
Deciding Fixed and Non-fixed Size Bit-vectors

Nikolaj S. Bjcrner and Mark C. Pichora

Computer Science Department,
Stanford University, Stanford, California 94305

nikolaj] mpichora~cs, stanford, edu

Abstrac t . We develop a new, efficient, and compact decision procedure
for fixed size bit-vectors with bit-wise boolean operations. The algorithm
is designed such that it can also decide some common cases of param-
eterized (non-fixed) size. To handle even more parameterized cases for
bit-vectors without bit-wise boolean operations we devise a unification
based algorithm which invokes the first algorithm symbolically on pa-
rameters of the form a N + b, where a and b are integers and N is the
only unknown.
Our procedures are designed to be integrated in the Shostak combination
of decision procedures. This allows them to be tightly integrated with
decision procedures for other theories in STeP's (the Stanford Temporal
Prover) simplifier and validity checker.

1 I n t r o d u c t i o n

Bit-vectors are the natural data-type for hardware descriptions. To handle bit-
vectors in computer-aided verification, it is convenient to have specialized deci-
sion procedures to solve constraints involving bit-vectors and their operations.

STeP [3], supports the computer-aided verification of reactive, real-time and
hybrid systems. STeP provides the capability of verifying properties of param-
eterized systems with parameterized control and data domains. While model
checking techniques are available for finite-state systems, deductive rules for
linear-time temporal formulas are available for establishing correctness of very
large finite-state and parameterized systems. STeP even supports a diagram-
based deductive model checking procedure [18] which can verify infinite-state
systems using STeP's deductive tools. The deductive verification methods are
based on checking the validity of first-order verification conditions [4] which arise
from applications of proof rules.

To verify industrial hardware designs, we are developing a compiler from
the Verilog hardware description language to fair transition systems, which are
STeP's computational model. Since bit-vectors are pervasive in Verilog we have
found it useful to develop the decision procedures for bit-vectors described in

* This research was supported in part by the National Science Foundation under
grant CCR-95-27927, the Defense Advanced Research Projects Agency under NASA
grant NAG2-892, ARO under grant DAAH04-95-1-0317, ARO under MURI grant
DAAH04-96-1-0341, and by Army contract DABT63-96-C-0096 (DARPA).

377

this paper. The presented procedure is easy to integrate tightly with decision
procedures for other theories, which fits well into the wide scope of STEP.

1.1 Contributions

This work arose from the need for an efficiently supported theory of bit-vectors
to prove basic verification conditions. An algorithm that addresses bit-vectors
from a perspective similar to ours has been reported in [11]. In an effort to use
that algorithm we found that it had to be extended in a nontrivial way to handle
bit-wise boolean operations properly. In contrast, with our algorithm we offer a
compact and efficient procedure that readily handles bitwise operations. The key
feature of the procedure is that it only splits contiguous bit-vectors on demand.
Its performance is often independent of the length of the bit-vectors in the input.
We also discuss non-equational bit-vector constraints, which we think have not
received proper attention elsewhere.

Legal inputs to the STeP-Verilog verification tool include parameterized hard-
ware designs where the bit-vector size is not fixed at verification time. The need
then arises for a method that can handle both fixed and non-fixed size bit-vectors.
In certain cases our simple procedure for fixed size bit-vectors can be used di-
rectly for non-fixed size bit-vectors. To handle more cases, we first present an
optimized decision procedure for equations s = t, where s and t do not contain
bit-wise boolean operations, and then extend it to handle bit-vectors whose sizes
are parameterized (still without supporting boolean operations). To our knowl-
edge this is the first reported decision procedure that handles concatenation of
a non-trivial class of non-fixed size bit-vectors.

1.2 B i t - v e c t o r s

Bit-vector terms are of the form

t ::= x] t [i : j]]tl| It1 opt2
op ::= & (bitwise and) I (bitwise xor) I "l" (bitwise or)
c ::= 1 I O

t[i : j] denotes subfield extraction, and | concatenates two bit-vectors. The
constant 0 is synonymous with false and 1 with true. For clarity, a term may be
annotated by a length, such that tim] indicates that t has length m.

Terms are well-formed when for every subterm t[m][i : j], 0 < i < j < m, and
for every sire] op till, n = m. Terms without occurrences of op are called basic
bit-vector terms.

Bit-vectors can be interpreted as finite functions from an initial segment
of the natural numbers to booleans. Hence, if ~/ is a mapping from bit-vector
variables x[m] to an element of the function space { 0 , . . . , m - 1 } ~ B we interpret
composite terms as follows:

378

~t[i : J]]],7 ---- Ak E { 0 , . . . , j - i}.~t],l(i + k)
~s[m] | t[n]], = Ak E {0 , . . . , m + n - 1 } . i f k < m t h e n [s] ,(k) e l se [t] , (k - m)
[st...] o p t] , = ~,k �9 { o , . . . , m - 1}.[s],,(k) lop] [t],,(~)
[C[m]],7 = Ak E {0 , . . . , m - 1}.c = i

Bit-vector terms from the above grammar appear, for instance, throughout
the system description and verification conditions from a split-transaction bus
design from SUN Micro-systems [13]. A sample proof obligation encountered
during STeP's verification of a safety property of the bus (processes are granted
exclusive and non-interfering access to the bus) takes the form

l_wires = 4 A request # 0is] ---*
(request_h " request) # 0[8]

V (request r 0[s]) A request = request_h
(1)

where request and request_h are bit-vector variables of length 8. While this proof
obligation is evidently valid, a simple encoding of bit-vectors as tuples causes ex-
amination of multiple branches when establishing the verification condition. The
procedure developed here avoids this encoding and its potential case splitting.
This and similar verification conditions can then be established independently
of the bit-vector length (and in a fraction of a second). Thus, our procedure is
able to establish this verification condition when the length 8 is replaced by an
arbitrary parameter N.

While other logical operations like shifting can easily be encoded in the lan-
guage of bit-vectors we analyze, the arithmetical (signed, unsigned and IEEE-
compliant floating point) operations are not treated in an original way here.

1.3 A l t e r n a t i v e a p p r o a c h e s

This paper investigates decision methods for bit-vectors that can easily be in-
tegrated in the Shostak combination [17], which allows a tight integration of
decision procedures for several theories. The strength of this approach is that
verification conditions involving a mixture of bit-vector expressions, and unin-
terpreted function symbols, as in x [l : 6] = y[0: 5] ---* R(x[1 : 5]) -- R(y[0 : 4]),
can be decided efficiently. Our algorithms can then be used in heterogeneous ver-
ification conditions. The Shostak combination is also targeted by the procedure
in [11]. Naturally, the same verification conditions may be established directly
using an axiomatization of bit-vectors and equality. Better than a raw axiom-
atization, proof assistants like ACL2 and PVS provide sophisticated libraries
containing relevant bit-vector lemmas. Although highly useful, libraries do not
provide a decision method.

In the symbolic model checking community, BDDs [6] (binary decision di-
agrams) are used to efficiently represent and reason about bit-vectors. Purely

379

BDD based representation of bit-vectors requires allocating one variable for ev-
ery position in a bit-vector. (Just two bit-vector variables each of length 64
require allocation of 128 variables, pushing the limits of current BDD technol-
ogy). A BMD-based (binary moment diagram) representation [7] optimizes on
this while being able to efficiently perform arithmetical operations on bit-vectors.
Unfortunately it is nontrivial to combine BMDs efficiently into the Shostak com-
bination.

Since the values of bit-vectors range over strings of O's and l 's it is possible
to use regular au tomata to constrain the possible values of bit-vectors. Using
this approach the MONA tool [2] can effectively represent addition of parame-
terized bit-vectors using M2L (Monadic Second-Order Logic). The expressive
power of M2L also allows a direct and practical decision procedure of fixed size
bit-vectors encoded either as tuples of boolean variables or as unary predicates
with a constant domain. Furthermore M2L allows quantification over bit-vectors
(with non-elementary complexity as the price). The approach based on regular
automata, however does not admit an encoding of concatenations of parameter-
ized bit-vectors. For suppose the regular language R~ (say 10" 1) encodes eval-
uations of bit-vector x that satisfy constraint ~(x). Then the pumping lemma
tells us that the evaluations of y consistent with ~(x) A y = x | x is not in
general (certainly {ww [w E 10'1} is not) a regular language. Automata with
constraints [8] (see chapter 4) is a possible remedy, but this imposes even more
challenges in obtaining a direct ground integration with other decision proce-
dures, which we seek here. Our procedure addresses this problem and solves
satisfiability of ground equalities, a problem which is "only" NP-complete.

2 A d e c i s i o n p r o c e d u r e f o r f i x e d s i z e b i t - v e c t o r s

We present a normalization function 7", which takes a bit-vector term t[,q and a
subrange (initially [0 : m - 1]) and normalizes it to a bit-vector term F1 | F2 @
�9 .. | Fn where each Fi is of the form

F : : = F o p F I x l c [, q .

A normalization routine with a similar scope can be found in [5]. In words, T
produces a term without occurrences of subfield extraction where every | is
above every op. The translation furthermore maps every original variable x[m]
to a concatenation xl | x2 | | Xn, and maintains a decoding of the auxiliary
variables into subranges decode(Ilk : jk]), such that il = O, jn = m - 1, and
j k + l = i k + l f o r k = l . . . n - 1 .

The normalization function shown in Figure 3 is designed to satisfy the basic
correspondence

[t [~]]] , - - I T (t , [0 : n - 1])]] , ,

for every y, where y~ coincides with y on the free variables in t and, furthermore,
if T rewrites x to xl | . . . | xk | . . . | xn, with decode(xk) = [i : j], then
y'(xk) = 2k E { 0 , . . . , j - i } . y (x) (k+ i).

380

Normalization works by recursive descent on the syntax tree of t, pushing
a subfield extraction [i : j] downwards. By maintaining only one copy of each
variable, the procedure may update a variable occurrence x to a concatenation
Xl | x2 | xa globally in the cases where only the subfield [3 : 5] needs to be
extracted from x[s]. The result of normalizing x[3 : 5] then becomes x2, such
that decode(x2) = [3 : 5]. Since the variable x may occur in a different subterm
under the scope of a boolean operator x & y the cutting of x rewrites this to
(Xl|174 & y. The auxiliary procedure cut (that takes a term and a cut-point
as argument) shown in Figure 1 recursively cuts y in the same proportions as ac,
and forms the normalized concatenation zl & Yl | z2 &; y2 | X 3 & Yd. It
uses a set parents associated with each variable x to collect the maximal boolean
subterms involving x that have already been normalized. Initially parents(x) =
0 for each variable. Subterms can also be marked. By default (and initially)
they are unmarked. To avoid cluttering the pseudocode we have suppressed
variable dereferencing. To normalize boolean operators, T uses the auxiliary
procedure slice shown in Figure 2, which aligns the normalized terms s and t
into concatenations of equal length boolean subterms. Operator application can
then be distributed over each of the equally sized portions. The auxiliary symbol
e is used for the empty concatenation.

The proper functioning of T relies on the precondition that every time
T(t[n], [i : j]) is invoked, then 0 < i < j < n. This ensures that whenever
cut(tin], m) is invoked then m < n.

diee(s op t, rn) =
l e t

(,~, s~) = die~(,,,n);
(t~, t~) = d ,c~(t , ,~) ;

in
r e t u r n (s l o p t l , s2 op tz)

d~ee(e ~ , r n) = r e t u r n (c .~ , e t m) [I [] [- 1 1
dzce(ar~,~| | areal' m) = r e t u r n (x , x 2)
dsce(ar, m) =

l e t
[i : j] = decode(x)
x l , ara b e f r e sh v a r i a b l e s w i t h ~ p a r e n t s

in
decode(at1) := [i : i + rn - 1];
decode(dr2) := [i + m : j] ;
x := art | x2
f o r e a c h u n m a r k e d s e parents(dr) d o

:= sl | s2 where (,1, s2) = c~t(s,m)
r e t u r n (~1 , dr2)

cut(F, m) =
m a r k (F) ;
l e t

(rl(~X), F2(~2)) = d:ce(F, m)
in

f o r e a c h j = 1 ,2 , x J E ~ J d o
parents(x J) := parents(x ~) u { F i }

r e t u r ~ (F, (~1); F2 (~))

F i g . 1. Bas i c c u t t i n g a n d d i c ing

E x a m p l e : As an example of the translation of an bit-vector expression, consider:

s : "[~1 ~ (Y[~[O: 3] 0 *t~J)
t : Y[7]] (a:[3] | 1[1] | w[7][0: 2])

We first apply T(s , [0 : 6]) which results in cutting y into Yl | Y2, where
decode(yl) = [0 : 3], decode(y2) = [4 : 6]. w is cut similarly. The translation

381

apply(op, F(~) , a (~)) =
for each x E ~ tO ~ do

pa=,, ts(x) := par~,,ts(x) \ {F, G} tO {F(~) o/9 G(~)}
r e t u r n F(~) op G(~)

slice(op, e, e) = e
,zic~(op, F(~)[.] | , , a (~) [~ | t) =

i f m = n t h e n
appZy(op, F(~'), G(~')) | slice(op, s, t)

else i f m > n t h e n
(G1(~1), G2(~2)) := cut (a(~) , n);
~ppt~(op, F(~), G~ (~)) | ,lice(op, ~, a~ (~) | t)

e l s e

(F~ (~) , F2(~2)) := cut(F(-~), m);
~ppt~(op, F~ (~), G(~)) | ,tic~(op, F~(~) | ~, t)

Fig. 2. Slicing and operator application

7"(~ op t, [i : j]) =
7"(s[k : 1], [i: j])=
7"(st.] | t[. q, [i : j]) =

7"(:':t,,,.~, [i : ~1)=

7"(c[,-,, t, [i: j]) =

stice(op, 7"(s, [i: i]), 7"(t, [i: j]))
7"(s, [k + i : k + j])
i f n < i t h e n T(t , [i - n : j - n]) else
i f n > j t h e n 7"(s, [i: j]) else 7"(s, [i: n - 1]) | 7"(t, [0: j - n])
i f 0 < i t h e n 7"(second(dice(x, i)), [0: j - i]) else
i f j < m - 1 (i = 0) t h e n f irs t (dice(x , j q- 1)) else x
cD-,+l]

Fig. 3. Normalization function 7"

o f t results in fur ther cut t ing Yl into Y3 @ Y4, where decode(y3) = [0 : 2], in order
to align with z[31 | 111]. The variable wF] is also cut into wl | @ w3 overing
the same intervals as the par ts of y, namely [0: 2], [3: 3], [4: 6]. T he result of
t rans la t ion is then:

S : W l & Y 3 | w 2 & y 4 | w a & z t : y 3 I x | Y4 [1111| Y2 [Wl J

2.1 I n t e r f a c i n g t o t h e S h o s t a k c o m b i n a t i o n

Shostak 's me thod of combining decision procedures allows integrat ing decision
procedures for theories, such as arrays, linear ar i thmetic , records, induct ive
data- types , and sets inside Shostak 's congruence closure a lgor i thm [17, 10]. T he
m e t h o d requires each decision procedure to provide (1) a canonizer (~), which
satisfies ~(s) = g(t) whenever the equali ty s -- t holds in the theory suppor ted
by the decision procedure; and (2) a solver, which rewrites an equat ion s = t to
either f a l s e (if it is unsatisfiable) or into an equivalent form 3Va,x . Ai~=l z i = t i ,
where each z i is a variable f rom s or t, each ti is canonized, and no z i occurs in
tj or is equal to an zk, when k r i. Va~= is the collection of auxil iary variables
tha t occur in the t j ' s but not in the original equat ion s = t. We will use the
equivalent form as a subst i tut ion/7 = [xi ~-, ti [i = 1 , . . . , n] and call it a Shos lak

382

subs t i tu t ion . The substitution can be used to decide verification conditions of the
form sl = t l A s~ = 12 --+ s3 = t3 by extracting 01 from sl = 11, extracting 02
from 81(s2 = t2) and check if ~r(O2(Ol(s3))) is identical to ~(02(01(13))) . .

To canonize a term tim] we first obtain F 1 | . . . | F n = T (t , [0 : m - 1]).
We will identify a free variable xk in F i with x[i : j], where decode(xk) = [i : j] .
Each F i is represented in a canonical form (for instance an ordered BDD) based
on a total order of the variables. A consecutive pair F i and F I+1 can now be
combined whenever F i is equivalent to the boolean expression obtained from
F i+' by replacing each variable x[k : l] by x[k - n : l - 1], where n is the length
of F i.

To decide the satisfiability of an equality s[,~] = tin] and extract a canonized
substitution O we notice that s = t is equivalent to s " t = 0in 1. Hence the equal-
ity is satisfiable if and only if 7-(s " t, [0 : n - 1]) = F 1 | | F m and A~ml -~F ~
is satisfiable. At this point we can apply the technique used in [11], which extract
equalities from BDDs using equivalence preserving transformations of the form
ire(x, H, G) = (H V G) A 36.x = H A (-~GV 3). This produces a substitution 00
with subranges of the original variables in the domain and auxiliary 6's in the
range. The resulting Shostak substitution can then be extracted by generating
0 as follows:

01 : [x ~ 00(=,) | | 00(x.) I =~ ~ dora(00) ^ x = xl | | x .]

[I x = x l | 1 7 4 k < " ']
0 2 : xk ~ x[i : j] decode(xk) = [i: j], V'i: [1..n].xl r d o r a (0 0)

0: [= ~ ~(02(01(x))) I = ~ dora(81)]

E x a m p l e : Continuing with the translated versions of our example terms s and
t we will extract a Shostak substitution from the equality constraint s = t. We
therefore complete the translation to get:

s " t : (w l 8, y3) " (Y3 I x) | (w 2 & y 4) " (//4] 1[, 1)| (w 3 & x) " (Y2 [Wl)

By negating the concatenations, the constraints needed to extract a substitution
are obtained. The second constraint is easiest as it simply imposes w2 = Y4 = 1111.
The conjunction of the first and third constraint is transformed:

"n((Wl ~ Y3) " (V3 IX)) ** ~((~3 ** =) " (V2 IW0) = 113]
*-~ Re(x, wl & Y3 & w3, "~Y2 & -~w, & "Y3) = 1131

(= = wl ~ u3 e w3) ^ ((wl ~ u3 e w~) I (~u~ e ~wl e ~u3)) = lt31
~-* (x = wl k Y3 & w3) A (wt = Y3 & w3) A ((Y3 & w3) I (-~Y2 &: "~Y3)) = 113]

(x = wl & Y3 & wz) A (wl = Y3 & w3) ^ (Y3 = w3) A (w3 [-~Y2) = 113]
(x = wl k y3 & w3) ^ (wx = y3 & w3) ^ (y3 = w3) ^ 3~.y2 = w3 k 6

The composition of the extracted equalities gives an idempotent substitution:

0 : [W, ~ W 3 ~5 5, X ~ W3 ~Z 5, y~. ~ wa & 6, Ya ~ w3]

From this we generate a Shostak substitution, where Vau~ = {w3, 5}.

[x ~ ~3 ~ 6, ~ ~ (~3 ~ 6) | 1[,1 | ~3, y ~ ~3 | 1[,1 | (~3 ~ 6)] . d

383

2.2 Equational running time

For input s = tin] not involving op subterms (basic bit-vectors) the presented
algorithm can be tuned to run in time: O(m + nlog(n)), where m is the number
of @ and subfield extraction occurrences in s and t. First subfield extraction
is pushed to the leaves in time (9(m), then the @ subterms are arranged in a
balanced tree and T is applied to the balanced terms while maintaining balance
in the tree. The translated equality s = t is processed in a style similar to slice,
but the auxiliary function apply has been replaced by one that builds a graph
by connecting vertices representing the equated constants or variables. If some
connected component contains two different constants there is a contradiction
and the equality is unsatisfiable. Otherwise an equivalence class representative is
appointed for each connected component, choosing a constant if one is present,
or an arbitrary variable vertex otherwise. The extracted Shostak substitution
then maps every variable to a concatenation of equivalence class representatives.

A canonized solution for satisfiable equalities can be extracted in t ime O(n)
(which is dominated by the running time of Y). An algorithm with the same
functionality is presented in [11]. Tha t algorithm has running time O(mlog(m)+
n2), but offers some shortcuts that we don't address. Both procedures may still
depend heavily on the parameter n. For instance, the equality

011] | 111] | z[m] = x[m] | 011] @ l[t] (2)

requires (the maximal) m cuts of x, and is only satisfiable if m is even. The
same functionality can, as [11] noticed, be achieved in O(m + n) time, but at
the expense of having this as the minimal running time as well.

Another advantage of our algorithm is that it can be extended (with a few
modifications) to the case where bit-vectors of parameterized length are either
exclusively on the right or exclusively on the left of every concatenation. This
excludes cases like (2), which we will address in Section 3.

2.3 B e y o n d Equalities

The satisfiability problem for constraints involving disequalities is NP-complete
in the case of basic bit-vectors. Membership in NP follows from the fact that
we can easily check in polynomial time that a given instantiation of bit-vector
variables satisfies prescribed constraints. NP-hardness follows from a reduction
from 3-SAT to conjunctions of disequality constraints: take an instance of 3-SAT
A~(ll v k~ v mi) where li, ki and mi are literals over the vocabulary V of boolean
variables. Translate this into Ai(li | ki | mi ~ 000) A Axev(~ r z), where for
each boolean variable z we associate two bit-vector variables z[1] representing x
and ~[1] representing the negation of z.

We therefore settle here by handling t r s as [(t " s), and converting [tin]
to t[0 : 0] [. . . [t [n - 1 : n - 1] = 111]. The connectives < and <, as well
as operations like + and * can be handled similarly, though the advantages of
this approach are questionable. Naturally these constraints are only analyzed

384

when all equational constraints have been processed and the resulting Shostak
substitutions have been applied to the non-equational constraints.

Verification conditions of the form f (A) r f (B) A f(A) r f (C) --* f (B) =
f(C), where f is an uninterpreted function symbol, are handled using a complete
case analysis on bit-vectors A, B and C (it is valid only when A, B and C are
bit-vectors of length 1). Shostak's approach to combining equational theories
misses cases like this as it is originally designed for theories admitt ing infinite
models (see for example [15]).

3 Uni f i ca t ion of basic b i t -vec tors

In this section we focus on the problem of finding unifiers for basic bit-vector
terms s and t. The restriction to basic bit-vector terms allows us to develop a
more efficient procedure and at the same time widen its scope to bit-vectors
whose lengths are parameterized.

3.1 ext-terms

To more compactly represent solutions to equations like (2) we introduce a new
bit-vector term construct ext(t[n], m) (the extension of t up to length m), which
is well-formed whenever m > 0. The meaning of ext is given by the equation

[ext(ttn], rn)] 0 = ~ | .. @ t | : / -1]]~ where (k + l) n > m > kn and l = m - k n
, y

k

Thus, ext(t[n], m) repeats t up to the length m. To map ezt-terms to terms
in the base language we use the unfolding function unf

, , n f (t t , 1, m) = t | .. | t | [0: t - l]) where (k + l) n > m > kn and l = m - k n

k

A solution to equation (2) can now be given compactly when m is even as
x = ext(O[1] | 1[1], m).

3.2 Unification wi th ext-terms

To decide the satisfiability of equalities s = t of basic bit-vector terms ex-
tended with ezt-subterms we will develop a Martelli-Montanari style unifica-
tion algorithm [14] which takes the singleton set So : {s = t} as input and
works by transforming C0 to intermediary sets s163 by equivalence pre-
serving transformations which simplify, delete or propagate equalities. It ulti-
mately produces either FAIL, when s = t is unsatisfiable, or a substitution
E~n~z : {z l = t l , . . . , zn = tn}.

Since our procedure uses 7" to decompose terms, every auxiliary variable in
S/i,at furthermore corresponds to a unique disjoint subrange of one of the original

385

variables. The obviously satisfiable conjunct ion of equalities is equivalent to the
original equality.

A canonizer can be obta ined by first e l iminat ing the ext-terms by using unfold
and then using the canonizer of Section 2.1.

E x a m p l e : Anticipat ing the a lgor i thm we will present, consider the following
equal i ty assertion:

Y[3] | X[16] | X[16] | Z[2] = X[16] | W[4] | 0111 | ~[16] �9

In processing the implied equali ty Y[a] | X[16] = X[16] | " ' " we obtain X[16] =

ext(y[3], 16) as a solut ion for x[16]. Continuing with the remaining equalit ies we
get the in termedia te set of equations:

x[16] = exi(y[3], 16), y[3][l : 2] @ y[3][O : O] -- w[4][O : 2],
z[2] = w{4][3 : 3] | 0[1], ext(w[4][3 : 3] | 011], 16) = =[16] �9

The two equat ions involving x are combined to produce the implied constraint

ext(~3], 16) = exl(w[4;[3 : 3] V 0El 1, 16) .

This equal i ty is evident ly equivalent to its unf-unfolding, but as we will later
fo rmula ted in a general setting, we can do be t te r and only need to assert:

| o] = w{4][3: 3] | oE1] | [41 [3: 3] v 0{1].

In fact this implies y[0 : 0] = y[1 : 1] = y[2 : 2] = w[3 : 3] -- 0111. After
propagat ing the resulting constraints we obtain the final result:

w[4] = 0[4], X[lS] = 0116], Y[3] = 0[3], z[2] = 0[2] �9 _,

While the full unification a lgor i thm is given in Figure 4 we highlight and
explain the more delicate cases below.

x[,~] | s -- t[m] | Y[z] | u when m-F l > n > m, x r y. The s i tuat ion is described
in the picture below, which suggests tha t the equali ty is equivalent to x --
t | Yl and s = Y2 | u for suitable splits Yl and Y2 of y. We use ~T to cut y
into the appropr ia te pieces. This replaces y everywhere in E by yl | y2.

t y u

I I ~ : ~ I I
I I I

x $

z[n] | s = t[m] | x[~] | u when n > m. For example we are given the configura-
tion:

t X

X $

386

Thus, the original equali ty constraint is equivalent to z = t | t | t | t[0 : 0]
and t[1 : 2] | t[0 : 0] | u = s. To more compac t ly describe the first equali ty
we use the ex t - cons t ruc t to obtain x = ez t (t , 10).

ext(s[m], l) = ext(t[n], l) The effect of replacing x by s in the variable e l iminat ion
step m a y introduce equali ty constraints between ext-terms. Al though the
equali ty constraint is by definition equivalent to unf(s[m], l) = unf(t[~] , l),
we can be even more economical in the unfolding as the following l e m m a
suggests.

L e m m a 1. A s s u m e 2n < I and 2 m < i and let g = gcd(m, n) then

ext(s[m], l) = ext(t[n], l) ~-~ u n f (s , m + n - g) = u n f (t , m + n - g)

Thus, we will ensure tha t our a lgor i thm mainta ins the invariant 2n < l for
every ext(t[.], l) term, and the equali ty constraint ext(s[,n], l) = ext(t[n], l) is
replaced by u n f (s , m + n - g) = u n f (t , m + n - g).

Other simpler cases are summar ized in Figure 4. It omits cases tha t can be
obta ined using s y m m e t r y of equality.

C o n s t r u c t o r elimination
R1 { S [m l | 1 7 4 1 6 3 --* { s = t , u = v } U C
R2 {C[,q |] | -'+ FAIL w h e r e c ~ c '
R3 {c[ml| | 1 6 3 ---. { s = c i n _ m] | 1 6 3 w h e r e n > m
R4 {xt ,q| d |174 --~ { x = t | 1 7 4

w h e r e m + i >
yl = T(y , [0

R5 {xInl | s = tt,q | | u s --*
where n > m > 0

R6 {xf,q | s = tim] | c[z] | u} U s --~
where m + 1 > n >

R7 {s[,,q | t = ext(u[tl ,n) | v} U g --*

where m < n
R8

n > r n > O , x r
: m - n - - 1]), yz = T (y , [m - n : l - 1]),

{x = t | c[,~_,q, s = c[l+,_,~] | u} u s
m > 0

s t m l = m k ' e z t (u ' m) ' } U E
t = mk-ext(wrap(u, m), n - m) | v

{ ext(sihl , m) = ext(t[z2] , m)} U C ---* { unI (s, l) = un] (t, l)} U s
where l = la q- lz - gcd(la, l~)

E q u a l i t y a n d var iab le elimination
R9 { t = t } u s --* s
R10 { x = s } u s ~ { x = s } U E [x ~ s]

Fig. 4. Rules for unification with ext-terrns

The auxil iary funct ion wrap splits the term t at posit ion k and swaps the two
pieces. The funct ion m k - e x t produces either an e x t - t e r m when the length of t is

387

sufficiently small or unfolds t. It ensures that every ext(t[n], m) term generated
by the algorithm satisfies 2n < m. These are defined more precisely below:

wvap(t[~], m) = l e t k = m mod n in
i f k = 0 t h e n t else 7"(t, [k: n - 1]) | T(t, [0: k - 1])

mk-ext(t[a], m) = i f 2n < m t h e n ext(t, m) e l s e unf(t, m)

The unification algorithm terminates since the variable elimination step re-
moves duplicate constraints involving x and every other step produces equalities
of smaller size (in terms of the number of bitwise Comparisons) than the one
eliminated. For instance, in the R8 rule we rely on m > 2. max(/l, 12) > 1.

3.3 N o n f i x e d size b i t - vec to r s

The most prominent feature of the unification algorithm in Figure 4 is that it
can be used to decide bit-vector equality constraints s -- t, where lengths and
projections are not restricted to fixed naturals, but are of the form aN + b,
where a and b are integers and N is a parameter (where we assume without loss
of generality that N > 0). This allows us to apply the algorithm in the Shostak
combination for deciding verification conditions with non-fixed bit-vector equal-
ities. The unification problem for non-fixed bit-vectors is also reminiscent of the
word unification problem, originally solved by Makanin and later solved using a
unification procedure in [12]. The main difference is that variables ranging over
words in that problem do not have associated size constraints which bit-vectors
have. By performing comparisons and arithmetic on these lengths symbolically
and allowing admissible answers to be paired with accumulated constraints (as
explained later), we can deal with the following example:

E x a m p l e : By performing the unification of

{W[2] | 0[1] | X[N-t-6] ~ Y[N+7] -~ X[N+6] | 1[1] | Z[3] | X[N+6]} (3)

we obtain as an intermediate step

f X[N+6]--~ ext(w[2] | 0[,],N + 6), Y[N+7] = z[3][2 : 2] | X[N+6] "~
111] | z[3][0 : 1] = wrap(wD] @ 011], N + 6) J

and finally two cases:

�9 [g+6] = ext(l[1] | | 011], N + 6),

Y[N+7] = cql] | ext(l[1] @fl[1] | 0[1],N + 6), i f N --- 0 (mod 3)
z[a] = fl[l] | 011] | a[1],
w[21 = 1111 | fill]

a[N+6I = ext(fl[ll | 1111 | 0111, N + 6),
Y[N+7] = c~[1] | ext(fl[ll | 1111 | 0111, N + 6),
z[a] = 0111 | #[1] | a[l],
w[2] = fiE1] | 1111

i f N = l (mod3)

388

When N _= 0 (mod 3), the evaluation of the wrap function simplifies the second
equation of the intermediate result to 111] | z[3] [0 : 1] = w[2] | 011]. The case that
corresponds to N --_- 2 (mod 3) requires 111] | z[3] [0 : 1] = 011] | w[2] which results
in an inconsistency. The fl[1],a[1] are auxiliary variables that are introduced to
represent unknown segments of the bit-vector variables.

d

Thus, the result produced by the unification algorithm will now be a set of
constraints, each of the form

(ax + b > c, [N ~-* ax + b] o [xi ~-~ ti [i = 1 , . . . , n])

where x is a fresh variable and the first constraint is passed on to decision proce-
dures for linear arithmetic, and the second constraint is a Shostak substitution.
We are thus faced with a finitary as opposed to unitary unification problem (see
[1] for a survey on unification theory).

The crucial observation that allows lifting the algorithm to parameterized bit-
vector expressions is that all operations and tests on the lengths and projections
are of the form

m + n , m - n , m > n , m > n , m = n , m m o d n .

Since terms of the form a N + b are closed under addition and subtraction, the
first two operations can be performed directly in a symbolic way. "

The comparison m > n is rewritten to m - n > 0, m ~ n to rn - n + t > 0,
a n d n = m t o n - m + l > 0 A m - n + l > 0 . This reduces the evaluation of
comparisons to a N + b > 0. Since

a N + b > O ~-~ (a = O A b > O V a > 0) iff

(a > 0 > b V a < 0 < b) - - * g _ > l b l d i v l a l (4)

tests can be evaluated using a = 0 A b > 0 V a > 0 and accumulating auxiliary
lower bounds on N for a separate t reatment . Our algorithm then produces an-
swers for all N greater than the largest accumulated lower bound. For values of
N smaller than the accumulated bounds we instantiate N and run the fixed size
version.

The auxiliary function wrap requires us to compute m mod n. To simplify
this case our algorithm will maintain the invariant that m mod n is only invoked
when n is a constant b', whereas m may be of the form N + b . The case N > b ' - b
causes case-splitting on each of the possible solutions k = 0 , . . . , b' - 1.

We could represent each case in Presburger ari thmetic as 3x >_ O.xb' =
N + b - k and use a Presburger decision procedure [9] to check satisfiability of
conjunctions of such constraints. However, in order to manage these constraints
more efficiently we can use the Chinese Remainder Theorem (see [16]). If HipT'
is a prime factorization of b' (with Pl, P2 , . . . the sequence of all primes), then

N + b - k (mod b') iff N + b - k (mod p~") for every i.

389

Let D(p, fl, l) be the predicate that N = l (mod p~) is true. Let Cmod ----
Ai D(pi, fl~, b~) be the conjunction of divisibility constraints imposed on the cur-
rent system. Only one predicate is needed for each Pi, since:

D(p, fl, l') A D(p, o~, l) A fl > o~ iff D(p, fl, l') A l' -- ! (mod pa) . (5)

In order to split on the case N + b -- k (mod b') for different values of k =
0 , . . . , (b ' - 1) we can form the product of the case splits on N + b = k~ (mod p~')
for ki = 0 , . . . , (p~' - 1) (the product is over i = 1, 2 , . . .) . The situation is not as
bad as it seems, since we can use the existing Cmod to merge the new constraints
in an optimal way:

f p % - # ' - 1

CIm~ : A P (i) where P (i) = / Y0 D(pi,ot/,bi + j p / ~ ') i f hi >_ fli

i I, D(pi, 13i, hi) if ~i < fli

The predicate P(i) represents the enumeration of valid congruences modulo a
power of pl. Statement (5) suggests the form of the enumeration for each case
in the definition of P(i) . Expressing C/mod in disjunctive normal form i Vi Cmod
the constraints for the different cases are obtained. The value of k for a partic-
ular case of Cmod can be reconstructed using the congruence k --- (~ i nibi) -
b (mod b') where n i = z i z i , z i = j#iPj , and Ti satisfies zi-hi - 1 (mod p~')
(it exists since gcd(p~', zi) = 1).

Given expressions s and t our algorithm now engages in the following steps:
(1) Apply 7- to both s and t, i.e., let (s, t) := (7-(s, [0: m - 1]), 7-(t, [0: m - 1])).
This generates bit-vector expressions without subfield extraction and an assign-
ment to each original variable z to a concatenation zl | z2 | �9 �9 | zn of distinct
variables, where decode(x~) cover disjoint intervals of x. Using equivalence (4)
the tests in 7" are evaluated unambiguously, and possibly generating a new lower
bound on N. The cases where N is smaller than this bound are processed later.
(2) Every variable Zing+b] remaining in s or t, where a > 0, is replaced by a

concatenation of a fresh variables: ~,(1) _ (2) ~.(a) Constants are cut '~[N] (}9 Z[N] | . . . | ~[N-t-b]"

in a similar way 2. If b is negative the lower bound 1 - b on N is added.
Every variable occurring in s and t now has length N + k or k, where k

is an integer. (3) The algorithm in Figure 4 is invoked on the equality {s =
t}. Each comparison accumulates a lower bound on N and each invocation of
mod may cause a multi-way case split while accumulating modulus constraints
on N. The unification algorithm therefore generates constraints of the form
(El, C1),..., (~n, Cn), where the s are equalities and Ci is a conjunction of N > k
and D(pl , ~i, hi) constraints.

We need to ensure that every step is well defined: in particular that unf(t , m)
and, as we assumed, n mod m are only invoked when m is a constant. This is a
consequence of the following invariant:

2 This step is not strictly necessary, but simplifies the further presentation of the
algorithm.

390

I n v a r i a n t 2 For every occurrence of eXt(t[aN+b] , n): a = 0 A 2b <_ n.

This holds as exl terms are only generated when mk-ext(t[aN+b], aIN + b ~) is
invoked and 2(aN + b) <__ atN + b ~. Since both a and a' are either 0 or 1, this
inequality can only hold if a = 0 or N is bounded above by (b I - 2b) div (2 a - al).
The cases where N is bounded above by a constant are treated separately.
(4) The solved form can now be extracted. For each (s C) generated from the

l previous step let C be of the form N _> k A Ai=I D(pi,oti, ai). The Chinese
Remainder Theorem tells us how to find ni such that the constraints can be
rewritten to the equivalent form

N > k A 3x .N = Ax + B where A = 1-'Ii=1 P~' B = =1 niai mod A

Since we extract the Shostak substitution 0 from s as in the fixed-length ease
the combined constraint returned for this case is

(Ax + B >_ k, IN ~-+ Ax + B] o 0).

For each k less than the least lower bound accumulated above we instantiate N
by k and extract 0k by running the fixed-size version of the algorithm (that is,
running {s = t) [N ~-~ k]). For these cases the returned constraints have the form

(t e, [N k] o 0h).

The algorithm now concludes by returning the entire set of the constraints
extracted above.

As we have argued above we now have

T h e o r e m 3. (Correctness) When the non-fixed unification algorithm terminates
on the input constraint s = t with a set of constraints {(~oi(x),tgi) l i = 0 , . . . n }

n

t h e n s = t ~ V3z 'V~ux4~ AOi"
i = 0

Finally we must ensure that we can make the unification algorithm modified
for parameterized lengths terminate. To this end we apply the transformation
rules from Figure 4 by preferring the variable and equality elimination rules to
the other rules.

We will proceed to prove the termination by induction on the number of
distinct non-fixed variables k in s that participate in some equality where rule
R1-R8 can be applied. The base case (k = 0) operates only on fixed-size variables,
and so it terminates.

Whenever a variable z has been isolated using one of the rules R4-R6, it is
eliminated from the rest of s Indeed it is eliminated as z cannot be a proper
subterm of t in the equality constraint x = t, since the length of t is the sum of the
lengths of its variable and constant subterms, which equals the length of z. Since
rules R1-R8 produce equalities between smaller bit-vectors we cannot repeatedly
apply these rules without eventually eliminating a non-fixed size variable. Rule
R4 may split a non-fixed length variable y into two parts Yx and Y2, but only

391

one of these parts will have non-fixed length, so the overall number of non-fixed
length variables is constant.

We therefore have

T h e o r e m 4 . (Termination) The non-fixed unification algorilhm terminates.

A reduction from the problem of simultaneous incongruences [19] can estab-
lish that the unification problem for non-fixed bit-vectors is NP-hard. A more
careful analysis of the termination argument can establish that a satisfying uni-
fier can be verified in time polynomial in the constant parameter sizes and num-
ber of subterms, hence establishing NP-completeness of the non-fixed bit-vector
unification problem.

The unification algorithm finally needs to be supplied also with a canonizer
that works on ext-terms of non-fixed length to enable an integration with other
decision procedures. While simple unfoldings cannot be performed this time our
implementation normalizes terms into a concatenation of variables, constants
and ext-terms whose arguments are fixed size terms in canonical form. The
occurrences of ext in the resulting expression are then shifted as much as possible
to the left. This step cannot be performed unambiguously without asserting
congruence constraints on the parameter and hence also leads to case splits.

The table below summarizes a few benchmarks presented to our prototype
implementation (coded in SML/NJ, executed on a 200Mhz SUN Ultra II).

equation (3) .

2. 011] | 111] | 011] | X[N+7] | 111] | 011] | 111] | Y[N+I]
= X[N+7] | X[N+7]

3. X[N+4] | 011] | 111] | 011] | Y[N+9]
= Y[N+9] | 111] | 011] | 111] | X[N+4]

4. (3) ---+ Zt31 [0 : 0] = 0[11 V z[31 [1 : 1] = 0[q

satisfiable 0.06 s
unsatisfiablei 0.06 s

unsatisfiable 0.09 s

valid 0.07 s

4 C o n c l u s i o n

This paper presented two algorithms: one algorithm handles boolean operations
on fixed-size bit-vectors, the other handles equational constraints in the ab-
sence of boolean operations on parameterized bit-vectors. A completed picture
would combine the algorithms to handle boolean operations on parameterized
bit-vectors. Encouraged by the presented results we are currently trying to ex-
tend the algorithms to handle parameterized boolean operations, and to address
efficient integration of arithmetical operations on bit-vectors. The fixed-size al-
gori thm is presently integrated into STeP's simplifer and validity checker where
it has been used in hardware verification. Simultaneously we are experimenting
with our prototype implementation of the non-fixed bit-vector decision proce-
dure on verification conditions from parameterized hardware designs.

A c k n o w l e d g e m e n t : We are grateful for the kind advice from the anonymous
referees as well as Michael Col6n, Henny B. Sipma and Toms E. Uribe.

392

References

1. BAADER, F., AND SIEKMANN, J. Unification theory. In Handbook of Logic in Arti-
ficial Intelligence and Logic Programming, D. Gabbay, C. Hogger, and J. Robinson,
Eds. Oxford University Press, Oxford, UK, 1993.

2. BASIN, D., AND KLARLUND, N. Hardware verification using monadic second-order
logic. In CAV'95 (1995), vol. 939 of LNCS, pp. 31-41.

3. BJORNER, N. S., BROWNE, A., CHANG, E. S., COL(SN, M., KAPUR, A., MANNA,
Z., SIPMA, H. B., AND URIBE, T. E. STEP: Deductive-algorithmic verification of
reactive and real-time systems. In CAV'96 (1996), vol. 1102 of LNCS, pp. 415-418.

4. BJORNER, N. S., STICKEL, M. E., AND URIBE, T. E. A practical integration of
first-order reasoning and decision procedures. In CADE'97 (1997), vol. 1249 of
LNCS, pp. 101-115.

5. BRATSCH, A., EVEKING, H., FARBER, H.-J., AND SCHELLIN, U. LOVERT-
A Logic Verifier of Register-Transfer Level Descriptions. In IMEC-IFIP (1989),
L. Claesen, Ed., Elsevier.

6. BRYANT, R. E. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35, 8 (1986), 677-691.

7. BRYANT, R. E., AND CHEN, Y.-A. Verification of arithmetic circuits with binary
moment diagrams. In DAC'95 (1995).

8. COMON, H., DAUCnET, M., GmLERON, R., LuGmz, D., TIsoN, S., AND TOM-
MASI, M. Tree Automata Techniques and Applications. Obtainable from
http ://13ux02. univ-lille3, fr/t ata/, 1998.

9. COOPER, D. C. Theorem proving in arithmetic without multiplication. In Ma.
chine Intelligence, vol. 7. American Elsevier, 1972, pp. 91-99.

10. CYRLUK, n. , LINCOLN, P., AND SHANKAR, N. On Shostak's decision procedure
for combinations of theories. In CADE'96 (1996), vol. 1104 of LNCS, pp. 463-477.

11. CYRLUK, D., M•LLER, O., AND RUESS, H. An efficient decision procedure for the
theory of fixed-sized bit-vectors. In CAV'97 (1997), vol. 1254 of LNCS, pp. 60-71.

12. JAI~FAR, J. Minimal and complete word unification. J. ACM 87, 1 (1990), 47-85.
13. KAMERER, J. Bus scheduler verification using STEP. Unpublished report, 1996.
14. MARTELLI, A., AND MONTANARI, U. An efficient unification algorithm. ACM

Trans. Prog. Lang. Sys. 4, 2 (1982), 258-282.
15. NELSON, G., AND OPPEN, D.C. Simplification by cooperating decision proce-

dures. ACM Trans. Prog. Lang. Sys. 1, 2 (1979), 245-257.
16. NIVEN, I., ZUCKERMAN, H., AND MONTGOMERY, H. An Introduction to the Theory

of Numbers. John Wiley & Sons, New York, 1991.
17. SI-IOSTAK, R. E. Deciding combinations of theories. J. ACM 31, 1 (1984), 1-12.
18. SIPMA, H. B., URIBE, T. E., AND MANNA, Z. Deductive model checking. In

CAV'96 (1996), vol. 1102 of LNCS, pp. 208-219.
19. STOCKMEYER, L. J., AND MEYER, A . R . Word problems requiring exponential

time. In Proc. 5rd ACM Syrup. Theory of Camp. (1973), pp. 1-9.

