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Abstract .  We present a novel method for fitting a smooth G 1 contin- 
uous spline to point sets. It is based on an iterative conjugate gradient 
optimisation scheme. Unlike traditional tensor product based splines we 
can fit arbitrary topology surfaces with locally adaptive meshing. For 
this reason we call the surface "slime". 
Other attempts at this problem are based on tensor product splines and 
are therefore not locally adaptive. 

1 I n t r o d u c t i o n  

Range sensing is an area of computer vision that  is being successfully applied to 
a variety of industrial problems. By combining several range images it is possible 
to build complete detailed surface models of real world objects for applications 
in VR, graphics and manufacturing [11,10,9]. 

Existing methods produce large datasets consisting of up to a million poly- 
gons. There is considerable interest in the use of more efficient representations 
such as spline surfaces [5,17,14]. Spline surfaces are much more efficient at repre- 
senting smooth manufactured surfaces, e.g. car bodywork. For this reason splines 
are heavily used in CAD applications. Most of the spline surfaces commonly used 
in computer vision have severe limitations because they cannot have arbi t rary 
topology and cannot be adaptively meshed. 

In previous work [21] we presented a deformable surface that  could have 
arbi t rary topology, and we later went on to formulate a linear form that  allowed 
fast computation [20]. In this paper we have developed a powerful scheme for 
surface reconstruction from point sets. The advances presented in this paper 
include 

- A new method for constructing seed meshes. 
- Techniques for locally adaptive spline surface representation. (Very few com- 

monly used spline surfaces can be made locally adaptive.) 
- Fast techniques for solving this optimisation problem based on an iterated 

conjugate gradient scheme. 
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Fig. 1. Results from a surface fitted to a cloud of 15000 points (a) the point set (b) 
the control mesh (c) the fitted spline surface flatshaded 

Our earlier work established a powerful representation. This work provides the 
tools necessary to use it in a variety of applications. Because of its special prop- 
erties we have dubbed the surface 'slime'. 

This work could be applied to a range of problems. We consider the follow- 
ing processing pipeline. Several range images are captured, registered and fused 
using a volumetric approach [11,10]. In this type of approach a volumetric field 
function is computed and the marching cubes algorithm can be used to obtain an 
isosurface. The result is a large piecewise fiat mesh made up of triangular faces. 
Of course we may wish to reuse the original point measurements if accuracy has 
been lost by the volumetric representation. Volumetric approaches are limited 
by the processing considerations and memory usage rises rapidly as the voxel 
edge length is reduced below 1% of a side of the working volume. 

This initial dense mesh and point set is taken as the starting point for our 
work. The aim of subsequent processing is to reduce the size of the representa- 
tion, smooth the surface and increase the fidelity to the measured point set. 

Accuracy is a key factor in commercial uptake of range sensing technology. A 
meaningful way of quoting accuracy independent of scale is to scale the working 
volume to lie inside a unit cube and express the rms error as a fraction of the cube 
size. The accuracy of commercially available range scanners varies between 1% 
and 0.01%. Mechanical Coordinate Measuring Machines (CMMs) can achieve 
0.0001%. Any technique that  proceeds via a discrete voxel approach has an 
error of the order of the voxel size. It is difficult to use small voxel sizes because 
routines for extracting an implicit surface (e.g. marching cubes) produce more 
than O(105) triangles if the voxel size is reduced below 1%. 

A sample set of results is now shown. In figure 1 we show a surface fitted to a 
cloud of 15000 points, the final spline control mesh (1459 patches) and a rendered 
view of the spline surface. The rendered sur]ace is rendered with flatshading, not 
a smoothed shading algorithm such as Gouraud shading as is common. 
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2 R e l a t e d  w o r k  

Deformable curves and surfaces have been applied to many problems in com- 
puter vision. Medical imaging is an area where deformable surfaces are presently 
receiving much attention [18] due to the need for processing of volumetric data 
sets. 

There has been much recent interest in shapes with non-trivial topology in 
computer vision in general and in deformable surfaces in particular. De Carlo 
and Metaxas have proposed an adaptive shape evolution scheme by blending 
together parts consisting of simple tensor product patches [5]. Another approach 
was presented by McInerney and Terzopoulos [17] who use a parallel 2D data 
structure to achieve a topologically adaptable snake. Related work includes that 
of Casselles et al [3] who proposed geodesic active contours based on a level set 
approach. 

In the graphics community there is considerable interest in building models 
from range scanner data. Recent advances in fusion algorithms [11,10] allow the 
creation of detailed million polygon meshes and there is much interest in reducing 
the size of the representation by using higher order surfaces. Most recent work 
has concentrated on stitching together tensor product patches. [6,14]. 

3 T h e  s u r f a c e  r e p r e s e n t a t i o n  

The spline based surface that we use is a G 1 continuous arbitrary topology sur- 
face called a generalised biquadratic B-Spline (GBBS). It was first developed in 
the context of computer graphics by Loop and De Rose [15,16]. It is important 
to note that it is not possible to maintain C 1 continuity (first order parametric 
derivative) over an arbitrary topology surface. Instead the concept of G 1 conti- 
nuity (first order geometric) is introduced. In effect it means that the tangent 
plane at a point on the surface varies continuously as the point moves on the 
surface. 

We first presented an application of this surface to problems in computer 
vision in [21] and more recently [20] we succeeded in formulating a matrix form 
and a fast method of computation. The main weakness of the earlier work was 
the absence of algorithms for creating valid mesh topologies and adapting these 
topologies. 

A full description of the GBBS would take up too much space so we present 
here only a brief summary of the salient points as they affect the algorithms. 
The reader is referred to the original papers for further details. 

The GBBS is a powerful and elegant generalisation of the Biquadratic B- 
Spline. It automatically maintains G 1 continuity. The GBBS is defined by a 
set of M 3D control points Q = {cm : m = 1..M} together with connectivity 
information K. The connectivity defines a mesh topology which is restricted to 4- 
sided faces, (see for example figure 2). Thus the surface is defined by S = (Q, K). 
The connectivity information can be summarised in a function f ( i , j ,  k, l) which 
is equal to 1 for each set of vertices i, j, k, l connected up to a face ordered 
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( 
Fig. 2. A simple control mesh and the resulting spline surface (converted to triangles). 
Control point i generates the 6-sided patch and j generates the 3-sided patch. 

anti-clockwise around an outward pointing normal. From this can be derived 
a function e(i, j) equal 1 if i and j form an edge and 0 otherwise. I t  is also 
convenient to define f ( i ,  j) equal 1 if i and j are distinct but  are par t  of the 
same face. 

Each vertex gives rise to an n-sided surface patch where n is the number  of 
4-sided faces using tha t  vertex. Patch m depends only on the 2n + 1 element 
control vector qT m = [cm, Ck : f ( m ,  k) = 1] consisting of C m and the set of all 
vertices on adjacent faces, i.e. with k in the neighbourhood of m. 

Previously we introduced a matr ix-based scheme to compute the surface 
based on notat ion similar to tha t  of [4]. The principal steps in computing the 
surface are as follows. The control vector qm is converted to a vector of Bezier 
control points rm by a matr ix  multiplication rm -- M q m  This is combined with 
a column vector containing all the Bezier polynomials B(p) to compute the 
point. Thus we obtain the surface patch Sm as a mapping from points p -- (u, v) 
contained in a regular n-gon domain Dn to a 3D surface 

S m =  {r(p)[p E On, r(p) = B T ( p ) M q m }  (1) 

The whole surface S is the union of the patches Sin, S = [.J,~ Sin. The control 
vector for patch m,  qm can be obtained from the vector of all control points 
QT = [cI..CM] by a connectivity matr ix  qm = GmQ. 

The simplest example of a Bezier polynomial is a Bezier curve [19,7]. When 
discussing Bezier curves it is useful to replace the usual single parameter  u with 
two parameters  Ul(=  u) and u2 and a constraint that  Ul + u2 = 1. A depth d 
Bezier curve C = {r(ul,u2)l ule[0, 1],ul + u2 = 1} is defined in terms of d + 1 
control points ri and the Bernstein-Bezier polynomials Bd(ul ,  u2) as follows 

d d d! i ud--i 
r ( u )  ---- r ( u l , u 2 )  = ~ r , S d ( u l , u 2 )  = ~-~rii!(~-- - i)!Ul 2 (2 )  

i = 0  i=0  " 
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The Bezier curve admits  an elegant generalisation called a B-form tha t  maps  
a [(k + 1)-variate] k-dimensional parameter  spa~e onto any number  of scalars. 
Firstly we must  define multivariate Bernstein-Bezier polynomials. For these we 
will need a notation for multi-indices i = {il, i2, ...ik+l }. The symbol ~j denotes 
a multi-index whose components are all zero except for the j component  which 
is 1. It  is useful to define a modulus of a multi-index as Ill -- il + i2 + ... + i~+1. 
The k-variate depth d Bernstein-Bezier polynomials are a simple generalisation 
of equation (2). 

d! il i2 i~+1 
Bd(ul,u2,  ...uk+l) -- il!i2!...ik+l!ul ,U2, ...Uk+l, Ill = d (3) 

The Loop and De Rose scheme is based on S-patches, which are n-sided 
smooth patches which map  a point p = (u, v) inside n-sided domain polygon D 
to a 3D surface. Firstly we form n barycentric variables li,i = 1..n defined as 
follows. Define the n vertices of the regular n-gon as Pi, i = 1..n. Define the 
fractional areas ai(p)  as the area of a triangle enclosed by points p, Pi, and pi+l 
divided by the total  area of D. Now form n new variables Ir~ (p) by 

71" i (p) = O~ 1 (p) X...ai--2 (P)O/i+l (p).--an (p) (4) 

Then form normalised variables li(p) 

l i ( - ,  v) = / i ( p )  =  i(p) (v) +---  + 
(5) 

The S-patch is now simply defined in terms of the variables li(p) and the 
Bezier control points rl. I t  is a mapping S = {r(u, v)l(u, v)eDn} where Dn is a 
n-sided domain polygon and 

r(u, v) = E rl Bd(ll, 12, ...In) (6) 
li]=d 

Note tha t  the n-sided patch uses a k + 1 variate Bezier polynomial where n = 
k + l .  

3.1 C o m p u t a t i o n  

For details of computat ion of the matr ix  M the reader is referred to [20]. I t  
contains constants so only needs to be computed once and stored. When repeated 
computat ion of a point p on a patch is required B T (p)M may be pre-computed 
and stored. Then point evaluation consists of a weighted sum of the control 
points, and is very fast, O(2n + 1). This is typically what we use when rendering 
the surface. When an arbi t rary  point is required this can be slower for n > 6 

(~+6)w. Bezier control points and in general we avoid patches because there are 6 ! ( n + l ) !  

with more than  6 sides. 
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4 Seeding 

An impor tant  new result presented in this paper  is a solution to the seeding 
problem. A valid slime surface must have a mesh of control points connected in 
a special way. The mesh must be made up of 4 sided faces and each non-boundary 
vertex must have 3 or more faces using it. 

A precondition to adaptive meshing algorithms is a valid start ing point. In 
our processing pipeline we indicated that  our start ing point is a tr iangular mesh. 
In our first paper  [21] we suggested a method tha t  would convert a t r iangular  
mesh to a mesh of four-sided faces. The idea was to subdivide each triangle into 
3 four-sided faces. This was a valid solution, but  not ideal, because it required 
the number  of faces be increased by a factor of three. 

A bet ter  option would be to group pairs of three-sided faces to form a four 
sided mesh with half the number  of faces. This is a nontrivial problem because if 
even one triangle is unpaired the solution is of no use. I t  bears some superficial 
resemblance to the NP-hard problem of finding a Hamilton cycle on a graph. 

The algorithm is now presented. I t  is based on region growing over the set 
of triangles t on the surface. Each triangle has edges e and the region boundary, 
denoted B is not allowed to self intersect. A pair of adjacent triangles is chosen 
as a seed and the seed boundary is passed to RegionGrow(B). 

The region boundary  is grown by adding a pair of adjacent triangles at a 
time. This operat ion can fail when the boundary self intersects and two non- 
connected regions each with an odd number  of triangles are left outside the 
boundary. The algorithm backtracks from this point to the last boundary  that  
contained no "elbows". By elbow we mean a part  of the boundary  where two 
adjacent boundary  edges lie on the same triangle. The significance of this is that  
when a pair of triangles is grown there is no choice as to how the triangles are 
paired. 

This is illustrated in figure 3 when the boundary encloses the shaded region 
and a t t empts  to grow a pair of white triangles. If triangle 1 is added only triangle 
2 can be paired with it. This is not the case for triangle 3 which can be paired 
with triangle 4 or 5. 

Fig. 3. The boundary contains an 'elbow' at triangle 1 
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The algorithm below is not guaranteed to succeed but has succeeded for all 
our data  sets. A depth first recursive search is guaranteed to succeed but has 
worst case exponential complexity. The search presented here stores the last 
non-elbow boundary so it is a modification of a depth first search which only 
ever backtracks up one level. In practice, because there are many non-elbow 
boundaries, the algorithm is linear in the number of faces. Since the number of 
faces is potentially 10 6 this is welcome. 

Pseudo code for the algorithm is presented below. 

RegionGrow(B) { 
B' := B 
repeat { 

for each tl on B { 
for each t2 adjacent tl outside B { 

B := B'  
ForcedGrow(B, tl, t2,pass) 
if (pass) exit loop over t2 and tl; 

} 
} 
if (not pass) report algorithm failed and exit. 
B '  := B 

} until no more triangles to add. 
} 

ForcedGrow(B, tl, t2,pass) { 
Add tl and t2 to B. 
If B self intersects set pass:=FALSE and return. 
If all triangles used up set pass:=TRUE and return. 
while (B contains elbow) { 

Add next two triangles to B at elbow. 
If B self intersects set pass:=FALSE and return. 
If all triangles used up set pass:=TRUE and return. 

} 
set pass:=TRUE and return. 

} 

Finally we show a sample output from the algorithm in figure 4. F 4(a) shows 
the input triangulated surface which is paired and the 4-sided mesh is shown in 
(b). This is a valid GBBS control mesh. 

4.1 L i m i t a t i o n s  

The algorithm presented in this section has not been tested for open or closed 
surfaces with holes. This is because a region growing algorithm needs to have 
more that  one boundary on such a surface. The algorithm will need to be ex- 
tended for such surfaces. 
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Fig. 4. Results from the seeding algorithm, (a) is the input mesh and (b) is a valid 
spline control mesh. 

5 T h e  energy  f u n c t i o n  

Our approach to reconstructing the surface is similar to that  of Hoppe [12]. 
Hoppe provided a comprehensive scheme that  worked for piecewise flat surfaces. 
We have succeeded in generalising this approach to the case of GBBS surfaces. 

The surface S is defined by a set of control points Q and a mesh topology K,  
i.e. S = (K, Q). The goal of our spline optimisation is to find a surface which is 
a good fit to the point set X = {Xl..Xp} with a small number of vertices. Thus 
we wish to minimise the energy function 

E(K, Q) = Eaist(K, Q) + E,.ep(K) + Es,,.ing(K, Q) (7) 

The first term depends on the quality of the fit to the point set. It is equal to 
the sum of the squared distances from the points X = {Xl..Xp} to the surface. 

P 

Edist(K, Q) = Z d2(xi, S(K, q ) )  (8) 
i = l  

The representation energy penalises meshes with many vertices. There are M 
vertices so 

Erep(K) = krepM (9) 

A regularisation term is needed during fitting (because the problem is under- 
constrained when no data  points lie on a patch) and we use a simple spring-like 
term 

Espring(g,Q) = kspring Z Ici-vii2 (10) 
e(j,k)=l 

This term may be reduced to zero in the final stages of the optimisation, and so 
it need have no effect on the result. In particular it need not cause any smoothing 
of the surface. 
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6 O p t i m i s a t i o n  o f  t h e  e n e r g y  f u n c t i o n  

6.1 Fixed patch coordinates and fixed topology 

We start by considering a simple case for optimisation. We consider only a single 
patch, Sm and those data points {x~ ..x~} for which patch m is the closest patch. 
We assume that the closest point on patch m to point x~ is r(pi) with parametric 
coordinates Pi. Therefore we wish to optimise the energy function 

R 

E ( q ) = Z ] x ~ - r ( p i ) l  2+  ~ I c i - c j l  2 (11) 
~=1 e(~j)=l 

with respect to the position of the patch control points qm. It is helpful to note 
that 

r(p,)= w (p,)cj (12) 
j:c7 Eqm 

where the weighting factors wj(pi) -- (BT(pi)M)j are fixed numbers adding 
up to 1. This problem may be formulated as a matrix minimisation problem of 
the form lAy - d l  2 which can be solved rapidly. The column vector v is formed 
from the control points for the patch. The first R rows of the matrix A contain 
the weights wj (pi) so that multiplication of row i with column vector v results 
in r(pi). Correspondingly the first R rows in column vector d contain the data 
points x~. 

The spring terms are attached along the edges of control mesh faces. For each 
edge there is another row of A and d. The row in d contains zero and the row 
of A contains a ~ in column i and - ~  in column j. It is easy to 
verify that E(q) from equation (11) 

E(q) = lAy - d[ 2 (13) 

It is worth noting that the above formulation is based on the column vectors v 
and d containing 3D vectors, but in fact it separates into 3 independent matrix 
equations to be solved for the x, y and z components. We have shown how the 
energy can be be reduced to a matrix equation for one patch, and the same 
procedure can easily be applied to generate a matrix equation for the whole 
mesh. 

The matrix for the whole mesh is large but sparse. Such least square problems 
may be solved efficiently using the conjugate gradient method [8]. If we consider 
only one patch and fix all vertices except the central vertex then the problem 
reduces to 3 quadratic equations with straightforward analytic solutions. 

6.2 Variable patch coordinates 

The true cost in equation (11) depends on the distance to the closest point 
which varies as we vary the control points. We solve this iteratively by finding 
the closest point, then optimising over the control points and repeating the 
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process until convergence. An attractive feature of the process is that  the closest 
point step and the control point minimisation step both decrease the energy 
monotonically. 

6.3 Variable mesh topology 

Finally we wish to optimise the full energy function search over control point 
positions and mesh topologies. This is potentially a computationally expensive 
task especially if we aim to find a global optimum. However we can do a quite 
adequate job by local search techniques which can find a good local minimum. 

Firstly we examine how mesh topology is allowed to change. The scheme used 
by Hoppe for triangles is reviewed in figure 5. It consists of 3 simple operations 
performed on edge {i, j}.  It can be collapsed to a single vertex, split into two 
or swapped. It is worth noting that  there are some conditions under which the 

edge collapse edge split edge swap 

Fig. 5. Topology editing operations for triangular meshes 

edge collapse operation is not allowed and these are detailed in [12]. 
In the case of our mesh edge collapse is not an allowed operation since it can 

reduce 4-sided faces to 3-sided faces. Instead we use the operation of face collapse 
and its inverse face creation as shown in figure 6. We have not yet determined 
what conditions must be satisfied before face collapse is allowed, however we 
disallow face collapse when it results in a vertex used by 2 or fewer faces. 

6.4 Closest Point Computat ion  

The optimisation over control points is relatively quick, and the complexity of 
the computation is dominated by the nearest neighbour step. This is mirrored 
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Fig. 6. Topology editing operations for 4-sided face meshes 

in other problems such as surface registration by the iterated closest point algo- 
rithm [2] and also some formulations of the surface fusion problem. 

The general closest point to point set problem can be solved in O(N log N) by 
use of appropriate spatial partitioning data structures. By encoding triangles into 
such a structure one can be guaranteed of finding all triangles within a threshold 
distance. Following this a routine for closest point to triangle is required, and it 
is worthwhile carefully optimising this routine. 

Finding the closest point to a spline is slightly more computationally inten- 
sive. Each patch may be approximated to within a threshold by a piecewise 
planar triangular mesh according to a tessellation method of [13], see page 262. 
The nearest point to triangle routine may then be used. By decreasing the tri- 
angle size a very good approximation to the closest point may be found. In this 
way the closest point to spline can be found in less than 10 closest point to 
triangle operations. 

In the first iteration the closest point search is performed over the entire 
mesh. Subsequent searches can be performed on a purely local basis, while the 
distance to the surface lies within a threshold. 

6.5 Overall  strategy 

Our starting point is a detailed mesh and point set. A global search assigns each 
point to a triangle. Initially we proceed with a triangle optimisation scheme until 
the number of triangles has been reduced. This is mainly because the spline 
method is slower by about a factor of ten, so it saves time. 

Then the seeding algorithm is applied to convert the triangular surface to 
a spline surface. Firstly all vertices are optimised followed by recomputing the 
closest point. These steps are iterated until convergence. Then local face collapse 
operations are performed. A face collapse is performed and the central vertex 
is optimised over position followed by a closest point computation for a few 
iterations. If the energy has been lowered the collapse is accepted, if not it is 
rejected. 
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The faces are sorted into ascending size and this forms a queue to be pro- 
cessed. Faces that  fail to collapse are marked. When no faces can collapse the 
algorithm terminates. 

We have not yet tested the face creation operation so we do not know if it 
can substantially improve the fit. 

7 R e s u l t s  

We now present results for the foot dataset. The original surface is shown in 
figure 7 (a). A point set X is created by uniformly random sampling the original 
surface with 4000 points. We decimate to a triangular surface containing 118 
faces. This is shown rendered in figure 7 (b) and also in figure 7 (d). The sptine 
fit contains 59 faces (61 patches) and is shown rendered in 7 (c), the control mesh 
is shown in figure 7 (e). The rms distance from the point set may be computed. 

Fig. 7. Surface optimisation applied to the foot (a) original surface (b) best fit with 
118 triangles - flat rendered (c) best fit with 59 spline patches - fiat rendered (d) best 
fit with 118 triangles ~ line drawing (e) best fit with 59 spline patches - control mesh 

The foot is firstly scaled to a unit cube. The triangular fit is 0.35% of the cube 
edge length and the spline fit is 0.18%. This is an improvement of a factor 2. A 
more dramatic improvement is to be expected in higher order derivatives such 
as the normal or curvature. This is apparent from the flat rendered versions in 
figure 7. 
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8 Conclus ions  

We have now provided a powerful new representation which can be used in 
a variety of applications in computer vision. We have previously developed a 
matr ix formalism for easy algebraic manipulation in the same form as [4] and fast 
techniques for computing points on the spline. The matrices used for convenient 
computation of the GBBS surface have been made available on the Web [1]. 

In this paper we have developed a scheme for seeding the surface and adap- 
tively remeshing the control points. An optimisation approach provides the 
framework for driving the adaptive meshing. 

9 F u t u r e  work  

At present we can fit point sets of size 5000 in minutes on a workstation. We in- 
tend to optimise the code with the objective of dealing with point sets of size 500 
000 in less than 30 minutes cpu time, followed by more detailed characterisation 
of the gains in accuracy over a number of data  sets. 

Extensions of the software are necessary to deal with open surfaces and in- 
ternal crease edges. 
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