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Abstrac t .  We develop a new, efficient, and compact decision procedure 
for fixed size bit-vectors with bit-wise boolean operations. The algorithm 
is designed such that it can also decide some common cases of param- 
eterized (non-fixed) size. To handle even more parameterized cases for 
bit-vectors without bit-wise boolean operations we devise a unification 
based algorithm which invokes the first algorithm symbolically on pa- 
rameters of the form a N  + b, where a and b are integers and N is the 
only unknown. 
Our procedures are designed to be integrated in the Shostak combination 
of decision procedures. This allows them to be tightly integrated with 
decision procedures for other theories in STeP's (the Stanford Temporal 
Prover) simplifier and validity checker. 

1 I n t r o d u c t i o n  

Bit-vectors are the natural data-type for hardware descriptions. To handle bit- 
vectors in computer-aided verification, it is convenient to have specialized deci- 
sion procedures to solve constraints involving bit-vectors and their operations. 

STeP [3], supports the computer-aided verification of reactive, real-time and 
hybrid systems. STeP provides the capability of verifying properties of param- 
eterized systems with parameterized control and data  domains. While model 
checking techniques are available for finite-state systems, deductive rules for 
linear-time temporal  formulas are available for establishing correctness of very 
large finite-state and parameterized systems. STeP even supports a diagram- 
based deductive model checking procedure [18] which can verify infinite-state 
systems using STeP's deductive tools. The deductive verification methods are 
based on checking the validity of first-order verification conditions [4] which arise 
from applications of proof rules. 

To verify industrial hardware designs, we are developing a compiler from 
the Verilog hardware description language to fair transition systems, which are 
STeP's computational model. Since bit-vectors are pervasive in Verilog we have 
found it useful to develop the decision procedures for bit-vectors described in 
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this paper. The presented procedure is easy to integrate tightly with decision 
procedures for other theories, which fits well into the wide scope of STEP. 

1.1 Contributions  

This work arose from the need for an efficiently supported theory of bit-vectors 
to prove basic verification conditions. An algorithm that  addresses bit-vectors 
from a perspective similar to ours has been reported in [11]. In an effort to use 
that  algorithm we found that it had to be extended in a nontrivial way to handle 
bit-wise boolean operations properly. In contrast, with our algorithm we offer a 
compact and efficient procedure that  readily handles bitwise operations. The key 
feature of the procedure is that  it only splits contiguous bit-vectors on demand. 
Its performance is often independent of the length of the bit-vectors in the input. 
We also discuss non-equational bit-vector constraints, which we think have not 
received proper attention elsewhere. 

Legal inputs to the STeP-Verilog verification tool include parameterized hard- 
ware designs where the bit-vector size is not fixed at verification time. The need 
then arises for a method that  can handle both fixed and non-fixed size bit-vectors. 
In certain cases our simple procedure for fixed size bit-vectors can be used di- 
rectly for non-fixed size bit-vectors. To handle more cases, we first present an 
optimized decision procedure for equations s = t, where s and t do not contain 
bit-wise boolean operations, and then extend it to handle bit-vectors whose sizes 
are parameterized (still without supporting boolean operations). To our knowl- 
edge this is the first reported decision procedure that handles concatenation of 
a non-trivial class of non-fixed size bit-vectors. 

1.2 B i t - v e c t o r s  

Bit-vector terms are of the form 

t ::= x] t [ i : j ]  ]tl| It1 opt2 
op ::= & (bitwise and) I (bitwise xor) I "l" (bitwise or) 
c ::= 1 I O 

t[i : j] denotes subfield extraction, and | concatenates two bit-vectors. The 
constant 0 is synonymous with false and 1 with true. For clarity, a term may be 
annotated by a length, such that  tim] indicates that  t has length m. 

Terms are well-formed when for every subterm t[m][i : j], 0 < i < j < m, and 
for every sire] op till, n = m. Terms without occurrences of op are called basic 
bit-vector terms. 

Bit-vectors can be interpreted as finite functions from an initial segment 
of the natural  numbers to booleans. Hence, if ~/ is a mapping from bit-vector 
variables x[m] to an element of the function space { 0 , . . . ,  m - 1  } ~ B we interpret 
composite terms as follows: 



378 

~t[i : J]]],7 ---- Ak E { 0 , . . .  , j  - i}.~t],l(i + k) 
~s[m] | t[n]], = Ak E {0 , . . . ,  m + n - 1 } . i f  k < m t h e n  [s] ,(k)  e l se  [ t ] , ( k - m )  
[st... ] o p  t ] ,  = ~,k �9 { o , . . . ,  m -  1}.[s],,(k) lop] [t],,(~) 
[C[m]],7 = Ak E {0 , . . . ,  m -  1}.c = i 

Bit-vector terms from the above grammar appear, for instance, throughout 
the system description and verification conditions from a split-transaction bus 
design from SUN Micro-systems [13]. A sample proof obligation encountered 
during STeP's verification of a safety property of the bus (processes are granted 
exclusive and non-interfering access to the bus) takes the form 

l_wires = 4 A request # 0is] ---* 
(request_h " request) # 0[8] 

V (request r 0[s]) A request = request_h 
(1) 

where request and request_h are bit-vector variables of length 8. While this proof 
obligation is evidently valid, a simple encoding of bit-vectors as tuples causes ex- 
amination of multiple branches when establishing the verification condition. The 
procedure developed here avoids this encoding and its potential case splitting. 
This and similar verification conditions can then be established independently 
of the bit-vector length (and in a fraction of a second). Thus, our procedure is 
able to establish this verification condition when the length 8 is replaced by an 
arbitrary parameter N. 

While other logical operations like shifting can easily be encoded in the lan- 
guage of bit-vectors we analyze, the arithmetical (signed, unsigned and IEEE- 
compliant floating point) operations are not treated in an original way here. 

1.3 A l t e r n a t i v e  a p p r o a c h e s  

This paper investigates decision methods for bit-vectors that  can easily be in- 
tegrated in the Shostak combination [17], which allows a tight integration of 
decision procedures for several theories. The strength of this approach is that  
verification conditions involving a mixture of bit-vector expressions, and unin- 
terpreted function symbols, as in x [ l :  6] = y[0: 5] ---* R(x[1 : 5]) -- R(y[0 : 4]), 
can be decided efficiently. Our algorithms can then be used in heterogeneous ver- 
ification conditions. The Shostak combination is also targeted by the procedure 
in [11]. Naturally, the same verification conditions may be established directly 
using an axiomatization of bit-vectors and equality. Better than a raw axiom- 
atization, proof assistants like ACL2 and PVS provide sophisticated libraries 
containing relevant bit-vector lemmas. Although highly useful, libraries do not 
provide a decision method. 

In the symbolic model checking community, BDDs [6] (binary decision di- 
agrams) are used to efficiently represent and reason about bit-vectors. Purely 
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BDD based representation of bit-vectors requires allocating one variable for ev- 
ery position in a bit-vector. (Just two bit-vector variables each of length 64 
require allocation of 128 variables, pushing the limits of current BDD technol- 
ogy). A BMD-based (binary moment diagram) representation [7] optimizes on 
this while being able to efficiently perform arithmetical operations on bit-vectors. 
Unfortunately it is nontrivial to combine BMDs efficiently into the Shostak com- 
bination. 

Since the values of bit-vectors range over strings of O's and l 's  it is possible 
to use regular au tomata  to constrain the possible values of bit-vectors. Using 
this approach the MONA tool [2] can effectively represent addition of parame- 
terized bit-vectors using M2L (Monadic Second-Order Logic). The expressive 
power of M2L also allows a direct and practical decision procedure of fixed size 
bit-vectors encoded either as tuples of boolean variables or as unary predicates 
with a constant domain. Furthermore M2L allows quantification over bit-vectors 
(with non-elementary complexity as the price). The approach based on regular 
automata,  however does not admit an encoding of concatenations of parameter- 
ized bit-vectors. For suppose the regular language R~ (say 10" 1) encodes eval- 
uations of bit-vector x that  satisfy constraint ~(x). Then the pumping lemma 
tells us that  the evaluations of y consistent with ~(x) A y = x | x is not in 
general (certainly {ww [ w E 10'1} is not) a regular language. Automata  with 
constraints [8] (see chapter 4) is a possible remedy, but this imposes even more 
challenges in obtaining a direct ground integration with other decision proce- 
dures, which we seek here. Our procedure addresses this problem and solves 
satisfiability of ground equalities, a problem which is "only" NP-complete. 

2 A d e c i s i o n  p r o c e d u r e  f o r  f i x e d  s i z e  b i t - v e c t o r s  

We present a normalization function 7", which takes a bit-vector term t[,q and a 
subrange (initially [0 : m - 1]) and normalizes it to a bit-vector term F1 | F2 @ 
�9 .. | Fn where each Fi is of the form 

F : : = F o p F I x l c [ , q  . 

A normalization routine with a similar scope can be found in [5]. In words, T 
produces a term without occurrences of subfield extraction where every | is 
above every op. The translation furthermore maps every original variable x[m] 
to a concatenation xl  | x2 |  | Xn, and maintains a decoding of the auxiliary 
variables into subranges decode(Ilk : jk]), such that  il = O, jn = m -  1, and 
j k + l = i k + l  f o r k = l . . . n - 1 .  

The normalization function shown in Figure 3 is designed to satisfy the basic 
correspondence 

[ t [~] ] ] ,  - -  I T ( t ,  [ 0 :  n - 1]) ] ] , ,  

for every y, where y~ coincides with y on the free variables in t and, furthermore, 
if T rewrites x to xl | . . .  | xk | . . .  | xn, with decode(xk) = [i : j], then 
y'(xk) = 2k E { 0 , . . . , j -  i } . y (x ) (k+ i). 
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Normalization works by recursive descent on the syntax tree of t, pushing 
a subfield extraction [i : j] downwards. By maintaining only one copy of each 
variable, the procedure may update a variable occurrence x to a concatenation 
Xl | x2 | xa globally in the cases where only the subfield [3 : 5] needs to be 
extracted from x[s]. The result of normalizing x[3 : 5] then becomes x2, such 
that  decode(x2) = [3 : 5]. Since the variable x may occur in a different subterm 
under the scope of a boolean operator x & y the cutting of x rewrites this to 
(Xl|174 & y. The auxiliary procedure cut (that takes a term and a cut-point 
as argument) shown in Figure 1 recursively cuts y in the same proportions as ac, 
and forms the normalized concatenation zl  & Yl | z2 &; y2 | X 3  & Yd. It 
uses a set parents associated with each variable x to collect the maximal boolean 
subterms involving x that  have already been normalized. Initially parents(x) = 
0 for each variable. Subterms can also be marked. By default (and initially) 
they are unmarked. To avoid cluttering the pseudocode we have suppressed 
variable dereferencing. To normalize boolean operators, T uses the auxiliary 
procedure slice shown in Figure 2, which aligns the normalized terms s and t 
into concatenations of equal length boolean subterms. Operator application can 
then be distributed over each of the equally sized portions. The auxiliary symbol 
e is used for the empty concatenation. 

The proper functioning of T relies on the precondition that  every time 
T(t[n], [i : j]) is invoked, then 0 < i < j < n. This ensures that  whenever 
cut(tin], m) is invoked then m < n. 

diee(s op t, rn) = 
l e t  

(,~, s~) = die~(,,,n); 
(t~, t~) = d ,c~( t , ,~ ) ;  

in  
r e t u r n  ( s l o p  t l ,  s2 op tz) 

d~ee(e ~ , r n )  = r e t u r n  (c  .~ , e t m ) [ I  [ ] [ - 1 1  
dzce(ar~,~| | areal' m )  = r e t u r n  (x  , x 2) 
dsce(ar, m)  = 

l e t  
[i : j] = decode(x) 
x l ,  ara b e  f r e sh  v a r i a b l e s  w i t h  ~ p a r e n t s  

in  
decode(at1) :=  [i : i + rn - 1]; 
decode(dr2) :=  [i + m : j ] ;  
x :=  art | x2 
f o r  e a c h  u n m a r k e d  s e parents(dr) d o  

:= sl | s2 where (,1, s2) = c~t(s,m) 
r e t u r n  (~1 ,  dr2) 

cut(F, m) = 
m a r k ( F ) ;  
l e t  

(rl(~X),  F2(~2)) = d:ce(F, m) 
in  

f o r  e a c h  j = 1 ,2 ,  x J E ~  J d o  
parents(x J) :=  parents(x ~) u { F i }  

r e t u r ~  (F, (~1); F2 (~)) 

F i g .  1.  Bas i c  c u t t i n g  a n d  d i c ing  

E x a m p l e :  As an example of the translation of an bit-vector expression, consider: 

s :  "[~1 ~ (Y[~[ O: 3] 0 *t~J) 
t :  Y[7] ] (a:[3] | 1[1] | w[7][0: 2]) 

We first apply T(s ,  [0 : 6]) which results in cutting y into Yl | Y2, where 
decode(yl) = [0 : 3], decode(y2) = [4 : 6]. w is cut similarly. The translation 
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apply( op, F(~) ,  a (~)  ) = 
for  each  x E ~ tO ~ do  

pa=,, ts(x) := par~,,ts(x) \ {F, G} tO {F(~) o/9 G(~)} 
r e t u r n  F(~) op G(~) 

slice( op, e, e) = e 
,zic~(op, F(~)[.] | , ,  a (~) [~  | t) = 

i f  m = n t h e n  
appZy( op, F(~'), G(~')) | slice( op, s, t) 

else i f  m > n t h e n  
(G1(~1), G2(~2)) := cut (a(~) ,  n); 
~ppt~(op, F(~),  G~ ( ~ ) )  | ,lice( op, ~, a~ ( ~ )  | t) 

e l s e  

(F~ ( ~ ) ,  F2(~2)) := cut(F(-~), m); 
~ppt~( op, F~ (~), G(~)) | ,tic~( op, F~(~ ) | ~, t) 

Fig. 2. Slicing and operator application 

7"(~ op t, [i :  j])  = 
7"(s[k : 1], [i:  j ] )= 
7"(st.] | t[. q, [i : j ] ) =  

7"(:':t,,,.~, [i : ~1)= 

7"(c[,-,, t, [i: j]) = 

stice(op, 7"(s, [i: i]), 7"(t, [i: j])) 
7"(s, [k + i :  k + j]) 
i f  n < i t h e n  T( t ,  [i - n :  j - n]) else 
i f  n > j t h e n  7"(s, [i: j]) else 7"(s, [i: n - 1]) | 7"(t, [0: j - n]) 
i f  0 < i t h e n  7"(second(dice(x, i)), [0: j - i]) else 
i f j  < m - 1 (i = 0) t h e n  f irs t (dice(x , j  q- 1)) else x 
cD-,+l] 

Fig.  3. Normalization function 7" 

o f t  results in fur ther  cut t ing Yl into Y3 @ Y4, where decode(y3) = [0 : 2], in order 
to align with z[31 | 111]. The  variable wF] is also cut into wl |  @ w3 overing 
the same intervals as the par ts  of  y, namely  [0:  2], [3: 3], [4:  6]. T he  result of  
t rans la t ion  is then: 

S : W l & Y 3 |  w 2 & y 4 |  w a & z  t : y 3  I x |  Y4 [ 1111| Y2 [ Wl J 

2.1 I n t e r f a c i n g  t o  t h e  S h o s t a k  c o m b i n a t i o n  

Shostak 's  me thod  of  combining decision procedures allows integrat ing decision 
procedures for theories, such as arrays, linear ar i thmetic ,  records, induct ive 
data- types ,  and sets inside Shostak 's  congruence closure a lgor i thm [17, 10]. T he  
m e t h o d  requires each decision procedure to  provide (1) a canonizer  (~), which 
satisfies ~(s) = g( t )  whenever the equali ty s -- t holds in the theory suppor ted  
by the decision procedure;  and (2) a solver, which rewrites an equat ion s = t to 
either f a l s e  (if it is unsatisfiable) or into an equivalent form 3Va,x .  Ai~=l z i  = t i ,  
where each z i  is a variable f rom s or t, each ti  is canonized, and no z i  occurs in 
tj  or is equal to an zk, when k r i. Va~= is the collection of auxil iary variables 
tha t  occur in the t j ' s  but  not  in the original equat ion s = t. We will use the 
equivalent  form as a subst i tut ion/7 = [xi ~-, ti  [ i = 1 , . . . ,  n] and call it a Shos lak  
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subs t i tu t ion .  The substitution can be used to decide verification conditions of the 
form sl = t l  A s~ = 12 --+ s3 = t3 by extracting 01 from sl = 11, extracting 02 
from 81(s2 = t2) and check if ~r(O2(Ol(s3))) is identical to ~(02(01(13) ) ) . .  

To canonize a term tim] we first obtain F 1 | . . .  | F n = T ( t ,  [0 : m - 1]). 
We will identify a free variable xk in F i with x[ i :  j], where decode(xk )  = [i : j] .  
Each F i is represented in a canonical form (for instance an ordered BDD) based 
on a total order of the variables. A consecutive pair F i and F I+1 can now be 
combined whenever F i is equivalent to the boolean expression obtained from 
F i+'  by replacing each variable x[k : l] by x[k - n : l - 1], where n is the length 
of F i. 

To decide the satisfiability of an equality s[,~] = tin] and extract a canonized 
substitution O we notice that  s = t is equivalent to s " t = 0in 1. Hence the equal- 
ity is satisfiable if and only if 7-(s " t, [0 : n - 1]) = F 1 |  | F m and A~ml -~F ~ 
is satisfiable. At this point we can apply the technique used in [11], which extract 
equalities from BDDs using equivalence preserving transformations of the form 
ire(x,  H, G) = (H V G) A 36.x = H A (-~GV 3). This produces a substitution 00 
with subranges of the original variables in the domain and auxiliary 6's in the 
range. The resulting Shostak substitution can then be extracted by generating 
0 as follows: 

01 : [x ~ 00(=,) |  | 00(x.)  I =~ ~ dora(00) ^ x = xl  |  | x . ]  

[ I x = x l | 1 7 4  k < " '  ] 
0 2 :  xk  ~ x[ i  : j] decode(xk )  = [i: j], V'i: [1..n].xl r d o r a ( 0 0 )  

0: [= ~ ~(02(01(x)) )  I = ~ dora(81)] 

E x a m p l e :  Continuing with the translated versions of our example terms s and 
t we will extract a Shostak substitution from the equality constraint s = t. We 
therefore complete the translation to get: 

s "  t : ( w l  8, y3 ) "  (Y3 I x ) |  ( w 2 & y 4 ) "  (//4 ] 1[, 1)|  ( w 3 & x ) "  (Y2 [Wl) 

By negating the concatenations, the constraints needed to extract a substitution 
are obtained. The second constraint is easiest as it simply imposes w2 = Y4 = 1111. 
The conjunction of the first and third constraint is transformed: 

"n((Wl ~ Y3) " (V3 IX)) ** ~( (~3  ** =) " (V2 IW0) = 113] 
*-~ Re(x,  wl & Y3 & w3, "~Y2 & -~w, & "Y3) = 1131 

(= = wl ~ u3 e w3) ^ ((wl ~ u3 e w~) I (~u~ e ~wl  e ~u3)) = lt31 
~-* (x = wl k Y3 & w3) A (wt = Y3 & w3) A ((Y3 & w3) I (-~Y2 &: "~Y3)) = 113] 

(x = wl & Y3 & wz) A (wl = Y3 & w3) ^ (Y3 = w3) A (w3 [ -~Y2) = 113] 
(x = wl k y3 & w3) ^ (wx = y3 & w3) ^ (y3 = w3) ^ 3~.y2 = w3 k 6 

The composition of the extracted equalities gives an idempotent substitution: 

0 : [W, ~ W 3 ~5 5, X ~ W3 ~Z 5, y~. ~ wa & 6, Ya ~ w3] 

From this we generate a Shostak substitution, where Vau~ = {w3, 5}. 

[x ~ ~3 ~ 6, ~ ~ (~3 ~ 6) | 1[,1 | ~3, y ~ ~3 | 1[,1 | (~3 ~ 6)] . d 
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2.2 Equational running time 

For input s = tin] not involving op subterms (basic bit-vectors) the presented 
algorithm can be tuned to run in time: O(m + nlog(n)), where m is the number 
of @ and subfield extraction occurrences in s and t. First subfield extraction 
is pushed to the leaves in time (9(m), then the @ subterms are arranged in a 
balanced tree and T is applied to the balanced terms while maintaining balance 
in the tree. The translated equality s = t is processed in a style similar to slice, 
but the auxiliary function apply has been replaced by one that  builds a graph 
by connecting vertices representing the equated constants or variables. If some 
connected component contains two different constants there is a contradiction 
and the equality is unsatisfiable. Otherwise an equivalence class representative is 
appointed for each connected component, choosing a constant if one is present, 
or an arbitrary variable vertex otherwise. The extracted Shostak substitution 
then maps every variable to a concatenation of equivalence class representatives. 

A canonized solution for satisfiable equalities can be extracted in t ime O(n) 
(which is dominated by the running time of Y). An algorithm with the same 
functionality is presented in [11]. Tha t  algorithm has running time O(mlog(m)+ 
n2), but  offers some shortcuts that  we don't  address. Both procedures may still 
depend heavily on the parameter n. For instance, the equality 

011] | 111] | z[m] = x[m] | 011] @ l[t] (2) 

requires (the maximal) m cuts of x, and is only satisfiable if m is even. The 
same functionality can, as [11] noticed, be achieved in O(m + n) time, but at 
the expense of having this as the minimal running time as well. 

Another advantage of our algorithm is that  it can be extended (with a few 
modifications) to the case where bit-vectors of parameterized length are either 
exclusively on the right or exclusively on the left of every concatenation. This 
excludes cases like (2), which we will address in Section 3. 

2.3 B e y o n d  Equalities 

The satisfiability problem for constraints involving disequalities is NP-complete 
in the case of basic bit-vectors. Membership in NP follows from the fact that  
we can easily check in polynomial time that  a given instantiation of bit-vector 
variables satisfies prescribed constraints. NP-hardness follows from a reduction 
from 3-SAT to conjunctions of disequality constraints: take an instance of 3-SAT 
A~(ll v k~ v mi) where li, ki and mi are literals over the vocabulary V of boolean 
variables. Translate this into Ai(li | ki | mi ~ 000) A Axev(~  r z), where for 
each boolean variable z we associate two bit-vector variables z[1] representing x 
and ~[1] representing the negation of z. 

We therefore settle here by handling t r s as [(t " s), and converting [tin] 
to t[0 : 0] [ . . .  [ t [ n -  1 : n -  1] = 111]. The connectives < and <, as well 
as operations like + and * can be handled similarly, though the advantages of 
this approach are questionable. Naturally these constraints are only analyzed 
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when all equational constraints have been processed and the resulting Shostak 
substitutions have been applied to the non-equational constraints. 

Verification conditions of the form f (A) r f (B)  A f(A) r f (C) --* f (B)  = 
f(C),  where f is an uninterpreted function symbol, are handled using a complete 
case analysis on bit-vectors A, B and C (it is valid only when A, B and C are 
bit-vectors of length 1). Shostak's approach to combining equational theories 
misses cases like this as it is originally designed for theories admitt ing infinite 
models (see for example [15]). 

3 Uni f i ca t ion  of  basic b i t -vec tors  

In this section we focus on the problem of finding unifiers for basic bit-vector 
terms s and t. The restriction to basic bit-vector terms allows us to develop a 
more efficient procedure and at the same time widen its scope to bit-vectors 
whose lengths are parameterized. 

3.1 ext-terms 

To more compactly represent solutions to equations like (2) we introduce a new 
bit-vector term construct ext(t[n], m) (the extension of t up to length m), which 
is well-formed whenever m > 0. The meaning of ext is given by the equation 

[ext(ttn], rn)] 0 = ~ |  .. @ t |  : / -1] ]~  where ( k + l ) n  > m > kn and l =  m - k n  
, y  

k 

Thus, ext(t[n], m) repeats t up to the length m. To map ezt-terms to terms 
in the base language we use the unfolding function unf 

, , n f ( t t ,  1, m)  = t | .. | t | [0:  t - l ] )  where ( k + l ) n  > m > kn  and l = m - k n  

k 

A solution to equation (2) can now be given compactly when m is even as 
x = ext(O[1] | 1[1], m). 

3.2 Unification wi th  ext-terms 

To decide the satisfiability of equalities s = t of basic bit-vector terms ex- 
tended with ezt-subterms we will develop a Martelli-Montanari style unifica- 
tion algorithm [14] which takes the singleton set So : {s = t} as input and 
works by transforming C0 to intermediary sets s163  by equivalence pre- 
serving transformations which simplify, delete or propagate equalities. It ulti- 
mately produces either FAIL, when s = t is unsatisfiable, or a substitution 
E~n~z : {z l  = t l , . . . ,  zn = tn}. 

Since our procedure uses 7" to decompose terms, every auxiliary variable in 
S/i,at furthermore corresponds to a unique disjoint subrange of one of the original 
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variables. The  obviously satisfiable conjunct ion of  equalities is equivalent to  the 
original equality. 

A canonizer can be obta ined by first e l iminat ing the ext-terms by using unfold 
and then using the canonizer of  Section 2.1. 

E x a m p l e :  Anticipat ing the a lgor i thm we will present, consider the following 
equal i ty  assertion: 

Y[3] | X[16] | X[16] | Z[2] = X[16] | W[4] | 0111 | ~[16] �9 

In processing the implied equali ty Y[a] | X[16] = X[16]  | " ' "  we obtain  X[16] = 

ext(y[3], 16) as a solut ion for x[16]. Continuing with the remaining equalit ies we 
get the in termedia te  set of  equations: 

x[16] = exi(y[3], 16), y[3][l : 2] @ y[3][O : O] -- w[4][O : 2], 
z[2] = w{4][3 : 3] | 0[1], ext(w[4][3 : 3] | 011], 16) = =[16] �9 

The  two equat ions involving x are combined to produce the implied constraint  

ext(~3], 16) = exl(w[4;[3 : 3] V 0El 1, 16) . 

This  equal i ty  is evident ly equivalent to its unf-unfolding, but  as we will later  
fo rmula ted  in a general setting, we can do be t te r  and only need to assert: 

| o] = w{4][3: 3] | oE1 ] |  [41 [3: 3] v 0{1].  

In fact  this implies y[0 : 0] = y[1 : 1] = y[2 : 2] = w[3 : 3] -- 0111. After 
propagat ing  the resulting constraints  we obtain the final result: 

w[4] = 0[4], X[lS] = 0116], Y[3] = 0[3], z[2] = 0[2] �9 _, 

While  the full unification a lgor i thm is given in Figure 4 we highlight and 
explain the more  delicate cases below. 

x[,~] | s -- t[m] | Y[z] | u when m-F l > n > m, x r y. The  s i tuat ion is described 
in the picture  below, which suggests tha t  the equali ty is equivalent to x -- 
t | Yl and s = Y2 | u for suitable splits Yl and Y2 of  y. We use ~T to cut y 
into the appropr ia te  pieces. This  replaces y everywhere in E by yl | y2. 

t y u 

I I ~ : ~ I I 
I I I 

x $ 

z[n] | s = t[m] | x[~] | u when n > m. For example  we are given the configura- 
tion: 

t X 

X $ 
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Thus,  the original equali ty constraint  is equivalent to  z = t | t | t | t[0 : 0] 
and t[1 : 2] | t[0 : 0] | u = s. To more  compac t ly  describe the first equali ty 
we use the ex t - cons t ruc t  to  obtain  x = ez t ( t ,  10). 

ext(s[m], l) = ext(t[n], l) The effect of  replacing x by s in the variable e l iminat ion 
step m a y  introduce equali ty constraints  between ext-terms. Al though  the 
equali ty constraint  is by definition equivalent to unf(s[m],  l) = unf( t[~] ,  l), 
we can be even more  economical  in the unfolding as the following l e m m a  
suggests. 

L e m m a  1. A s s u m e  2n < I and 2 m  < i and  let g = gcd(m,  n)  then  

ext(s[m], l) = ext(t[n], l) ~-~ u n f ( s ,  m + n - g) = u n f ( t ,  m + n - g) 

Thus,  we will ensure tha t  our  a lgor i thm mainta ins  the invariant  2n < l for 
every ext(t[.], l) term, and the equali ty constraint  ext(s[,n], l) = ext(t[n], l) is 
replaced by u n f ( s ,  m + n - g) = u n f ( t ,  m + n - g). 

Other  simpler cases are summar ized  in Figure 4. It  omits  cases tha t  can be 
obta ined using s y m m e t r y  of  equality. 

C o n s t r u c t o r  elimination 
R1 { S [ m l | 1 7 4 1 6 3  --* { s = t , u = v } U C  
R2 {C[ ,q |  ] |  -'+ FAIL w h e r e c ~ c '  
R3 {c[ml| | 1 6 3  ---. { s = c i n _ m  ] | 1 6 3  w h e r e n > m  
R4 {xt ,q|  d |174 --~ { x = t | 1 7 4  

w h e r e  m + i > 
yl = T(y ,  [0 

R5 {xInl | s = tt,q |  |  u s  --* 
where n > m > 0 

R6 {xf,q | s = tim ] | c[z] | u} U s  --~ 
where m + 1 > n > 

R7 {s[,,q | t = ext(u[tl ,n) | v} U g  --* 

where m < n 
R8 

n > r n > O , x r  
: m -  n - -  1]), yz = T ( y , [ m -  n :  l -  1]), 

{x = t | c[,~_,q, s = c[l+,_,~] | u} u s 
m > 0  

s t m l = m k ' e z t ( u ' m ) '  } U E  
t = mk-ext(  wrap( u, m), n - m) | v 

{ ext(  sihl , m)  = ext( t[z2] , m)} U C ---* { unI  ( s, l) = un] ( t, l)} U s 
where l = la q- lz - gcd(la, l~) 

E q u a l i t y  a n d  var iab le  elimination 
R9 { t = t } u s  --* s 
R10 { x = s } u s  ~ { x = s } U E [ x ~ s ]  

Fig.  4. Rules for unification with ext-terrns 

The  auxil iary funct ion wrap splits the term t at  posit ion k and swaps the two 
pieces. The  funct ion m k - e x t  produces either an e x t - t e r m  when the length of  t is 
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sufficiently small or unfolds t. It ensures that  every ext(t[n], m) term generated 
by the algorithm satisfies 2n < m. These are defined more precisely below: 

wvap(t[~], m) = l e t  k = m mod n in 
i f  k = 0 t h e n  t else 7"(t, [k: n - 1]) | T(t, [0: k - 1]) 

mk-ext(t[a], m) = i f  2n < m t h e n  ext(t, m) e l s e  unf(t, m) 

The unification algorithm terminates since the variable elimination step re- 
moves duplicate constraints involving x and every other step produces equalities 
of smaller size (in terms of the number of bitwise Comparisons) than the one 
eliminated. For instance, in the R8 rule we rely on m > 2. max(/l,  12) > 1. 

3.3 N o n f i x e d  size b i t - vec to r s  

The most prominent feature of the unification algorithm in Figure 4 is that  it 
can be used to decide bit-vector equality constraints s -- t, where lengths and 
projections are not restricted to fixed naturals, but are of the form aN + b, 
where a and b are integers and N is a parameter (where we assume without loss 
of generality that  N > 0). This allows us to apply the algorithm in the Shostak 
combination for deciding verification conditions with non-fixed bit-vector equal- 
ities. The unification problem for non-fixed bit-vectors is also reminiscent of the 
word unification problem, originally solved by Makanin and later solved using a 
unification procedure in [12]. The main difference is that  variables ranging over 
words in that  problem do not have associated size constraints which bit-vectors 
have. By performing comparisons and arithmetic on these lengths symbolically 
and allowing admissible answers to be paired with accumulated constraints (as 
explained later), we can deal with the following example: 

E x a m p l e :  By performing the unification of 

{W[2] | 0[1] | X[N-t-6] ~ Y[N+7] -~ X[N+6] | 1[1] | Z[3] | X[N+6]} (3) 

we obtain as an intermediate step 

f X[N+6]--~ ext(w[2] | 0[,],N + 6), Y[N+7] = z[3][2 : 2] | X[N+6] "~ 
111] | z[3][0 : 1] = wrap(wD] @ 011], N + 6) J 

and finally two cases: 

�9 [g+6] = ext(l[1] | | 011], N + 6), 

Y[N+7] = cql] | ext(l[1] @fl[1] | 0[1],N + 6), i f N  --- 0 (mod 3) 
z[a] = fl[l] | 011] | a[1], 
w[21 = 1111 | fill] 

a[N+6I = ext(fl[ll | 1111 | 0111, N + 6), 
Y[N+7] = c~[1] | ext(fl[ll | 1111 | 0111, N + 6), 
z[a] = 0111 | #[1] | a[l], 
w[2] = fiE1] | 1111 

i f N = l  (mod3)  
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When N _= 0 (mod 3), the evaluation of the wrap function simplifies the second 
equation of the intermediate result to 111] | z[3] [0 : 1] = w[2] | 011]. The case that  
corresponds to N --_- 2 (mod 3) requires 111] | z[3] [0 : 1] = 011] | w[2] which results 
in an inconsistency. The fl[1],a[1] are auxiliary variables that  are introduced to 
represent unknown segments of the bit-vector variables. 

d 

Thus, the result produced by the unification algorithm will now be a set of 
constraints, each of the form 

(ax + b > c, [N ~-* ax + b] o [xi ~-~ ti [ i = 1 , . . . , n ] )  

where x is a fresh variable and the first constraint is passed on to decision proce- 
dures for linear arithmetic,  and the second constraint is a Shostak substitution. 
We are thus faced with a finitary as opposed to unitary unification problem (see 
[1] for a survey on unification theory). 

The crucial observation that  allows lifting the algorithm to parameterized bit- 
vector expressions is that  all operations and tests on the lengths and projections 
are of the form 

m + n ,  m - n ,  m > n ,  m > n ,  m = n ,  m m o d n .  

Since terms of the form a N  + b are closed under addition and subtraction, the 
first two operations can be performed directly in a symbolic way. " 

The comparison m > n is rewritten to m - n > 0, m ~ n to rn - n + t > 0, 
a n d n = m t o n - m + l > 0  A m - n + l  > 0 .  This reduces the evaluation of 
comparisons to a N  + b > 0. Since 

a N + b > O  ~-~ ( a = O A b > O  V a > 0 )  iff 

( a > 0 > b V a < 0 < b )  - - * g _ > l b l d i v l a l  (4) 

tests can be evaluated using a = 0 A b > 0 V a > 0 and accumulating auxiliary 
lower bounds on N for a separate t reatment .  Our algorithm then produces an- 
swers for all N greater than the largest accumulated lower bound. For values of 
N smaller than the accumulated bounds we instantiate N and run the fixed size 
version. 

The auxiliary function wrap requires us to compute m mod n. To simplify 
this case our algorithm will maintain the invariant that  m mod n is only invoked 
when n is a constant b', whereas m may be of the form N + b .  The case N > b ' - b  
causes case-splitting on each of the possible solutions k = 0 , . . . ,  b' - 1. 

We could represent each case in Presburger ari thmetic as 3x  >_ O.xb' = 
N + b - k and use a Presburger decision procedure [9] to check satisfiability of 
conjunctions of such constraints. However, in order to manage these constraints 
more efficiently we can use the Chinese Remainder Theorem (see [16]). If  HipT' 
is a prime factorization of b' (with Pl, P2 , . . .  the sequence of all primes), then 

N + b - k (mod b') iff N + b - k (mod p~") for every i. 
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Let D(p, fl, l) be the predicate that  N = l (mod p~) is true. Let Cmod ---- 
Ai D(pi,  fl~, b~) be the conjunction of divisibility constraints imposed on the cur- 
rent system. Only one predicate is needed for each Pi, since: 

D(p, fl, l') A D(p, o~, l) A fl > o~ iff D(p, fl, l') A l' -- ! (mod pa) . (5) 

In order to split on the case N + b -- k (mod b') for different values of k = 
0 , . . . ,  ( b ' -  1) we can form the product of the case splits on N + b  = k~ (mod p~') 
for ki = 0 , . . . ,  (p~' - 1) (the product is over i = 1, 2 , . . . ) .  The situation is not as 
bad as it seems, since we can use the existing Cmod to merge the new constraints 
in an optimal way: 

f p % - # ' - 1  

CIm~ : A P ( i )  where P ( i ) =  / Y0 D(pi,ot/,bi + j p / ~ ' ) i f  hi >_ fli 

i I, D(pi, 13i, hi) if ~i < fli 

The predicate P(i)  represents the enumeration of valid congruences modulo a 
power of pl. Statement (5) suggests the form of the enumeration for each case 
in the definition of P(i) .  Expressing C/mod in disjunctive normal form i Vi Cmod 
the constraints for the different cases are obtained. The value of k for a partic- 
ular case of Cmod can be reconstructed using the congruence k --- ( ~ i  nibi) - 
b (mod b') where n i = z i z i ,  z i  = j#iPj , and Ti satisfies zi-hi - 1 (mod p~') 
(it exists since gcd(p~', zi) = 1). 

Given expressions s and t our algorithm now engages in the following steps: 
(1) Apply 7- to both s and t, i.e., let (s, t) := (7-(s, [0: m - 1]), 7-(t, [0: m -  1])). 
This generates bit-vector expressions without subfield extraction and an assign- 
ment to each original variable z to a concatenation zl  | z2 |  �9 �9 | zn of distinct 
variables, where decode(x~) cover disjoint intervals of x. Using equivalence (4) 
the tests in 7" are evaluated unambiguously, and possibly generating a new lower 
bound on N. The cases where N is smaller than this bound are processed later. 
(2) Every variable Zing+b] remaining in s or t, where a > 0, is replaced by a 

concatenation of a fresh variables: ~,(1) _ (2) ~.(a) Constants are cut '~[N] (}9 Z[N ] | . . .  | ~[N-t-b]" 

in a similar way 2. If b is negative the lower bound 1 - b on N is added. 
Every variable occurring in s and t now has length N + k or k, where k 

is an integer. (3) The algorithm in Figure 4 is invoked on the equality {s = 
t}. Each comparison accumulates a lower bound on N and each invocation of 
mod may cause a multi-way case split while accumulating modulus constraints 
on N. The unification algorithm therefore generates constraints of the form 
(El, C1),..., (~n, Cn), where the s are equalities and Ci is a conjunction of N > k 
and D(pl , ~i, hi) constraints. 

We need to ensure that  every step is well defined: in particular that unf(t ,  m) 
and, as we assumed, n mod m are only invoked when m is a constant. This is a 
consequence of the following invariant: 

2 This step is not strictly necessary, but simplifies the further presentation of the 
algorithm. 
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I n v a r i a n t  2 For every occurrence of eXt(t[aN+b] , n): a = 0 A 2b <_ n. 

This holds as exl terms are only generated when mk-ext(t[aN+b], aIN + b ~) is 
invoked and 2(aN + b) <__ atN + b ~. Since both a and a' are either 0 or 1, this 
inequality can only hold if a = 0 or N is bounded above by (b I - 2b) div ( 2 a -  al). 
The cases where N is bounded above by a constant are treated separately. 
(4) The solved form can now be extracted. For each (s C) generated from the 

l previous step let C be of the form N _> k A Ai=I D(pi,oti, ai). The Chinese 
Remainder Theorem tells us how to find ni such that  the constraints can be 
rewritten to the equivalent form 

N > k A 3x .N  = Ax  + B where A = 1-'Ii=1 P~' B = =1 niai mod A 

Since we extract the Shostak substitution 0 from s as in the fixed-length ease 
the combined constraint returned for this case is 

(Ax + B >_ k, IN ~-+ Ax  + B] o 0). 

For each k less than the least lower bound accumulated above we instantiate N 
by k and extract 0k by running the fixed-size version of the algorithm (that  is, 
running {s = t ) [N ~-~ k]). For these cases the returned constraints have the form 

(t e, [N k] o 0h). 

The algorithm now concludes by returning the entire set of the constraints 
extracted above. 

As we have argued above we now have 

T h e o r e m  3. (Correctness) When the non-fixed unification algorithm terminates 
on the input constraint s = t with a set of constraints {(~oi(x),tgi) l i = 0 , . . . n }  

n 

t h e n s = t  ~ V3z 'V~ux4~  AOi" 
i = 0  

Finally we must ensure that  we can make the unification algorithm modified 
for parameterized lengths terminate. To this end we apply the transformation 
rules from Figure 4 by preferring the variable and equality elimination rules to 
the other rules. 

We will proceed to prove the termination by induction on the number of 
distinct non-fixed variables k in s that participate in some equality where rule 
R1-R8 can be applied. The base case (k = 0) operates only on fixed-size variables, 
and so it terminates. 

Whenever a variable z has been isolated using one of the rules R4-R6, it is 
eliminated from the rest of s Indeed it is eliminated as z cannot be a proper 
subterm of t in the equality constraint x = t, since the length of t is the sum of the 
lengths of its variable and constant subterms, which equals the length of z. Since 
rules R1-R8 produce equalities between smaller bit-vectors we cannot repeatedly 
apply these rules without eventually eliminating a non-fixed size variable. Rule 
R4 may split a non-fixed length variable y into two parts Yx and Y2, but  only 
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one of these parts will have non-fixed length, so the overall number of non-fixed 
length variables is constant. 

We therefore have 

T h e o r e m 4 .  (Termination) The non-fixed unification algorilhm terminates. 

A reduction from the problem of simultaneous incongruences [19] can estab- 
lish that  the unification problem for non-fixed bit-vectors is NP-hard. A more 
careful analysis of the termination argument can establish that  a satisfying uni- 
fier can be verified in time polynomial in the constant parameter sizes and num- 
ber of subterms, hence establishing NP-completeness of the non-fixed bit-vector 
unification problem. 

The unification algorithm finally needs to be supplied also with a canonizer 
that  works on ext-terms of non-fixed length to enable an integration with other 
decision procedures. While simple unfoldings cannot be performed this time our 
implementation normalizes terms into a concatenation of variables, constants 
and ext-terms whose arguments are fixed size terms in canonical form. The 
occurrences of ext in the resulting expression are then shifted as much as possible 
to the left. This step cannot be performed unambiguously without asserting 
congruence constraints on the parameter and hence also leads to case splits. 

The table below summarizes a few benchmarks presented to our prototype 
implementation (coded in SML/NJ,  executed on a 200Mhz SUN Ultra II). 

equation (3) . 

2. 011] | 111] | 011] | X[N+7] | 111] | 011] | 111] | Y[N+I] 
= X[N+7] | X[N+7] 

3. X[N+4] | 011] | 111] | 011] | Y[N+9] 
= Y[N+9] | 111] | 011] | 111] | X[N+4] 

4. (3) ---+ Zt31 [0 : 0] = 0[11 V z[31 [1 : 1] = 0[q 

satisfiable 0.06 s 
unsatisfiablei 0.06 s 

unsatisfiable 0.09 s 

valid 0.07 s 

4 C o n c l u s i o n  

This paper presented two algorithms: one algorithm handles boolean operations 
on fixed-size bit-vectors, the other handles equational constraints in the ab- 
sence of boolean operations on parameterized bit-vectors. A completed picture 
would combine the algorithms to handle boolean operations on parameterized 
bit-vectors. Encouraged by the presented results we are currently trying to ex- 
tend the algorithms to handle parameterized boolean operations, and to address 
efficient integration of arithmetical operations on bit-vectors. The fixed-size al- 
gori thm is presently integrated into STeP's simplifer and validity checker where 
it has been used in hardware verification. Simultaneously we are experimenting 
with our prototype implementation of the non-fixed bit-vector decision proce- 
dure on verification conditions from parameterized hardware designs. 
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