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A b s t r a c t .  Creases are a type of ridge/valley-like structures of a d di- 
mensional image, characterized by local conditions. As creases tend to 
be at the center of anisotropic grey-level shapes, creaseness can be con- 
sidered as a type of medialness. Among the several crease definitions, 
one of the most important is based on the extrema of the level set cur- 
vatures. In 2-d it is used the curvature of the level curves of the image 
landscape, however, the way it is usually computed produces a discon- 
tinuous creaseness measure. The same problem arises in 3-d with its 
straightforward extension and with other related creaseness measures. 
In this paper, we first present an alternative method of computing the 
level curve curvature that avoids the discontinuities. Next, we propose 
the Mean curvature of the level surfaces as creaseness measure of 3-d 
images, computed by the same method. Finally, we propose a natural 
extension of our first alternative method in order to enhance the crease- 
hess measure. 
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1 I n t r o d u c t i o n  

Ridge/val ley- l ike  s t ructures  (lines, surfaces, etc) of a d dimensional  image, tend 
to  be at the center of anisotropic grey-level  objects.  Therefore  they  are useful 
skeleton-like descriptors.  As can be seen in [8] it is possible to  characterize 
r idge/val ley- l ike s t ructures  a t tending to  the shape of the  image landscape or to 
its hydrology,  giving rise to  different mathemat ica l  definitions. In  the l i terature 
we can find a number  of local character izat ions [2]. We te rm here as c r e a s e s  

the  r idge/val ley- l ike s t ructures  which are character ized locally. Creases have 
been proposed [5, 2] as a type  of medial  axis for grey-level  objects  as the skull 
in CT  and M R  images, vessels in arteriographies,  roads in aerial photographs ,  
fingerprints,  etc. 

One of the mos t  useful definitions of creases, due to  its invariance propert ies 
[2] and its relationship with the shape descriptor called Intensi ty  Axis of Sym- 
me t ry  [5], is the  one tha t  is based on the  level set curvatures.  Given a funct ion 
L : R d -+ R ,  a level set consists of the points  Sg = { x / L ( x )  = g}. Different 
values of  g give a sequence of sets Sg which are the level sets of L. For d = 2 the 
graph  of L can be though t  as a landscape.  Then,  the  level sets are the  level curves 



157 

t ha t  appear  in car tographic  maps.  In this case, creases are defined th rough  the 
level curve curvature  ~. Negative min ima of ~ along the  level curve t angen t  di- 
rect ion v, level by  level, are valley-like curves and positive m a x i m a  are ridge-like 
curves. We refer here to  this type  of  ridge-like and valley-like curves as v e r t e x  

curves .  T h e y  can be character ized by the local test  

e = V ~ . v = 0  (1) 

where Ve �9 v < 0 and n > 0 means ridge-like and Ve  �9 v > 0 and ~ < 0 means 
valley-like (Fig. 1). 

_ ~ Ridge-like vertex curves 
~ ,. - - -  -. -- ........ ..................... Valley-like vertex curves 

,.,,./',", "', ,.~-'. - '\.'~',. ,~2"--'.'-.'.'-~..-'",-~ ...... Level Curves 

~ ~ ~ .  "", ", v Level curwetangent 
~ . . : ' . : , ' ~ , ~ !  i ~, w Gradient Direction 

Fig.  1. Vertex curves. 

The  extension of ~ to 3 -d  is two times the Mean curva ture  ~M of the  level 
surfaces (see [13] p. 98 and [4] p. 337), which is an extrinsic differential geometr ic  
entity. Therefore,  f rom now on we will refer to this extension for d dimensional  
images as the  level set extrinsic curvature  (LSEC) ~d- In  [2] we can find the 
general izat ion of Eq. (1) to ext rac t  r dimensional  creases f rom d dimensional  
images, by the analysis of the principal curvatures  of  the level sets. 

The  computa t ion  of  (1) or its generalization involves up to  four th  order  
derivatives and the evaluat ion of complex expressions [5, 2, 10, 14]. However, in 
many  cases, as for elongated s t ructures  in 2 -d  and 3 -d  images,  and plate-l ike 
s t ructures  in 3 -d  images, the  ex t rema of  curvature  are so high tha t  we can cir- 
cumvent  the  problem by comput ing  ~ or t~M as a creaseness measure  and then 
applying a thresholding.  In some applications the creaseness measure  itself is 
sufficient (e.g. as feature for registrat ion of C T / M R  brain images [3]). The  com- 
puta t ion  of these creaseness measures needs just  up to second order  derivatives 
and their equat ions are computa t iona l ly  much more  cheaper  than  expressions 
derived from (1). 

In this paper  we propose the level curve curvature  ~ in 2-d ,  the Mean cur- 
vature  of  the level surfaces ~M in 3 -d  and, in general, LSEC /~d as creaseness 
measures.  The  level curve curvature  has been already proposed  as a creaseness 
measure.  However, the  t radi t ional  way of comput ing  ~ [3, 9] gives raise to  two 
problems. Firstly, it produces an extremely large dynamic  range of  values, bu t  
having only a few points  with curvature  at  the upper  and lower bounds ,  which 
we will call out l iers .  This makes creaseness to differ f rom medialness since these 
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outliers are not 'more in the center' than other points with a high, but  not 
outlier, creaseness value. Secondly it produces a discontinuous measure: gaps 
appear at places where we don't  expect any reduction of creaseness for being at 
the center of some grey-level object. 

In Sect. 2 we analyze the problems of computing LSEC by the traditional 
formula. In Sect. 3 we propose an alternative method to overcome them. In Sect. 
4 we go a step further and propose a technique to enhance LSEC creaseness by 
incorporating the structure tensor analysis in the creaseness measure. As far as 
we know, it is the first time this technique is employed to compute a creaseness 
measure. In Sect. 5 we address the main computational aspects. In Sect. 6 we 
compare the output  of our operators with existing creaseness measures. Finally, 
Sect. 7 summarizes the main conclusions. 

2 L S E C  B a s e d  o n  t h e  I m a g e  S c a l a r  F i e l d  

For L : 1~ d --+ 1~ running on {xl, . . . ,  x d} coordinates, n generalizes to nd accord- 
ing to tensoriai calculus as (see [13] p. 98 and [4] p. 337): 

nd = ( L a L z L ~  - LaLaLzI3)(L~L~)-~, a, fl,~/ E {x 1, ...,x d} (2) 

where La = OL/Oa, La~ = 02L/cgaOfl and the Einstein summation convention 
is used. Then, for d = 2 and using Cartesian coordinates we obtain the level 
curve curvature as: 

= (2LzLyLxy - L2Lxz 2 2 - LzL~y)(n x + L~)-~ (3) 

and for d = 3, two times the Mean curvature of the level surfaces: 

2aM (2(LzLyL~y + L=LzL=~ + LyLzLyz) 2 = - L=(Lyy + Lz~) 

_L2(L=z + Lzz) _ L2(L=z + Ly~))(L2 + L2 + L2)_ (4) 

In 2--d,  if we travel along the center of anisotropic structures we go up 
and down on the relief, passing through maxima, saddles and minima (e.g. Fig. 
6(a)) .  We have found that  computation of n according to Eq. (3), produces gaps 
and outliers (Fig. 2) on the creaseness measure around this type of critical points 
(Fig. 3(c)),  as well as on the center of elongated grey-level objects having a short 
dynamic range along it. We have checked [7] that  this happens independently 
of the scheme of discretizing derivatives and even when the gradient magnitude 
Lw = (L~L,)  1/2, for w = (Lx l , . . .  ,Lzd) t being the gradient vector, is far away 
from the zero of the machine, this is, at pixels where Eq. (3) is well-defined. 
For example, in the case of ridge-like saddle points, as those in Fig. 6(a),  n not 
only goes down but also suffers from a 'change of sign barrier '  on the path of the 
expected ridge-like curve (Fig. 6(c)).  The reason is tha t  the neighborhood of 
the saddle point is composed mainly of concave zones (n < 0) but the sub-pixel 
ridge-like curve runs through convex zones (~ > 0) that  discretization of Eq. (3) 
is not able to detect. 
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Critical point 

Meaningful range 

of creaseness 

F ig .  2. Profile of ~ along a crease which has a critical point on 'its way'. 

F ig .  3. From top to bot tom and left to right: (a) Relief with two valley-like regions 
and a ridge-like one. (b)  Relief's level curves. (c) ~. (d)  Normalized gradient vector 
field. 
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Notice that  gaps can not be distinguished locally from points tha t  actually 
have low creaseness. This affects the use of the creaseness measure itself and the 
extraction of creases by thresholding the creaseness, since c r e a s e  f i n d e r s  have 
to decide heuristically how to follow when they reach those discontinuities. To 
solve the problem of outliers we can use the cut-off  transform 

g if I (x)  > g 
T ( I (x ) ,  g) -- - g  if I (x)  < - g  (5) 

I (x)  Otherwise 

for an experimentally given g > 0. If g is high we do not see clearly the creaseness 
measure, if g is low we get a thick response. 

The 3-d operator aM computed according to Eq. (4) has analogous problems 
to a in 2-d, as well as other more expensive 3-d creaseness measures as the 
ridgeness m e a s u r e  L p p  (second directional derivative of L along the direction 
p that  minimizes the normal curvature of the level surfaces) or the valleyness 
measure Lqq (in this case q maximizes the normal curvature) [3, 9]. 

3 L S E C  B a s e d  on  t h e  I m a g e  G r a d i e n t  V e c t o r  F i e l d  

To avoid the discretization problems of Eq. (2) when using LSEC as creaseness, 
we present an alternative way of computing this measure. For the sake of sim- 
plicity, consider the 2-d case. Equation (3) is the result of applying the implicit 
function theorem to a level curve defined as L(x) = g, in order to define its local 
derivatives and then its curvature a (see [13] p. 99). Another geometric relation- 
ship defines ~ through the slopelines, this is, the lines integrating the gradient 
vector field w, therefore, orthogonal to the level curves. Due to the orthogo- 
nality, when level curves are parallel straight lines, slopelines are also parallel 
and straight, and when the level curves bend, the slopelines diverge (Fig. 4). 
Therefore, it is clear that  there is a connection between curvature of the level 
curves and the degree of parallelism of the slopelines. In vector calculus we have 
the divergence operator [12] which measures this degree of parallelism. The di- 
vergence of a d dimensional vector field u : l~ d -~ R d, u(x)  = (u 1 (x), ..., u d (X)) t 

is defined as 
d 0U ~ 

div(u)  = O x ,  " ( 6 )  
i= l  

Now, if we denote by 0d the d dimensional zero vector, then we can define 
@, the normalized gradient vector field of L : 1~ d ~ 1~, as 

w/ll il i f  Ilwll > o 
*=[  Od if Ilwll=o 

(7) 

and then it can be shown that  

~d = - d i v ( ~ )  . (8) 
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Equations (2) and (8) are equivalent in the continuous. However, and this 
is one of the key points of this paper,  the discretization of each equation gives 
different results, namely, Eq. (8) avoids the gaps and outliers tha t  Eq. (2) pro- 
duces on creases. Thus, from now on, for d = 2 we denote by ~ and ~ the discrete 
versions of LSEC according to Eqs. (2) and (8), respectively. Symbols t~M = t~d/2 
and ~M : ~d/2 for d = 3 and t~ d and ~d for d > 3 will be used analogously. 

tf  I,l I1 l "t 
Slopelines 

Level Curves - -  

Fig. 4. The divergence of the slopelines depends on the curvature of the level curves. 

Fig. 5. K computed from Fig. 3(d). 

If we look at the gradient vector field ~r along a crease we appreciate as 
dominant the effect of a t t ract ion/repuls ion of @ even in the presence of critical 
points (Fig. 3(d)) .  This motivated us to compute 1 the level curve curvature from 

1 The definition of ~ in terms of the divergence of @ is used in other fields of computer 
vision as in non-linear scale-space. However this is done just to work with a compact 
notation, but ~ is implemented by following Eq. (3) since it gives rise to a most 
straightforward discretization than using Eq. (8). 
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the normalized in'lage gradient vector field instead of from the image scalar field 
L. In Fig. 5 we see the result of computing ~. Notice how gaps are not present 
anymore,  compared with Fig. 3(c).  Furthermore,  the dynamic range of ~d is 
bet ter  than  tha t  of ad- Actually, it can be shown [7] that ,  for a d dimensional 
image, if we use centered finite differences to take derivatives, then the values 
of Kid run on I - d ,  a~. The value is - d  at d dimensional min ima and d at d 
dimensional maxima.  The values of t~d in the discrete case can also be bounded 
although having a much broader dynamic range tha t  makes easier the existence 
of outliers. At Fig. 6 it is also analyzed the behavior of a and ~ around ridge-like 
saddle points in a synthetic image. 

Fig. 6. From left to right: (a)L(x, y) -- sin(60x u + 30y 2) + sin(8 arctan(y/x)) sampled 
in [-1, 1] • [-1, 1] at a resolution of 128 • 128 pixels. (b) T(tr 1.0) with a region of 
interest (ROI). (c). Zoom of the ROI. White lines: ridge-like creases after thresholding 
of a, pixels where a > 0 have been seted to lighter grey and a < 0 to darker. (d) ~. 
(e) Zoom of the previous ROI. 

4 L S E C  B a s e d  on  t h e  I m a g e  S t r u c t u r e  T e n s o r  F i e l d  

Once we have established ~d as  a good creaseness measure,  we can go further 
and enhance it by modifying the gradient vector field of the image previously 
to apply the divergence operator.  We want to filter the gradient vector field in 
such a way tha t  the configurations of 7(a) approach those of Fig. 7(b)  since 
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then at tract ion/repulsion and therefore creaseness, will be higher. At the same 
time, the qualitative behavior of the gradient vector field at regions where there 
is neither at traction nor repulsion, must remain unchanged. This filtering can 
be carried out in a natural way through the structure tensor, which is a well- 
known tool for analyzing oriented textures [1,6, 11]. Moreover, without extra 
computational cost, we get a coarse measure of anisotropy that  will allow us to 
at tenuate the creaseness measure at zones in which we are not interested, like in 
flat regions. 

Let 's fix ideas in 2-d. To compute the dominant orientation, it is sufficient 
to analyze the behavior of the image gradient in a given neighborhood. We 
assume that ,  within a neighborhood of size a~ centered at a given point x, namely 
Af(x; a~), there is at most a single dominant orientation. Notice that  the gradient 
of a function points towards the direction of maximum change, and the dominant 
orientation is perpendicular to this direction since anisotropy appears as similar 
grey values along one orientation and considerable fluctuations perpendicularly. 

Ridge Valley Ridge Valley 

Attraction Repulsion Attraction Repulsion 

Ca) (b) 

Fig. 7. Attraction and repulsion of vectors in (b) are higher than in (a). 

The structure tensor is an operator represented by the following symmetric 
and seml-positive definite d • d matr ix 

M(x;  a,) = X ( x ;  a,) * (w(x) tw(x) )  (9) 

where the convolution '*' of the matrix (w(x) tw(x) )  with the window Af(x; ai) 
is element-wise. A suitable choice for the window is a d dimensional Gaussian, 
i.e. Af(x; ai) = G(x; a~). This choice implies that  neighbors are weighted as a 
function of their distance. 

The dominant gradient orientation is given by the eigenvector which cor- 
responds to the highest eigenvalue of M. However, we have assumed that  ev- 
ery point has a preferred orientation. To verify this assumption we introduce 
a normalized confidence measure: to each orientation we associate a real value 
C E [0, 1] which can be computed from the eigenvalues of the structure tensor. 
Similarity of the eigenvalues of the structure tensor implies isotropy and, as a 
result, C should be close to zero. Therefore, a logical choice consists of testing 
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whether the sum of quadratic differences in eigenvalues, namely 

d d 

= - 2 ,  

i----1 j----i-I- 1 

(10) 

exceeds a predefined threshold c characteristic for A/x in the structure we want 
to enhance. A suitable function is 

g(x; a~) = 1 -  e -(~'A(x;'~x))2/2c2 (11) 

Now we can obtain an enhanced creaseness measure by the following steps: 

1. Compute  the gradient vector field w and the tensor field M.  

2. Perform the eigenvalue analysis of M.  The normalized eigenvector w '  corre- 
sponding to the highest eigenvalue gives the predominant  gradient orienta- 
tion. In the structure tensor analysis, opposite directions are equally treated. 
Thus, to recover the direction we put w ~ in the same quadrant  in 2-d, or 
octant  in 3-d, than  w. Then, we obtain the new vector field 

~r = s i g n ( w ' t w ) w  ' (12) 

where the function sign(x) returns +1 if x > 0, - 1  if x < 0 and 0 if x = 0. 
In this way, a t t ract ion/repuls ion of vectors is reinforced. 

3. Compute  the creaseness measure 

kd = -d iv (@)  . (13) 

4. Compute  the confidence measure C, tuning the constant c in Eq. (11) to 
reduce creaseness in the structures we are not interested, in order to take 
kdg as the final creaseness measure. 

5 C o m p u t a t i o n a l  A s p e c t s  

To obtain derivatives of a discrete image L in a well-posed manner  [13,4], we 
use the centered finite differences (CFDs) of a Ganssian smoothed version of the 
image: 

L a ( x ; a o )  ~ A~(n(x)  * G(x ; ao ) ) ,  a e {xl, . . . ,x d} (14) 

where ao stands for the s tandard deviation of the Gaussian and As  for the 
CFD along the a axis. Then, a method to calculate both  ~ and ~ in 2-d, and 
~M and ~M in 3-d  consists of computing the set of image derivatives and then 
applying the respective equations. In this case, P~ and ~M require less memory  
and operations than ~ and ~'~M as can be seen in Table 1. However, in 3-d  it is 
convenient to write an algorithm that  scans the image voxel by voxel computing 
the respective expression. The reason is saving memory:  by first computing all 
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Tab le  1. Number of operations at each pixel/voxel of a 2 -d /3 -d  image. Addition and 
subtraction are assumed as equivalent, product and division too. The 1-d 1 't order 
CFDs account as 1 addition plus a division and 2 "d order CFDs as 3 additions and 1 
division. 

/~ ~ /~M ~M 

Maximum number of images 6 5 9 7 
simultaneously in memory 
Additions and subtractions 15i6 33 10 
Products and divisions 8 4 13 6 
Square roots 1 1 1 1 
Divisions by a constant 5 4 9 6 

the image derivatives involved in ~M we need s imul taneous ly  7 float 3 - d  images 
(see Table  1 and  more details in [7]) which could mean  a lot of memory.  We have 

adopted  the pixel /voxel  scanning  approach to minimize  memory  requi rements  
and  therefore disk th roughput .  

W h e n  r u n n i n g  pixel /voxel  by pixel /voxel  comput ing  ~ or ~M we have to buffer 
values to avoid the  repet i t ion  of calculat ions [7]. In  pract ice this  makes ~ and  
~M slightly more t ime consuming  t h a n  a and  aM. Yet the  difference is small  as 
can be seen in Table 2. C o m p u t a t i o n  of ~d c o n s u m e s  much more  resources t h a n  
a d and  ~d due to bo th  the  averaging of vectors and  the e igensystem analysis.  

Tab l e  2. Time consuming in a 200 MHz Pentium Pro PC with 64MB of RAM memory 
under Linux OS. The swapping was needed only for the 250 x 250 x 180 image. All 
the images are float since the operators are applied after a Ganssian smoothing, which 
was implemented by separable spatial convolutions but without exploiting Gaussian 
symmetry. 

Image dimensions Gaussian smoothing (ffD ---- 4.0) 
256 x 256 0.3 s 
512 x 512 1.3 s 

128 X 128 X 84 50 S 
250 X 250 X 180 360 S 

K ~ (a~ = 4.0) 
0.058 s 0.072 s 1.2 s 
0.24 s 0.28 s 5.3 s 

~M ~M ~M (aI = 4.0) 
1.8 S 2.1 S 50 S 
23 S 23.3 S 720 S 

6 R e s u l t s  

Results  are presented wi th in  the framework tha t  mot iva ted  our  research in 
creaseness operators .  I t  consists of the au toma t i c  regis t ra t ion  of 3 - d  C T  and  
MR bra in  volumes from the same pa t ien t  as in [3]. This  can be achieved by 
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registering the surface tha t  runs along the center of the skull from both  images, 
which appears  as a ridge-like structure in the CT image and a valley-like struc- 
ture in the MR. The idea is to base the registration on a search through the space 
of the six 3-d  rotat ion and translation parameters ,  using the correlation of the 
MR valleyness and the CT ridgeness to assess the goodness of each transform. 
Therefore we need continuous creaseness measures, with the creaseness in the 
skull bone enhanced. 

Fig. 8. From top to bottom and left to right: (a) 256 x 256 MR slice. The black fringe 
(valley-like structure) is the skull bone. In all cases we work with a Gaussian smoothed 
version of this image, for aD = 4.0 pixels. (b) T(~, 1.5) (see the cut-off transform T in 
Eq. (5)). (c) ~. (d) ~ for a~ = 4.0 pixels. (e) The well-known [3] operator Lvv = -~nw.  
(f) -KLw. (g) -KC for c = 700. 

For 2-d da ta  we obtain the results shown in Figs. 8 and 9. I t  is clearly 
distinguished tha t  t~ produces a number of gaps along the skull while ~ and 
give a continuous response. The ~ measure is more contrasted than  ~ and, when 
combined with the corresponding confidence measure C, we can almost  isolate 
creaseness on the skull (white response in Fig. 8(g) and black in 9(g)) .  

As the application is on 3-d  da ta  sets, the operators  tha t  we are actually using 
are ~M and kM. Traditional operators such as Lpp and Lqq also have problems 
of continuity as can be seen in [3] at p. 386, where the authors used the same 
dataset .  In Fig. 10 we can see the CT ridgeness and MR valleyness based on 
~M. Notice how ~M is quite continuous along the skull. However, response is also 
present within the brain. I t  is difficult to get rid of this response multiplying 
by the gradient magnitude Lw since we have then the same effect than  in the 
2-d  case, this is, creaseness along the skull loss continuity as in Figs. 8(f )  and 
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Fig. 9. From top to bottom and left to right: (a) 256 • 256 CT slice. The white fringe 
(ridge-like structure) is the skull bone. (b)-(g)  have the same meaning and share the 
parameters of Fig. 8. 

9(f)  because along the center of the skull, the gradient magni tude is lower than  
in the skull boundary. In Fig. 11 we see the results based on the ~M operator  
multiplied by the confidence measure C. As in the 2-d  case, the ~M operator  itself 
gives a more contrasted creaseness measure as well as more homogeneous along 
the crease, and by its combination with C we get rid of the creaseness response 
in the background and within the brain. 

7 D i s c u s s i o n  

The level set extrinsic curvature (LSEC) is a creaseness measure tha t  acts as a 
medialness measure for grey-level objects. In this paper,  we first identified the 
problem of outliers and, mainly, gaps when computing this creaseness measure 
by classical schemes. Afterwards we have proposed an alternative method of 
computing LSEC tha t  overcomes the mentioned problems. Moreover, the use of 
LSEC in 3-d  (~M) as a creaseness measure is itself another key point of this paper  
since previous works went to 3-d  on the basis of most  computat ional ly expensive 
principal curvature analysis of the level surfaces. Moreover, these measures suffer 
also from the problem of gaps while ~M does not. We have also proposed a new 
version of LSEC where the structure tensor analysis has been adapted  from 
oriented texture analysis to enhance LSEC creaseness, which combined with 
the associated confidence measure gives a very clean creaseness measure along 
interesting objects. Results have been shown in the context of a real application, 
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F i g .  10. Columns from left to right: (a)  Transversal ,  coronal and sagital  slices of a 
250 • 250 • 180 C T  image with  cubic voxels. (b)  ~ of the  C T  image after a Gaussian 
smooth ing  of aD = 4.0 voxels. (c) ~M of the  M R  image at the  same scale. (d)  Same 
slices of a 250 • 250 • 180 M R  image with  cubic voxels. 

F i g .  11. All the  columns have the  same meaning than  in Fig. 10 bu t  showing the  results 
of ~M C for a D : a I : 4.0 voxels and c = 1000. 
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namely, the registration of CT and MR brain volumes, where our operators  have 
proved to give an excellent output.  
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