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Abs t r ac t .  This paper presents a new Fourier-based approach to the 
separation or decoupling of m additive images from a time-sequence of 
the sum of these images where at least m - 1 images are translating with 
distinct and unique velocity. A closed-form solution is presented for the 
case where m = 2. A generalization is then presented which extends the 
theory to embrace situations where the images are not additive but are, 
instead, formed by the superposition of an occluding object or objects on 
an occluded background. That is, the approach is generalized to effect a 
model-free segmentation of objects undergoing translatory fronto-parallel 
motion in dynamic image sequences. Object velocities of one pixel per 
frame are sufficient to guarantee segmentation. 
We also show how the technique can be applied on a local basis to com- 
pute a dense instantaneous optical flow field for the image sequence, even 
in relatively featureless regions. The technique is evaluated using Otte's 
and Nagel's benchmark image sequence, for which ground-truth data is 
available, and results comparable with the ground-truth flow field are 
achieved. RMS errors of velocity magnitude and direction are computed 
and reported. 

1 I n t r o d u c t i o n  

Traditional approaches to segmentation typically exploit one of two broad ap- 
proaches. These are (a) boundary detection, which depends on the detection of 
spatial intensity discontinuities (using first or second order gradient techniques) 
and their aggregation into contour-based object descriptions, and (b) region- 
growing, which depends on the identification of local regions that  satisfy some 
regional similarity predicate (see [1] and [2] for an overview). 

Equally, the measurement  of object velocity in images normally exploits one 
of two pr imary  techniques. The first involves the computat ion of the spatio- 
temporal  gradient, differentiating the (filtered or unfiltered) image sequence with 
respect to t ime and subsequently computing the optical flow field (e.g. [3]). The 
second involves the segmentation of the object or feature in question using ei- 
ther region-based gradient (first or second order) filtering and analysis followed 
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either by the computation of the optical flow field or by identification object 
correspondence, typically by matching contour or region primitives (e.g. [4]). A 
third, lesser-used, approach exploits the regularity in spatiotemporal-frequency 
representations of the image, such as the spatiotemporal Fourier Transform Do- 
main, resulting from certain types of image motion, such as fronto-parallel trans- 
lation [5-13]. Comparisons of the many variations of these approaches and the 
relationship between them can be found in [14-17]. 

In this paper, we develop the Fourier analysis of dynamic image sequences 
and we present a new approach (i) to the separation of additive signals (such as 
in the case of reflections superimposed on optical images), (ii) to the conventional 
segmentation of occluding and occluded objects, and (iii) to the estimation of 
instantaneous velocity (including estimation of optical flow). This is effected by 
processing the resultant Fourier phasors derived from the FFT of the composite 
image and by resolving each of them into the individual Fourier components 
corresponding to each object. 

2 T h e o r y  

2.1 The  Addi t ive  Model:  Signal Separa t ion  

First, we show that it is possible to separate (or recover) m additive images, given 
only a time sequence of the sum of these images and given the assumption that 
at least m - 1 images are translating, each with a distinct and unique velocity. 
That is, given a composite image ere(X, y) at time tj in a temporally-ordered 
image sequence: 

y)  = y)  (1 )  
i----1 

where .r y) is the (unknown) ith additive component image at time t j, and 
assuming 

i x i eto(x vi~jbt, viujht) (2) , = _ y - 

where (v~, v~) is the spatial velocity of the ith component image and bt is the 
incremental time interval, it is possible to recover, or compute, each individual 
image r (x, y), Vi. 

This is accomplished by computing the Fourier transform Ftj(k~, ky) of each 
image in the image sequence 

Ft~(k~, k~) = J= (eta(x, Y)) (3) 

and then by decoupling the resultant (composite) Fourier component at each 
spatial frequency into the m individual Fourier components F~o(k~ , kv) at time 
to. The required individual images are then computed using the inverse Fourier 
transform 

r y) = ~-~ (F~0(k~, k~)) (4) 
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In particular,  the composite Fourier component at t ime t j  is a function of the 
m decoupled Fourier comonents F~o(k~, ky) ,  1 < i < m at t ime to and of the 
incremental spatial frequency-dependent and velocity-dependent phase change 
AO ~" which results from the individual image translation where AO i is given by 

A ~  ~ = e - i ( k . . ' ~ t + k ~ . ' ~ t )  (5) 

Specifically, we have 

m 
F q ( k = , k y )  x--"  , k i = 2.., F,o( , ,  ky ) (Ar  ) 

i----1 

(6) 

If we have i = m distinct individual images, equation 6 implies tha t  we have 2m 

complex unknowns (i.e. F~o and AO ij) and consequently we can solve for these 
2m unknowns if we have 2 m  constraints. These constraints are derived from 
equation 6 by making j = 2m observations for Fq (Le. by using j = 2m com- 
posite images in the temporal  sequence). Tha t  is, for a given spatial frequency 
(kx, ky) ,  we observe the Fourier transform Fq at t ime t o , t 1 , . . .  , t j , . . .  , t2m and 
solve these 2m simultaneous equations of degree 2m - 1 in complex unknowns 
F~o and A ~  i. 

In the simplest non-trivial case, rn = 2, there are two distinct objects. In this 
case, and dropping the (kx ,  ky)  for the sake of brevity while remembering tha t  
we are dealing with complex values defined on a 2-D domain, we have 

Fro = Flo(AOl) ~ + Ft2o (AO2) ~ (7) 

= 2 + 2 (9 )  

F,3 = Ftlo (A(/")3 + F~o(A@2) 3 (10) 

This set of four simultaneous equations has a closed-form solution [18]: 

A~  1 _ - b  +_____ ~ (11) 
2a 

A ~  2 _ - b -  v ~ (12) 
2a 

F t0z~  ~ - Ftl 

FtoAO 1 - F h F~o = ~ - - ~ _ - - ~ - ~ )  (14) 

where a = (Ftl) 2 - FtoFt2, b = FtoFt3 - FhFt2, c = (Ft2) 2 - FtiFt3,  and 
z = b 2 - 4ac = a + ifl. 

Note, however, that  the assignment of A@ 1 rather than A4 ~ in equation 
11 and vice versa in equation 12 (and, hence the assignment of Flo and Ft2o 
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in equations 13 and 14) is arbitrary and the alternative assignment is equally 
valid. Consequently, once Ftlo(k~:, ky) and Ft2o(k,, ky) have been solved for all 
spatial frequencies k=, ky, it is still necessary to sort these sets of Ftlo(k=, ky) and 
F2to(k=, ky). That  is, we only have at this point two sets of phase changes {A$ A} 
and {AO B} and two corresponding sets of Fourier components {F A } and {FB). 
These sets need to be sorted into two new sets {F ~} and {F 2} corresponding to 
the two individual component images. In [18], we presented a method of doing 
this based on the regularity of the incremental phase change AS as a function 
of frequency (kx, ky). Specifically, we have: 

zlO(k=, ky) = e -~(€200 
= r162 (15) 

For a given image i, (v/, v~) is constant. Thus a given image i will exhibit a 
phase change 5r ky): 

(16) 

which will differ for each image i. Since we require (v~, v~) # ( 4 ,  vr i -~ j ,  in 
order to sort the components of the two waves we simply need to identify the 
two velocities (v~,v 1) and 2 2 y (v=, vy) which will, in turn, allow us to identify the 
corresponding expected phase change for images 1 and 2, respectively. Let these 
expected phase changes be denoted 5r ky) and 6r respectively. 
Then we assign a component FA(k=, ky) to image 1, i.e. we include it in {F1}, if 
15r - 5r I < 15r -- 5r otherwise we assign it to {F2}; FS(k=, ky) is assigned 
to the other image. 

It only remains, then, to identify the two velocities (v~ v 1) and (v~, v 2) We 
, y Y �9 

do this using a Hough transform. From equation 16 we have: 

1 
v u = ~ (5r ky) - k,v=ht) (17) ~yV~ 

This equation represents a Hough transform in the two variables (v,, Vy) which 
we solve for all 5r ky), k=, k~, and v=. Note that 

5r k~, ky ) = arctan(~A~(kx, ky ), ~Zlq~( kx, ky ) ) (18) 

Local maxima in this Hough transform space represent the velocities which are 
exhibited by the frequency components. In this case, there are two velocity max- 
ima, one corresponding to image 1 and the other to image 2. The location of 

v 1 v ~ v 2) and, thus, we can proceed to sort the these maxima give us ( x, v~) and ( ~, y 
components. 

Note that  the Hough transform equation 17 becomes degenerate if k u = 0 in 
which case we use an alternative re-arrangement as follows: 

1 
v~ -~ k=ht (5r ICy)) (19) 
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2.2 T h e  G e n e r a l i z e d  Occ lus ion  Mode l :  S ignal  S e g m e n t a t i o n  

The foregoing theory assumes that  the individual images combine additively 
to form the resultant image. Although there are many situations or applica- 
tions where this assumption is valid, e.g. the superposition of reflections on an 
image acquired through a transparent medium, there are important situations 
where it is not. In particular, the common situation where a moving object oc- 
cludes a (possibly moving) background violates the assumption. Although the 
foregoing approach does in fact produce a reasonable segmentation of the (oc- 
cluding) forground objects from the (partially occluded) background, the results 
are inevitably imperfect. To deal with this, we next present a generalization of 
the foregoing theory to deal explicitly with the decoupling or segmentation of 
(non-additive) occluding objects undergoing translatory fronto-parallel motion 
in dynamic image sequences. 

Recall equations 7 to 10. At time to, the situation where occlusion obtains 
is still accurately represented by equation 7, i.e. the composite image is the 
sum of the occluded object (or image) and the background object (or image), 
assuming the background occluded image signal has a zero value wherever the 
occluding image is non-zero, i.e. assuming that  there is nothing behind the oc- 
cluding object. Of course, this is not correct in most instances and there is a 
non-zero occluded signal. Whilst this does not invalidate equation 7, provided 
we allow the assumption, it does then cause a problem with equation 8 since, 
at time t l ,  when the object and/or  the background object has moved, there 
will be a change in the spectral content of the image due to the appearance of 
visual information in the background which was previously occluded at time to 
and to the disappearance of visual information which is now occluded at time 
tl (remember that  the velocities of the occluded and the occluding object are 
different). We will call this revealed/hidden signal the occluded residue or simply 
the residue. Consequently, to render equation 8 accurate again we must include 
a new term F 3 to represent the residue. Equation 8 now becomes 

Ftl : F l o ( A ( ~ I ) I  "~ - F t 2 o ( / l t ~ 2 ) l  -~ - F 3 (20) 

Similarly, at time t2, we must again add a new residue term F 4 and, in addi- 
tion, we must alter the phase of the previous residue F 3 to reflect the translation 
of the background. Consequently, we must alter the phase either by AO 1 or by 
A~  2 depending on whether Ftlo or F20 is the background. Since we don't  know 
which is the case at this point, we choose, arbitrarily, Ft20 as the background oc- 
cluded image and Ftlo as the foreground occluding image. Later we will address 
the resolution of this arbitrary choice. Equation 9 then becomes: 

Ft, : F~0 (Ar + F~o (AO2) 2 + Fa(AO2) 1 -4- F 4 (21) 

In the same way, equation 10 becomes: 

F,3 = Ftlo (A~I)3 + F~o (A~p2)3 + F3 (A~P2) 2 + F4(A~) I  + F5 (22) 
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Now, instead of four complex unknowns as in the additive situation, we now 
have three additional unknowns, making a total  of seven. Consequently, the 
system is underdetermined. Unfortunately, every t ime we add a new constraint, 
we also introduce an additional unknown representing a new residue. In order 
to make the problem tractable, we must  adopt  an alternative strategy. 

There are three steps in this strategy. The first step involves a reduction in 
the number  of unknowns, and the second and third steps concern the solution 
of these unknowns. 

A p p r o x i m a t i o n  o f  t h e  R e s i d u e s  If  we assume that  the occluding object 
velocity is small then it follows that  the residues will be approximately the same 
and also that  they will be small. Thus, we assume that  F3(kz, ky) ,~ F4(k=, ky) ,~ 
Fh(k~, ky). Adding a fifth constraint equation, we now have the following five 
simultaneous equations: 

F,o = F,~o(AOI) ~ + F,~o ( A ~ )  ~ (23) 
F,I = F~o(A~l) l  -I- F~o (A~:~)I .-I- F 3 (24) 

Ft2 = Ftlo (z~Ol) 2 + Ft2o (AO2) 2 + F3(AO2) 1 + F 3 (25) 

F,3 = F~o(AO~)3 + F~o(~O~)3 + F3(~2)2 + F3(~2)1 + F 3 (26) 

F.  = FL(~o')~ + F~o(~O2)~ + F3(AO2)~ + F~(~O~)~ + (27) 
F3 (,5~2) 1 + F3 

Recall that  this system of equations assumes that  F~0 corresponds to the 
occluded background image which is why we use the associated incremental 
phase change A~  2 in the residue terms. Note that  if we let the residue equal 
zero then the equations are those of the purely additive case, i.e. equations 7 to 
10, as one would expect. 

S o l u t i o n  for  t h e  I n c r e m e n t a l  P h a s e  C h a n g e  We now have a system of five 
non-trivial simultaneous equations in five complex unknowns. Unfortunately, 
a t t empts  at finding a well-posed closed-form analytical solution have been un- 
successful so far and an implementat ion of a gradient-descent numerical solution 
proved unreliable, principally because of the high-dimensionality of the solution 
space (it is a 10-D solution-space since there are five complex unknowns). 

Instead, in order to solve these equations for F~0 , F~0 , A~  1, A~  2, and F 3, we 
exploit the velocity-dependent and frequency-dependent regularity of A~51 and 
A ~  ~ . 

Recall f rom section 2.1 above that  we used this relationship to sort the fre- 
quency components into the two distinct sets corresponding to each individual 
image in the case of additive images. In the occluded case which we are ad- 
dressing in this paper, we solve for A ~  1 and A~ 2 as in the additive case using 
equations 11 and 12 above, i.e. by assuming the residue is zero. However, since 
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the residue is not zero, the solution for each Aq ~1 and AO 2 will include an error 
5 ~ 1  and 5 ~ .  Since these errors are not systematic for all spatial frequencies 
(kz, ky), we can estimate the true value of A~  1 and AO 2 by fitting a plane to 

the erroneous values A~ 1~ = Aq ~1 + 5a~il and A~  2~ = A~ 2 + 6 a ~ .  Specifically, 
we use the values Aq~'(k~:, ky) and ,5~2'(k. ,  ky) for all spatial frequencies to 
identify the velocity (v~, v ~) of the foreground occluding object and 2 2 (v~, vy) of 

Y 
the background occluded image as described above. Having computed these ve- 
locities, we can then compute an estimate of the true incremental phase change 
Aq~(kx ,  ky) and A~2(kx, ky) for each Fourier component, i.e. at each spatial 
frequency, from 

and, hence, 

A4) i = e-i(~, '~t+k~'~6t)  (2s)  

~ ( ~ ' )  = c o s ( k ~ v ~ ,  + k y v ~ , )  

.~( Aq~ i) = sin(k.v~St + kyv~St) 

(29) 

(30) 

S o l u t i o n  fo r  t h e  Fourier C o m p o n e n t s  At this point, we have 'solved' (or, 
rather, estimated) two of the unknowns A4~ 1 and Ar 2, and it remains simply 
to solve for the remaining three Ftl0, Ft20, and F 3. This can be accomplished in a 
straight-forward manner using equations 23, 24, and 25. These equations have 
the form 

a + b - p = O  

a d + b e + c - q = O  

ad 2 + be 2 + c(1 + e) - r = 0 

(31) 
(32) 

(33) 

where a, b, and c are unknown. These three simultaneous equations yield the 
following solutions for a, b, and c: 

p(de 2 - d2e) + q(d 2 -  e ~) + r ( e -  d) 
e = (34) 

(dr - e~) + (1 + e)(e - d) 

b - q - pd - c (35) 
e - d  

a = p - b (36) 

However, before we solve for F 1 F 2 and F 3 in this way, we must identify tO' tO' 
which is the occluding and which is the occluded component as we need to assign 
the appropriate known value of background phase change A~ ~ to the term e in 
equations 34, 35, and 36. 

We assume, arbitrarily, that the background velocity is smaller than that  of 
the foreground occluding object. This provides the basis for deciding on which 



76 

values of F~o , and F~o are the occluding and occluded. Specifically, 

d = A451 IA~21 

and solve for a = F~o, b = F~o, and e = F 3. On the other hand 

d = A~  2 IA~21 

and solve for a = F~0 , b = F2*o, and c = F 3. 
Note that  equations 34 and 35 are degenerate i fd  = e, that  is, if the incremen- 

tal phase change of the occluded and occluding objects are equal: A~l(k~,  ICy) = 
A~2(kx, ky). However, significant errors also arise as d --+ e, i.e. as A~ 1 --+ A~ ~, 
since the numerator  in equations 34 and 35 involve estimates of d and e rather 
than exact values. Hence, the relative magni tude of the error inherent in this 
est imate grows exponentially as (d - e) --+ 0; that  is, as the denominator  ap- 
proaches zero. To eliminate the influence of these errors in the computat ion of 
the residue on the est imate of the occluded and occluding signal b and a, we 
simply set c -- (d + ec) equal to zero as d --~ e. Specifically, we let c = 0 if 

[e - d I _< rVm~x (37) 

where ~- is some specified toleralance and Vma  x is the magni tude of the m a x i m u m  
velocity exhibited by either the occluded or the occluding image. 

However, we cannot effect the same strategy for b as d --+ e since this would 
be equivalent to the implementat ion of an ideal pulse-shaped band-stop filter. 
Instead, it is necessary to at tenuate progressively the band-stop frequencies be- 
fore computing the inverse F F T  of the occluding and background images. The 
approach adopted in this paper is to at tenuate frequencies satisfying equation 
37 according to the function 

c~1'2~k ky) Fl'2~k k y ) ( s i n (  e - d  2 ) )  2'~ r = x I d -  el < ~Vrn~x; (38) ~ t 0  \ x ,  ~o \ x ,  T ' - -  

Gl'2(k k~)=Fl '2tk  ky),otherwise. (39) t o  \ x ,  t o  \ x ,  

The exponent n > 1 determines the slope of the filter cutoff. As n ---* ~ ,  the 
filter approaches an ideal filter. In the following, we use values of r = 0.2 and 
n = 1 throughout.  

2.3 V e l o c i t y  E s t i m a t i o n :  C o m p u t a t i o n  o f  I n s t a n t a n e o u s  O p t i c a l  
F l o w  

We have seen above that  the solution of the system of equations 7 - 10 (additive 
case) and equations 23 - 27 (generalized occluded case) yields not only the 
decoupled or segmented Fourier components but also the rate of change of phase 
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and, hence, the velocity of the image translation. Consequently, we can exploit 
this approach to compute the local instantaneous velocity of a local region by 
treating it simply as a sub-image or image window. Unfortunately, the image 
data in such a region will exhibit a change due not only to the signal shift 
but also the translation of objects into the window and out of the the window. 
Consequently, there is a change in the spectral content of the window and not 
just a phase change as is assumed in the model. In order to reduce the impact of 
this 'edge effect', image data in a region is apodized or weighted as a function of 
its distance from the region centre. In this paper, a Gaussian weighting function 
is used and the Gaussian's standard deviation cr chosen such that  the weighting 
at a some distance from the region centre is 50% of that  at the region centre, 
where w is the length of the side of the 2-D region. Results are presented for 
Gaussian weighting functions of three standard deviations, each representing 
increased attenuation of image data toward the edge of the image (the three 

w 2 w  functions provide 50% weighting at ~, -~,  and ~-  from the region centre). In 
the following, we will denote the three Gaussian functions as c~ ,  ~ ,  and c ~ .  

3 R e s u l t s  a n d  E v a l u a t i o n  

3.1 Image Separation and Segmentation 

An image scenario which displays significant occlusion was used to test the ap- 
proach. In each test, there are two objects, the foreground and the background, 
moving independently of one another with velocities (v,l, Vy,) and (v,~, vy2), 
respectively. The technique was tested for velocities in the ranges: (0,0) < 
(v,1, vy~) _< (5, 0) and (0, 0) < (v,2, vy~) _< (5, 5), in increments of one pixel. 
Due to lack of space, only quantitative results for (v~:~,Vy~) = (0,0) are re- 
ported here although the images in figures 1 and 2 are derived from an im- 
age sequence where (vx~, vy~) = (1, 0). Nonetheless, the quantitative results for 
(1, 0) < (v,~, vy~) < (5, 0) are comparable except where (v,~, vya) --~ (v,2, vy~) 
in which case the segmentation is unreliable and the RMS error is large. 

The test scenario comprises two images, one of a child and the other of 
a sea-gull with a zero background. Figure 1 shows each individual image at 
time to and the additive and occluding superposition of the seagull on the child 
background at time to. Figure 2 shows the result of computing (segmenting) the 
additively-generated composite images based on the sequence at time to, t l, t2, 
and t3 using the original additive model. It also shows the result of segmenting 
the occlusion-based composite images using the generalized occlusion model. 

Table 1 shows the RMS errors between the segmented occluding (foreground) 
image and the original occluding image for all combinations of image velocities 
(in the range specified above) for (i) the additive images segmented using the 
additive model, (ii) the occluded images using the additive model, and (iii) the 
occluded images using the occlusion model, respectively. Note that  the values in 
this table are based on the RMS error computed using both the non-zero pixel 
values of foreground object and its surrounding zero pixel values (i.e. we take 
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Table 1. RMS error in reconstruction of gull foreground image computed for the 
complete image including its zero-valued backdrop; background image (child) velocity 
= (0, 0) pixels, foreground image (gull) velocity = (v~2, vy2) pixels. 

R M S  E r r o r  m R e c o n s t r u c t i o n  o f  F o r e g r o u n d  I m a g e  
(z e. O c c l u d i n g  I m a g e  i n c l u d i n g  Z e r o  B a c k g r o u n d )  

T y p e  o f  I m a g e  D e c o u p l i n g  v~  2 vu~ 
S e q u e n c e  M o d e l  0 1 2 3 4 5 

0 - 28.5127.6 27 4 27 .7  27 .8  
i 

1 18.5 13 4 12.0 14.0 14.1 14.6 
A d d i t i v e  A d d i t i v e  2 18.0 10.1 11.7 10 .7  12.0 11.6 

3 18.2 11.3  10.6 12 0 11.1 12.0 
4 18.1 11.1 11.2 11 9 13.1 13.0 

i 

5 18.2 11 5!12.0  11.9 12.4  14.0 

0 - 50.2  46.9  47 8 49 .3  49 .9  
1 52 0 51 .4  47.5  49 4 53.2  53.0  

O c c l u s i o n  A d d i t i v e  2 49 .4  48  2 46.4  49.0 51 5 52.0  
3 45 .8  50.1 49.2 48.5 50 7 50 .9  
4 46 .4  48 .2  49.1 50 5 51.1 52.1 
5 43 .4  48  2 49 8 49.8  53 .7  52.2  

0 - 44 .8  44.9  45.0 45 2 45 .4  
1 44 .2  46.1  46.2  46.1 46.0 46 .2  

O c c l u s i o n  O c c l u s i o n  2 44 .5  46 3 47  0 46.4  46.5 46 .6  
3 44 .6  45 .8  46.6  47.2  47.3  46 .9  
4 44 .7  45 .6  46.4  46 9 47  3 47 .5  
5 44 .9  45 .8  46.7  46 9 47 7 48 .0  

into consideration the success of the technique in segmenting an occluding object 
and in reconstructing a zero-valued background). 

3.2 E s t i m a t i o n  of  Optical  Flow 

Figure 3 demonstrates the results of applying the technique to four images in 
Otte's and Nagel's ground-truth test sequence [15]. Figure 3 (a) and (b) show 
images number 40 and 43 in the sequence whilst (c) shows the true optical flow 
field extracted directly from the Otte's and Nagel's ground-truth data  (sampled 
every ten pixels). Figure 3 (d) shows the optical flow field computed using the 
technique described in this paper. All of the results shown in this paper were 
computed with a window size of 64 x 64 pixels. Flow vectors are plotted every 
ten pixels and their magnitude has been scaled by a factor of four. 

Table 2 summarizes the mean magnitude and the mean direction of ground- 
truth data and the measured velocities; table 3 provides a summary of the RMS 
and mean errors of the measured velocities. 

Note that  all of the results presented in this paper are the unprocessed out- 
put of the algorithm (apart from interpolation); each velocity vector has been 
estimated independently and the vector field has not be subjected to median or 
mean filtering. 
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Table  2. Summary of mean and standard deviation of the magnitude and direction of 
the ground-truth data and the measured velocities. 

S e q u e n c e  

I m a g e  
T r a n s l a t i o n  
B e n c h m a r k  

O t t e  & N a g e l l  
B e n c h m a r k  

G a u s s i a n  M a g n i t u d e  D i r e c t i o n  
W e i g h t i n g  m e a n  s t a n d a r d  m e a n  s t a n d a r d  

d e m a t l o n  d e v i a t i o n  
G r o u n d  T r u t h  2.828 0 0 0 .785  0.0 

~ 2.428 0 126 0 786 0 .054  
"~--~-~ 2.759 0 .046  0 786 0 .009  

2.748 0 063  0 .784  0 .063  
G r o u n d  T r u t h  1 . 5 7 3  0.641 0 306 0 .202  

~ 1 .307  0 .582  0 339  0 .411 
~-~ 1 .307  0 .596  0 .322  0 366  
a, 1 .311 0 .616  0 .312  0 . 3 3 7  

Table  3. Summary of RMS and maximum errors in the measured velocities; errors are 
defined with respect to ground-truth data. 

S e q u e n c e  G a u s s i a n  R M S  E r r o r  M a x i m u m  E r r o r  
W e i g h t i n g  M a g n i t u d e  D i r e c t i o n  M a g n i t u d e  D i r e c t i o n  

( p i x e l s )  ( r a d i a n s )  ( p i x e l s )  ( r a d i a n s )  
I m a g e  . ~ . 0 .419  0 .054  0 .803  0 ,231 

T r a n s l a t i o n  �9 z---~ �9 0 .083  0 .009  0 .211 0 .049  
B e n c h m a r k  ~ 0 .102  0 .049  1 .028 0 .814  T 

O t t e  & N a g e l ,  - ~  . 0 ,479  0 .154  5 .369  2 .494  
B e n c h m a r k  �9 ~---~-~ . 0 .492  0 .114  2 .775 0 .745  

0 .529  0 .124  5 .625  1.601 

4 D i s c u s s i o n  

All of the images shown in figures 1 and 2 have a velocity of (1, 0) and (4, 
0) pixels for each image, respectively. These velocities were chosen not because 
they provide the best results in each case but because they provide a reasonably 
typical example of a slowly translating background and a foreground translating 
in the same direction but with a larger velocity. 

It is clear from figure 2 that  the best segmentation is achieved for the additive 
case (using the additive model). This is to be expected since the problem is well- 
posed and exactly determined; any errors are due to the impossibility of solving 
for some spatial frequencies, specifically those for which the phase change is 
identical in forground and background and those above a certain limiting range. 
The RMS errors in the cases of the occluded image sequence are inevitably larger 
since it is less well-posed and, as we have seen, requires an approximation in the 
solution. Finally, we note that  the error in the computed velocity is consistently 
in the order of 0.1 to 0.2 pixels. 

Concerning the computation of optical flow, we can see that,  qualitatively, the 
approach described produces a dense and reasonably complete flow field (with 
the flow field associated with 'wider' weighting functions,/,  e. the Gaussians with 
standard deviation ~__z_~ and o '~  exhibiting somewhat poorer localization of the 

8 
flow field). More importantly, however, is the accuracy of the technique. Otte 
and Nagel's [15] benchmark sequence was used to evaluate quantitatively the 
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performance of the algorithm. This sequence has the major benefit that  ground 
truth optical flow is available (i.e. the magnitude and direction of the optical 
flow of (almost) every point in the image). To compare the optical flow computed 
with the algorithm presented in this paper and ground-truth, the optical flow was 
estimated every ten pixels (for the three Gaussian weighting functions) and then 
a complete optical flow image was produced for both magnitude and direction 
by interpolating bi-linearly among these points. These were then compared to 
the ground-truth magnitude and direction images by estimating the RMS error 
(see table 3). Finally, the mean and standard deviation of the magnitude and 
direction of the ground-truth flow field and the three computed flow fields are 
given in table 2. 

Referring to these images and tables, a number of points can be noted. 

First, it is clear that  the main errors occur at the occluding contours and, 
in particular, at the contour where the two objects are moving with significant 
velocities (as, for example, is the case with the white block and the large dark 
block in the foreground). Again, as expected, this error is greater for the wider 
weighting functions and, because the velocity estimate is based on a larger ef- 
fective support, the error propagates into a bigger region around the occluding 
contour. 

Second, the mean magnitudes and directions of the three computed flow fields 
are consistent and do not vary significantly (1.307, 1.307, and 1.311 pixels, and 
0.339, 0.322, 0.312 radians, for mean magnitudes and directions, respectively). 
This compares with the ground-truth mean magnitude and direction values of 
1.573 and 0.306, respectively. Clearly, there is a difference in the measured and 
ground-truth magnitude value. This apparent difference is evident in the vector- 
field (compare the field in 3 (c) and (d)) and shows up in the RMS error estimate. 
On average, the error in the estimate of the magnitude of the optical flow field 
is just over one quarter of a pixel and the error in direction is of the order of 
0.02 radians radian or approximately one degree. 

As the average magnitude error is significant, for comparison we also ap- 
plied the technique to a trivial benchmark data set wherein an image is simply 
translated in the z and y direction by 2 pixels/frame. It should be emphasised 
that  this test is intended to do no more than demonstrate the accuracy and the 
repeatability of the technique on real data with a known (and trivial) flow-field. 
Table 2 summarizes the mean magnitude and the mean direction of ground-truth 
data and the measured velocities; table 3 provides a summary of the RMS and 
maximum errors of the measured velocities. The chief point to note about these 
results is that,  with the exception of the narrowest apodization window, the cor- 
rect flow field is computed to within 0.1 pixels (magnitude) and 0.001 radians 
(direction). As it happens, the magnitude measurement accuracy is presently 
set at 0.1 pixels/frame as this is the sampling period of the (velocity) Hough 
transform space used in all of the work described in this paper. It remains to 
be seen whether or not this can be improved by increasing the decreasing the 
sampling period. 
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5 Conclusions 

This paper presented and validated the theoretical basis for the use of Fourier 
techniques in separating additive images and in segmenting images which are 
formed by an occluding foreground and an occluded background. This theory 
facilitates the model-free segmentation of moving objects in dynamic image se- 
quences in situations where the object velocity is constant and normal to the 
principal ray of the image sensor. 

The significance of the approach and the main contribution of the work is that  
it allows model-free segmentation and, importantly, the visual complexity of the 
foreground and the background is irrelevant since the segmentation is effected 
independently for each individual spatial frequency in the Fourier domain. 

The technique is also applied to the estimation of instantaneous optical flow 
by decoupling the Fourier transform of a local Gaussian-weighted window centred 
at every point at which the flow field is to be computed. The results compare 
very favourably with ground t ruth optical flow data for the benchmark image 
sequence used to test the approach. Problems remain at occluding contours 
because, so far, we have used the additive model for the optical flow estimation. 
However, since the generalized occlusion model computes the velocities of both 
objects in the local window around the occluding boundary, we expect to be able 
to improve this estimate even further in the future and to be able to compute the 
correct flow field on either side of the velocity discontinuity (i.e. the occluding 
boundary).  
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Fig.  1. Image separation and segmentation: (a) and (b) images 1 and 2 at time to 
translating with velocities (1, O) and (4, O) pixels, respectively; (c) and (d) the additive 
and occluding superposition of the sezLgull on the child background at time t0. 
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Fig. 2. Image separation and segmentation test scenario: (a) and (b) show the results 
of decoupling (segmenting) the additively-generated composite images based on the 
sequence at time to, tl, t2, and t3 using the additive model; (e) and (f) show the results 
of segmenting the occlusion-based composite images using the generalized occlusion 
model. 
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(c) (d) 

Fig. 3. (a) and (b) Images number 40 and 43 of Otte and Nagel's ground-truth motion 
sequence. (c) True optical flow field given by Otte and Nagel's ground-truth data 
(sampled every ten pixels) (d) Optical flow field computed using phase information: 
Gaussian weighting function with 50% weight at ~ pixels from window centre (w, the 
window size, equals 64 pixels). 


