  + ~3(1  - w ~ ) ) .  (31) 

Minimizing l iE - FII} is equivalent to maximizing t r ( W S W T S x ) .  From (31), 

t r ( W ~ ] W T ~ x )  is maximized if and only if wla = w23 = 0, w~3 = 1, w21 = w31 = 
0 and w21 = 1. Since W is a rotation matrix, we also have w12 --- wa2 --- 0 and 
w22 = 1. All possible W give a unique matr ix  in S s  which minimizes liE- Fllff: 
E = V S V  T. 
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Step Two: From step one, we only need to minimize the error function over 
the matrices which have the form V Z V  T E S. The optimization problem is then 
converted to one of minimizing the error function: 

l i e  - F I I}  - -  (A1 - ~1)  u + (As - ~2) 2 + (A3 - ~3) 2 (32) 

subject to the constraint: a2 = ~rl + cr3. The formula (28) for c~l,cr2,~ra are 
directly obtained from solving this minimization problem. 

An impor tan t  property of this projection is that  it is statistically unbiased 
[9]. Tha t  is, if components of the essential vector e are corrupted by identically 
independent (symmetric) zero-mean noise, this projection gives an unbiased es- 
t imate  of the true special symmetr ic  matr ix.  

Remark 1. For symmetr ic  matrices which do not satisfy conditions A1 > 0 or 
A3 < 0, one may  simply choose A t = rnax(A1,0) or A~ = min(A3, 0). 

We then have an eigenvector-decomposition based algorithm for est imating 
3D velocity from optical flow: 
Four-Step 3D Velocity Estimation Algorithm: 

1. Estimate Essential Vector: For a given set of optical flows: (qi, ul), i = 
1 , . . . ,  m, find the vector e which minimizes the error function V(e) = I IAel l  ~ 
subject to the condition Ilell = 1; 

2. Recover the Special Symmetric  Matrix: Recover the vector v0 E S 2 
from the first three entries of e and the symmetr ic  mat r ix  s E ]~3• f rom the 
remaining six entries. 2 Find the eigenvalue decomposition of the symmetr ic  
mat r ix  s = Vldiag{)h, )~2, A3}V f with ),1 > )~2 > A3. Project the symmetr ic  
mat r ix  s onto the special symmetr ic  space S. We then have the new s = 
Vldiag{cq, or2, ~3}V T with: ch = (2A1 + A2 - A3)/3, ~2 = (A1 + 2),~ + $3)/3, 
and or3 = (2A3 + )t2 - )h) /3 .  

3. R e c o v e r  V e l o c i t y  f r o m  the Special Symmetric  Matrix: Define A = 
or1 - c~3 > 0 and 0 = arccos(-c~2/$) �9 [0,~r]. Let V = V1R T (5 - ~) �9 
SO(3) and U = - V R y ( 8 )  �9 0(3) .  Then the four possible 3D velocities 
corresponding to the special symmetr ic  matr ix  s are given by: 

~b = VRz(:I: )2~V T, i) = URz(4--~)XIU (33) 

where Zx = diag{A, )t, 0} and 21 : diag{l, i, 0}; 
4. Recover Velocity from the Differential Essential Matrix: From the 

four ve]ocities recovered from the special symmetric matrix s in step 3, choose 
the pair (w*, v*) which satisfies: v*Tvo = maxi v Tv0. Then the estimated 3D 
velocity (w,v) with aJ �9 IR 3 and v �9 S 2 is given by: w =w*,v = vo. 

2 In order to guarantee v0 to be of unit length, one needs to "re-normalize" e, i.e. 
multiply e by a scalar such that the vector determined by the first three entries is 
of unit length. 
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Both v0 and v* contain recovered information about the linear velocity. However, 
experimental results show that,  statistically, within the tested noise levels (next 
section), v0 always yields a better estimate than v* . We thus simply choose v0 as 
the estimate. Nonetheless, one can find statistical correlations between v0 and v* 
(experimentally or analytically) and obtain better estimate, using both v0 and 
v*. Another potential way to improve this algorithm is to study the systematic 
bias introduced by the least square method in step 1. A similar problem has 
been studied by Kanatani [5] and an algorithm was proposed to remove such 
bias from Zhuang's algorithm [20]. 

Remark 2. Since both E, - E  E E~ satisfy the same set of differential Longuet- 
Higgins constraints, both (w, +v) are possible solutions for the given set of optical 
flows. However, one can discard the ambiguous solution by adding the "positive 
depth constraint". 

Remark 3. By the way of comparison to the Heeger and Jepson's algorithm [3], 
note that  the equation Ae = 0 may be rewritten to highlight the dependence on 
optical flow as: [Al(u) I A2]e = 0, where Al(u)  C ~m• is a linear function of 
the measured optical flow and A2 E ~'~ • 6 is a function of the image points alone. 
Heeger and Jepson compute a left null space to the matr ix  A2 (C E ~(m-6)• 
and solve the equation: CAl (u )v  = 0 for v alone. Then they use v to obtain 
w. Our method simultaneously estimates v E ~3, s E ~6. We make a simulation 
comparison of these two algorithms in section 4. 

Note this algorithm is not optimal in the sense that  the recovered velocity 
does not necessarily minimize the originally picked error function IIAe(w, v)ll 2 
on E~ (same for the three-step SVD based algorithm in the discrete case [9]). 
However, this algorithm only uses linear algebra techniques and is thus simpler 
and does not try to optimize on the submanifold E~. 

4 Experimental Results 

We carried out initial simulations in order to study the performance of our al- 
gorithm. We chose to evaluate it in terms of bias and sensitivity of the estimate 
with respect to the noise in the optical flow measurements. Preliminary simu- 
lations were carried out with perfect data  which was corrupted by zero-mean 
Gaussian noise where the standard deviation was specified in terms of pixel size 
and was independent of velocity. The image size was considered to be 512x512 
pixels. 

Our algorithm has been implemented in Matlab and the simulations have 
been performed using example sets proposed by [15] in their paper on compari- 
son of the egomotion estimation from optical flow 3. The motion estimation was 
performed by observing the motion of a random cloud of points placed in front 

3 We would like to thank the authors in [15] for making the code for simulations of 
various algorithms and evaluation of their results available on the web. 
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of the camera. Depth range of the points varied from 2 to 8 units of the focal 
length, which was considered to be unity. The results presented below are for 
fixed field of view (FOV) of 60 degrees. Each simulation consisted of 500 tri- 
als with a fixed noise level, FOV and ratio between the image velocity due to 
translation and rotation for the point in the middle of the random cloud. Fig- 
ures 1 and 2 compare our algorithm with Heeger and Jepson's linear subspace 
algorithm. The presented results demonstrate the performance of the algorithm 
while translating along X-axis and rotating around Z-axis with rate of 23 ~ per 
frame. The analysis of the obtained results of the motion estimation algorithm 
was performed using benchmarks proposed by [15]. The bias is expressed as an 
angle between the average estimate out of all trails (for a given setting of pa- 
rameters) and the true direction of translation and/or  rotation. The sensitivity 
was computed as a standard deviation of the distribution of angles between each 
estimated vector and the average vector in case of translation and as a standard 
deviation of angular differences in case of rotation. We further evaluated the 
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Fig. 1. The ratio between the magnitude Fig. 2. The ratio between the magnitude 
of linear and angular velocity is 1. of linear and angular velocity is 10. 

algorithm by varying the direction of translation and rotation and their relative 
speed. The choice of the rotation axis did not influence the translation estimates. 
In the case of the rotation estimate our algorithm is slightly better compared 
to Heeger and Jepson's algorithm. This is due to the fact that  in our case the 
rotation is estimated simultaneously with the translation so its bias is only due 
to the bias of the initially estimated differential essential matr ix  obtained by 
linear least squares techniques. This is in contrary to the rotation estimate used 
by Jepson and Heeger's algorithm which uses another least-squares estimation 
by substituting already biased translational estimate to compute the rotation. 
The translational estimates are essentially the same since the translation was 
estimated out from v0, skew symmetric part of the differential essential matrix.  
Increasing the ratio between magnitudes of translational and angular velocities 
improves the bias and sensitivity of both algorithms. 

The evaluation of the results and more extensive simulations are currently 
underway. We believe that through thorough understanding of the source of 
translational bias we can obtain even better performance by utilizing additional 
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information about linear velocity, which is embedded in the symmetric part 
of the differential essential matrix. In the current simulations translation was 
estimated only from v0 skew symmetric part of e. 

5 Conclusions and Future Work 

This paper presents a unified view of the problem of egomotion estimation us- 
ing discrete and differential Longuet-Higgins constraint. In both (discrete and 
differential) settings, the geometric characterization of the space of (differential) 
essential matrices gives a natural geometric interpretation for the number of pos- 
sible solutions to the motion estimation problem. In addition, in the differential 
case, understanding of the space of differential essential matrices leads to a new 
egomotion estimation algorithm, which is a natural counterpart of the three-step 
SVD based algorithm developed for the discrete case by [17]. 

In order to exploit temporal coherence of motion and improve algorithm's 
robustness, a dynamic (recursive) motion estimation scheme, which uses implicit 
extended Kalman filter for estimating the essential parameters, has been pro- 
posed by Soatto et al [14] for the discrete case. The same ideas certainly apply 
to our algorithm. 

In applications to robotics, a big advantage of the differential approach over 
the discrete one is that  it can make use of nonholonomic constraints (i.e. con- 
straints that  confine the infinitesimal motion of the mobile base but  not the 
global motion) and simplify the motion estimation algorithms [9]. An example 
study of vision guided nonholonomic system can be found in [10]. In this paper, 
we have assumed that  the camera is ideal. This approach can be extended to un- 
calibrated camera case, where the motion estimation and camera self-calibration 
problem can be solved simultaneously, using the differential essential constraint 
[19, 1]. In this case, the essential matr ix is replaced by the fundamental  matr ix  
which captures both motion information and camera intrinsic parameters. It is 
shown in [1], that  the space of such fundamental matrices is a 7-dimensional 
algebraic variety in ]~3x3. Thus, besides five motion parameters, only two extra 
intrinsic parameters can be recovered. 
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