
Reconstruction of Smooth Surfaces with
Arbitrary Topology Adaptive Splines

A. J. Stoddart and M. Baker

Centre for Vision, Speech and Signal Processing
University of Surrey, Guildford, Surrey GU2 5XH, UK,

a.stoddart@ee.surrey.ac.uk,
V~r~VW: http://www, ee. surrey, ac. uk

Abstract . We present a novel method for fitting a smooth G 1 contin-
uous spline to point sets. It is based on an iterative conjugate gradient
optimisation scheme. Unlike traditional tensor product based splines we
can fit arbitrary topology surfaces with locally adaptive meshing. For
this reason we call the surface "slime".
Other attempts at this problem are based on tensor product splines and
are therefore not locally adaptive.

1 I n t r o d u c t i o n

Range sensing is an area of computer vision that is being successfully applied to
a variety of industrial problems. By combining several range images it is possible
to build complete detailed surface models of real world objects for applications
in VR, graphics and manufacturing [11,10,9].

Existing methods produce large datasets consisting of up to a million poly-
gons. There is considerable interest in the use of more efficient representations
such as spline surfaces [5,17,14]. Spline surfaces are much more efficient at repre-
senting smooth manufactured surfaces, e.g. car bodywork. For this reason splines
are heavily used in CAD applications. Most of the spline surfaces commonly used
in computer vision have severe limitations because they cannot have arbi t rary
topology and cannot be adaptively meshed.

In previous work [21] we presented a deformable surface that could have
arbi t rary topology, and we later went on to formulate a linear form that allowed
fast computation [20]. In this paper we have developed a powerful scheme for
surface reconstruction from point sets. The advances presented in this paper
include

- A new method for constructing seed meshes.
- Techniques for locally adaptive spline surface representation. (Very few com-

monly used spline surfaces can be made locally adaptive.)
- Fast techniques for solving this optimisation problem based on an iterated

conjugate gradient scheme.

242

Fig. 1. Results from a surface fitted to a cloud of 15000 points (a) the point set (b)
the control mesh (c) the fitted spline surface flatshaded

Our earlier work established a powerful representation. This work provides the
tools necessary to use it in a variety of applications. Because of its special prop-
erties we have dubbed the surface 'slime'.

This work could be applied to a range of problems. We consider the follow-
ing processing pipeline. Several range images are captured, registered and fused
using a volumetric approach [11,10]. In this type of approach a volumetric field
function is computed and the marching cubes algorithm can be used to obtain an
isosurface. The result is a large piecewise fiat mesh made up of triangular faces.
Of course we may wish to reuse the original point measurements if accuracy has
been lost by the volumetric representation. Volumetric approaches are limited
by the processing considerations and memory usage rises rapidly as the voxel
edge length is reduced below 1% of a side of the working volume.

This initial dense mesh and point set is taken as the starting point for our
work. The aim of subsequent processing is to reduce the size of the representa-
tion, smooth the surface and increase the fidelity to the measured point set.

Accuracy is a key factor in commercial uptake of range sensing technology. A
meaningful way of quoting accuracy independent of scale is to scale the working
volume to lie inside a unit cube and express the rms error as a fraction of the cube
size. The accuracy of commercially available range scanners varies between 1%
and 0.01%. Mechanical Coordinate Measuring Machines (CMMs) can achieve
0.0001%. Any technique that proceeds via a discrete voxel approach has an
error of the order of the voxel size. It is difficult to use small voxel sizes because
routines for extracting an implicit surface (e.g. marching cubes) produce more
than O(105) triangles if the voxel size is reduced below 1%.

A sample set of results is now shown. In figure 1 we show a surface fitted to a
cloud of 15000 points, the final spline control mesh (1459 patches) and a rendered
view of the spline surface. The rendered sur]ace is rendered with flatshading, not
a smoothed shading algorithm such as Gouraud shading as is common.

243

2 R e l a t e d w o r k

Deformable curves and surfaces have been applied to many problems in com-
puter vision. Medical imaging is an area where deformable surfaces are presently
receiving much attention [18] due to the need for processing of volumetric data
sets.

There has been much recent interest in shapes with non-trivial topology in
computer vision in general and in deformable surfaces in particular. De Carlo
and Metaxas have proposed an adaptive shape evolution scheme by blending
together parts consisting of simple tensor product patches [5]. Another approach
was presented by McInerney and Terzopoulos [17] who use a parallel 2D data
structure to achieve a topologically adaptable snake. Related work includes that
of Casselles et al [3] who proposed geodesic active contours based on a level set
approach.

In the graphics community there is considerable interest in building models
from range scanner data. Recent advances in fusion algorithms [11,10] allow the
creation of detailed million polygon meshes and there is much interest in reducing
the size of the representation by using higher order surfaces. Most recent work
has concentrated on stitching together tensor product patches. [6,14].

3 T h e s u r f a c e r e p r e s e n t a t i o n

The spline based surface that we use is a G 1 continuous arbitrary topology sur-
face called a generalised biquadratic B-Spline (GBBS). It was first developed in
the context of computer graphics by Loop and De Rose [15,16]. It is important
to note that it is not possible to maintain C 1 continuity (first order parametric
derivative) over an arbitrary topology surface. Instead the concept of G 1 conti-
nuity (first order geometric) is introduced. In effect it means that the tangent
plane at a point on the surface varies continuously as the point moves on the
surface.

We first presented an application of this surface to problems in computer
vision in [21] and more recently [20] we succeeded in formulating a matrix form
and a fast method of computation. The main weakness of the earlier work was
the absence of algorithms for creating valid mesh topologies and adapting these
topologies.

A full description of the GBBS would take up too much space so we present
here only a brief summary of the salient points as they affect the algorithms.
The reader is referred to the original papers for further details.

The GBBS is a powerful and elegant generalisation of the Biquadratic B-
Spline. It automatically maintains G 1 continuity. The GBBS is defined by a
set of M 3D control points Q = {cm : m = 1..M} together with connectivity
information K. The connectivity defines a mesh topology which is restricted to 4-
sided faces, (see for example figure 2). Thus the surface is defined by S = (Q, K).
The connectivity information can be summarised in a function f (i , j , k, l) which
is equal to 1 for each set of vertices i, j, k, l connected up to a face ordered

244

(
Fig. 2. A simple control mesh and the resulting spline surface (converted to triangles).
Control point i generates the 6-sided patch and j generates the 3-sided patch.

anti-clockwise around an outward pointing normal. From this can be derived
a function e(i, j) equal 1 if i and j form an edge and 0 otherwise. I t is also
convenient to define f (i , j) equal 1 if i and j are distinct but are par t of the
same face.

Each vertex gives rise to an n-sided surface patch where n is the number of
4-sided faces using tha t vertex. Patch m depends only on the 2n + 1 element
control vector qT m = [cm, Ck : f (m , k) = 1] consisting of C m and the set of all
vertices on adjacent faces, i.e. with k in the neighbourhood of m.

Previously we introduced a matr ix-based scheme to compute the surface
based on notat ion similar to tha t of [4]. The principal steps in computing the
surface are as follows. The control vector qm is converted to a vector of Bezier
control points rm by a matr ix multiplication rm -- M q m This is combined with
a column vector containing all the Bezier polynomials B(p) to compute the
point. Thus we obtain the surface patch Sm as a mapping from points p -- (u, v)
contained in a regular n-gon domain Dn to a 3D surface

S m = {r(p)[p E On, r(p) = B T (p) M q m } (1)

The whole surface S is the union of the patches Sin, S = [.J,~ Sin. The control
vector for patch m, qm can be obtained from the vector of all control points
QT = [cI..CM] by a connectivity matr ix qm = GmQ.

The simplest example of a Bezier polynomial is a Bezier curve [19,7]. When
discussing Bezier curves it is useful to replace the usual single parameter u with
two parameters Ul(= u) and u2 and a constraint that Ul + u2 = 1. A depth d
Bezier curve C = {r(ul,u2)l ule[0, 1],ul + u2 = 1} is defined in terms of d + 1
control points ri and the Bernstein-Bezier polynomials Bd(ul , u2) as follows

d d d! i ud--i
r (u) ---- r (u l , u 2) = ~ r , S d (u l , u 2) = ~-~rii!(~-- - i)!Ul 2 (2)

i = 0 i=0 "

245

The Bezier curve admits an elegant generalisation called a B-form tha t maps
a [(k + 1)-variate] k-dimensional parameter spa~e onto any number of scalars.
Firstly we must define multivariate Bernstein-Bezier polynomials. For these we
will need a notation for multi-indices i = {il, i2, ...ik+l }. The symbol ~j denotes
a multi-index whose components are all zero except for the j component which
is 1. It is useful to define a modulus of a multi-index as Ill -- il + i2 + ... + i~+1.
The k-variate depth d Bernstein-Bezier polynomials are a simple generalisation
of equation (2).

d! il i2 i~+1
Bd(ul,u2, ...uk+l) -- il!i2!...ik+l!ul ,U2, ...Uk+l, Ill = d (3)

The Loop and De Rose scheme is based on S-patches, which are n-sided
smooth patches which map a point p = (u, v) inside n-sided domain polygon D
to a 3D surface. Firstly we form n barycentric variables li,i = 1..n defined as
follows. Define the n vertices of the regular n-gon as Pi, i = 1..n. Define the
fractional areas ai(p) as the area of a triangle enclosed by points p, Pi, and pi+l
divided by the total area of D. Now form n new variables Ir~ (p) by

71" i (p) = O~ 1 (p) X...ai--2 (P)O/i+l (p).--an (p) (4)

Then form normalised variables li(p)

l i (- , v) = / i (p) = i(p) (v) +--- +
(5)

The S-patch is now simply defined in terms of the variables li(p) and the
Bezier control points rl. I t is a mapping S = {r(u, v)l(u, v)eDn} where Dn is a
n-sided domain polygon and

r(u, v) = E rl Bd(ll, 12, ...In) (6)
li]=d

Note tha t the n-sided patch uses a k + 1 variate Bezier polynomial where n =
k + l .

3.1 C o m p u t a t i o n

For details of computat ion of the matr ix M the reader is referred to [20]. I t
contains constants so only needs to be computed once and stored. When repeated
computat ion of a point p on a patch is required B T (p)M may be pre-computed
and stored. Then point evaluation consists of a weighted sum of the control
points, and is very fast, O(2n + 1). This is typically what we use when rendering
the surface. When an arbi t rary point is required this can be slower for n > 6

(~+6)w. Bezier control points and in general we avoid patches because there are 6 ! (n + l) !

with more than 6 sides.

246

4 Seeding

An impor tant new result presented in this paper is a solution to the seeding
problem. A valid slime surface must have a mesh of control points connected in
a special way. The mesh must be made up of 4 sided faces and each non-boundary
vertex must have 3 or more faces using it.

A precondition to adaptive meshing algorithms is a valid start ing point. In
our processing pipeline we indicated that our start ing point is a tr iangular mesh.
In our first paper [21] we suggested a method tha t would convert a t r iangular
mesh to a mesh of four-sided faces. The idea was to subdivide each triangle into
3 four-sided faces. This was a valid solution, but not ideal, because it required
the number of faces be increased by a factor of three.

A bet ter option would be to group pairs of three-sided faces to form a four
sided mesh with half the number of faces. This is a nontrivial problem because if
even one triangle is unpaired the solution is of no use. I t bears some superficial
resemblance to the NP-hard problem of finding a Hamilton cycle on a graph.

The algorithm is now presented. I t is based on region growing over the set
of triangles t on the surface. Each triangle has edges e and the region boundary,
denoted B is not allowed to self intersect. A pair of adjacent triangles is chosen
as a seed and the seed boundary is passed to RegionGrow(B).

The region boundary is grown by adding a pair of adjacent triangles at a
time. This operat ion can fail when the boundary self intersects and two non-
connected regions each with an odd number of triangles are left outside the
boundary. The algorithm backtracks from this point to the last boundary that
contained no "elbows". By elbow we mean a part of the boundary where two
adjacent boundary edges lie on the same triangle. The significance of this is that
when a pair of triangles is grown there is no choice as to how the triangles are
paired.

This is illustrated in figure 3 when the boundary encloses the shaded region
and a t t empts to grow a pair of white triangles. If triangle 1 is added only triangle
2 can be paired with it. This is not the case for triangle 3 which can be paired
with triangle 4 or 5.

Fig. 3. The boundary contains an 'elbow' at triangle 1

247

The algorithm below is not guaranteed to succeed but has succeeded for all
our data sets. A depth first recursive search is guaranteed to succeed but has
worst case exponential complexity. The search presented here stores the last
non-elbow boundary so it is a modification of a depth first search which only
ever backtracks up one level. In practice, because there are many non-elbow
boundaries, the algorithm is linear in the number of faces. Since the number of
faces is potentially 10 6 this is welcome.

Pseudo code for the algorithm is presented below.

RegionGrow(B) {
B' := B
repeat {

for each tl on B {
for each t2 adjacent tl outside B {

B := B'
ForcedGrow(B, tl, t2,pass)
if (pass) exit loop over t2 and tl;

}
}
if (not pass) report algorithm failed and exit.
B ' := B

} until no more triangles to add.
}

ForcedGrow(B, tl, t2,pass) {
Add tl and t2 to B.
If B self intersects set pass:=FALSE and return.
If all triangles used up set pass:=TRUE and return.
while (B contains elbow) {

Add next two triangles to B at elbow.
If B self intersects set pass:=FALSE and return.
If all triangles used up set pass:=TRUE and return.

}
set pass:=TRUE and return.

}

Finally we show a sample output from the algorithm in figure 4. F 4(a) shows
the input triangulated surface which is paired and the 4-sided mesh is shown in
(b). This is a valid GBBS control mesh.

4.1 L i m i t a t i o n s

The algorithm presented in this section has not been tested for open or closed
surfaces with holes. This is because a region growing algorithm needs to have
more that one boundary on such a surface. The algorithm will need to be ex-
tended for such surfaces.

(~) (b)

248

Fig. 4. Results from the seeding algorithm, (a) is the input mesh and (b) is a valid
spline control mesh.

5 T h e energy f u n c t i o n

Our approach to reconstructing the surface is similar to that of Hoppe [12].
Hoppe provided a comprehensive scheme that worked for piecewise flat surfaces.
We have succeeded in generalising this approach to the case of GBBS surfaces.

The surface S is defined by a set of control points Q and a mesh topology K,
i.e. S = (K, Q). The goal of our spline optimisation is to find a surface which is
a good fit to the point set X = {Xl..Xp} with a small number of vertices. Thus
we wish to minimise the energy function

E(K, Q) = Eaist(K, Q) + E,.ep(K) + Es,,.ing(K, Q) (7)

The first term depends on the quality of the fit to the point set. It is equal to
the sum of the squared distances from the points X = {Xl..Xp} to the surface.

P

Edist(K, Q) = Z d2(xi, S(K, q)) (8)
i = l

The representation energy penalises meshes with many vertices. There are M
vertices so

Erep(K) = krepM (9)

A regularisation term is needed during fitting (because the problem is under-
constrained when no data points lie on a patch) and we use a simple spring-like
term

Espring(g,Q) = kspring Z Ici-vii2 (10)
e(j,k)=l

This term may be reduced to zero in the final stages of the optimisation, and so
it need have no effect on the result. In particular it need not cause any smoothing
of the surface.

249

6 O p t i m i s a t i o n o f t h e e n e r g y f u n c t i o n

6.1 Fixed patch coordinates and fixed topology

We start by considering a simple case for optimisation. We consider only a single
patch, Sm and those data points {x~ ..x~} for which patch m is the closest patch.
We assume that the closest point on patch m to point x~ is r(pi) with parametric
coordinates Pi. Therefore we wish to optimise the energy function

R

E (q) = Z] x ~ - r (p i) l 2+ ~ I c i - c j l 2 (11)
~=1 e(~j)=l

with respect to the position of the patch control points qm. It is helpful to note
that

r(p,)= w (p,)cj (12)
j:c7 Eqm

where the weighting factors wj(pi) -- (BT(pi)M)j are fixed numbers adding
up to 1. This problem may be formulated as a matrix minimisation problem of
the form lAy - d l 2 which can be solved rapidly. The column vector v is formed
from the control points for the patch. The first R rows of the matrix A contain
the weights wj (pi) so that multiplication of row i with column vector v results
in r(pi). Correspondingly the first R rows in column vector d contain the data
points x~.

The spring terms are attached along the edges of control mesh faces. For each
edge there is another row of A and d. The row in d contains zero and the row
of A contains a ~ in column i and - ~ in column j. It is easy to
verify that E(q) from equation (11)

E(q) = lAy - d[2 (13)

It is worth noting that the above formulation is based on the column vectors v
and d containing 3D vectors, but in fact it separates into 3 independent matrix
equations to be solved for the x, y and z components. We have shown how the
energy can be be reduced to a matrix equation for one patch, and the same
procedure can easily be applied to generate a matrix equation for the whole
mesh.

The matrix for the whole mesh is large but sparse. Such least square problems
may be solved efficiently using the conjugate gradient method [8]. If we consider
only one patch and fix all vertices except the central vertex then the problem
reduces to 3 quadratic equations with straightforward analytic solutions.

6.2 Variable patch coordinates

The true cost in equation (11) depends on the distance to the closest point
which varies as we vary the control points. We solve this iteratively by finding
the closest point, then optimising over the control points and repeating the

250

process until convergence. An attractive feature of the process is that the closest
point step and the control point minimisation step both decrease the energy
monotonically.

6.3 Variable mesh topology

Finally we wish to optimise the full energy function search over control point
positions and mesh topologies. This is potentially a computationally expensive
task especially if we aim to find a global optimum. However we can do a quite
adequate job by local search techniques which can find a good local minimum.

Firstly we examine how mesh topology is allowed to change. The scheme used
by Hoppe for triangles is reviewed in figure 5. It consists of 3 simple operations
performed on edge {i, j}. It can be collapsed to a single vertex, split into two
or swapped. It is worth noting that there are some conditions under which the

edge collapse edge split edge swap

Fig. 5. Topology editing operations for triangular meshes

edge collapse operation is not allowed and these are detailed in [12].
In the case of our mesh edge collapse is not an allowed operation since it can

reduce 4-sided faces to 3-sided faces. Instead we use the operation of face collapse
and its inverse face creation as shown in figure 6. We have not yet determined
what conditions must be satisfied before face collapse is allowed, however we
disallow face collapse when it results in a vertex used by 2 or fewer faces.

6.4 Closest Point Computat ion

The optimisation over control points is relatively quick, and the complexity of
the computation is dominated by the nearest neighbour step. This is mirrored

251

Fig. 6. Topology editing operations for 4-sided face meshes

in other problems such as surface registration by the iterated closest point algo-
rithm [2] and also some formulations of the surface fusion problem.

The general closest point to point set problem can be solved in O(N log N) by
use of appropriate spatial partitioning data structures. By encoding triangles into
such a structure one can be guaranteed of finding all triangles within a threshold
distance. Following this a routine for closest point to triangle is required, and it
is worthwhile carefully optimising this routine.

Finding the closest point to a spline is slightly more computationally inten-
sive. Each patch may be approximated to within a threshold by a piecewise
planar triangular mesh according to a tessellation method of [13], see page 262.
The nearest point to triangle routine may then be used. By decreasing the tri-
angle size a very good approximation to the closest point may be found. In this
way the closest point to spline can be found in less than 10 closest point to
triangle operations.

In the first iteration the closest point search is performed over the entire
mesh. Subsequent searches can be performed on a purely local basis, while the
distance to the surface lies within a threshold.

6.5 Overall strategy

Our starting point is a detailed mesh and point set. A global search assigns each
point to a triangle. Initially we proceed with a triangle optimisation scheme until
the number of triangles has been reduced. This is mainly because the spline
method is slower by about a factor of ten, so it saves time.

Then the seeding algorithm is applied to convert the triangular surface to
a spline surface. Firstly all vertices are optimised followed by recomputing the
closest point. These steps are iterated until convergence. Then local face collapse
operations are performed. A face collapse is performed and the central vertex
is optimised over position followed by a closest point computation for a few
iterations. If the energy has been lowered the collapse is accepted, if not it is
rejected.

252

The faces are sorted into ascending size and this forms a queue to be pro-
cessed. Faces that fail to collapse are marked. When no faces can collapse the
algorithm terminates.

We have not yet tested the face creation operation so we do not know if it
can substantially improve the fit.

7 R e s u l t s

We now present results for the foot dataset. The original surface is shown in
figure 7 (a). A point set X is created by uniformly random sampling the original
surface with 4000 points. We decimate to a triangular surface containing 118
faces. This is shown rendered in figure 7 (b) and also in figure 7 (d). The sptine
fit contains 59 faces (61 patches) and is shown rendered in 7 (c), the control mesh
is shown in figure 7 (e). The rms distance from the point set may be computed.

Fig. 7. Surface optimisation applied to the foot (a) original surface (b) best fit with
118 triangles - flat rendered (c) best fit with 59 spline patches - fiat rendered (d) best
fit with 118 triangles ~ line drawing (e) best fit with 59 spline patches - control mesh

The foot is firstly scaled to a unit cube. The triangular fit is 0.35% of the cube
edge length and the spline fit is 0.18%. This is an improvement of a factor 2. A
more dramatic improvement is to be expected in higher order derivatives such
as the normal or curvature. This is apparent from the flat rendered versions in
figure 7.

253

8 Conclus ions

We have now provided a powerful new representation which can be used in
a variety of applications in computer vision. We have previously developed a
matr ix formalism for easy algebraic manipulation in the same form as [4] and fast
techniques for computing points on the spline. The matrices used for convenient
computation of the GBBS surface have been made available on the Web [1].

In this paper we have developed a scheme for seeding the surface and adap-
tively remeshing the control points. An optimisation approach provides the
framework for driving the adaptive meshing.

9 F u t u r e work

At present we can fit point sets of size 5000 in minutes on a workstation. We in-
tend to optimise the code with the objective of dealing with point sets of size 500
000 in less than 30 minutes cpu time, followed by more detailed characterisation
of the gains in accuracy over a number of data sets.

Extensions of the software are necessary to deal with open surfaces and in-
ternal crease edges.

10 Acknowledgements

This work was carried out as part of EPSRC Research Grants, GR/K04569 and
GR/K91255. Both datasets were taken on a Cyberware scanner, the bunny is
available on the Cyberware web site and the foot dataset was supplied by Tim
McInerney.

References

1. A. J. Stoddart, Matrix data on the Web,
h t t p : / / ~ , ee. surrey, ac. uk/showstaffTA. St oddart.

2. P. Besl and N. McKay. A method for registration of 3D shapes. IEEE Trans. Pattern
Analysis and Machine Intell., 14(2):239-256, 1992.

3. V. Casselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In 5th Int. Con-
ference on Computer Vision, pages 694-699, Cambridge, Massachusetts, 1995.

4. R. Curwen and A. Blake. Dynamic contours: Real-time active contours. In Active
Vision, pages 39-57, MIT Press, Cambridge, Mass, 1992.

5. D. DeCarlo and D. Metaxas. Adaptive shape evolution using blending. In 5th Int.
Conference on Computer Vision, pages 834-839, Cambridge, Massachusetts, 1995.

6. M. Eck and H. Hoppe. Automatic reconstruction of b-spline surfaces of arbitrary
topological type. In SIGGRAPH, pages 325-334, New Orleans, 1996.

7. G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, Boston, 1990.

8. G. Golub and C. V. Loan. Matrix Computations. John Hopkins University Press,
1989.

254

9. A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Marching triangles:
range image fusion for complex object modelling. In 1996 Int. Conference on Image
Processing, pages II381-384, Lausanne, Switzerland, 1996.

10. A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Reliable surface recon-
struction from multiple range images. In Fourth European Conference on Computer
Vision, pages 117-126, Cambridge, U.K., 1996.

11. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface recon-
struction from unorganized points. In SIGGRAPH, pages 71-78, 1992.

12. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh opti-
mization. In SIGGRAPH, pages 19-25, 1993.

13. D. Kirk. Graphics Gems. Academic Press, London, U.K., 1992.
14. V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes.

In SIGGRAPH, pages 313-324, New Orleans, 1996.
15. C. T. Loop and T. D. DeRose. A multisided generalization of bezier surfaces. ACM

Trans. on Graphics, 8(3):204-234, 1989.
16. C. T. Loop and T. D. DeP~ose. Generalized b-spline surfaces of arbitrary topology.

ACM Computer Graphics, 24(4):347-356, 1990.
17. T. McInerney and D. Topologically adaptable snakes. In 5th Int. Conference on

Computer Vision, pages 840-845, Cambridge, Massachusetts, 1995.
18. T. McInerney and D. Terzopoulos. Deformable models in medical image analysis.

Medical Image Analysis, 1(2):91-108, 1996.
19. M. E. Mortenson. Geometric Modeling. John Wiley and Sons, New York, 1985.
20. A. Saminathan, A. J. Stoddart, A. Hilton, and J. Illingworth. Progress in arbitrary

topology deformable surfaces. In British Machine Vision Conference, pages 679-688,
Colchester, England, 1997.

21. A. J. Stoddart, A. Hilton, and J. Illingworth. Slime: A new deformable surface. In
British Machine Vision Conference, pages 285-294, York, England, 1994.

