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Abs t rac t .  We present the notion of translation validation as a new ap- 
proach to the verification of translators (compilers, code generators). 
Rather than proving in advance that the compiler always produces a 
target code which correctly implements the source code (compiler verifi- 
cation), each individual translation (i.e. a run of the compiler) is followed 
by a validation phase which verifies that the target code produced on this 
run correctly implements the submitted source program. 
Several ingredients are necessary to set up the - fully automatic - trans- 
lation validation process, among which are: 

1. A common semantic framework for the representation of the source 
code and the generated target code. 

2. A formalization of the notion of "correct implementation" as a re- 
finement relation. 

3. A syntactic simulation-based proof method which allows to automat- 
ically verify that one model of the semantic framework, representing 
the produced target code, correctly implements another model which 
represents the source. 

These, and other ingredients are elaborated in this paper, in which we 
illustrate the new approach in a most challenging case. We consider 
a translation (compilation) from the synchronous multi-clock data-flow 
language SIGNAL to asynchronous (sequential) C-code. 

1 I n t r o d u c t i o n  

In this paper, we present the notion of translation validation as a new approach 
to the verification of translators (compilers, code generators). The idea of trans- 
lation validation is the following: Rather than proving in advance that  the com- 
piler always produces a target code which correctly implements the source code 
(compiler verification), each individual translation (i.e. a run of the compiler) is 
followed by a validation phase which verifies that  the target code produced on 
this run correctly implements the submitted source code. 

Since compiler verification is an extremely complex task and every change 
to the compiler (even minor revisions) requires redoing the proof, compiler ver- 
ification tends to "freezes" the compiler design, and discourages any future im- 
provements and revisions. This drawback is avoided in the translation validation 
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approach since it compares the input and the output of the compiler for each 
individual run independently of how the output is generated from the input. 

The concept of translation validation is depicted in Fig. 1. 

Compiler 1 Analyzer 

Bad = ~ o u n t e r  Exam~~~ple 

Good ~ ~  

I Rudimentary 1 
Proof Checker J 
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Fault Indication 

Fig. 1. The concept of Translation Validation 

Both the source and the target programs are fed as inputs to an Analyzer. 
If the analyzer finds that the generated target program correctly implements 
the source program, it generates a detailed proof script. If the analyzer fails 
to establish the correct correspondence between source and target, it produces 
a counter-example. The counter example consists of a scenario in which the 
generated code behaves differently than the source code. Thus, the counter- 
example provides an evidence that the compiler is faulty and needs to be fixed. 

The following ingredients are necessary to set up the - fully automatic - 
translation validation process: 

1. A common semantic framework for the representation of the source code and 
the generated target code. 

2. A formalization of the notion of "correct implementation" as a refinement 
relation, based on the common semantic framework. 

3. A proof method which allows to prove that one model of the semantic frame- 
work, representing the produced target code, correctly implements another 
model which represents the source. 

4. Automation of the proof method, to be carried out by the analyzer which, 
if successful, will also generate a proo/script; and 

5. A rudimentary proo/checker that examines the proof script produced by 
the analyzer and provides the last confirmation for the correctness of the 
translation. 

These ingredients are elaborated in this paper, in which we illustrate the 
new approach in a most challenging case. We consider a translation (compila- 
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tion) from the synchronous multi-clock data-flow language SIGNAL [BGJ91] to 
asynchronous (sequential) C-code. 

As part of the Esprit-supported SACRES project (Safety Critical Embedded 
Systems), the proposed translation validation tool described here is expected to 
provide repeated validation of each run of the translator. To increase the confi- 
dence in the correctness of the validation tool itself, it has been structured into 
an analyzer which produces a proof script and a (rudimentary) proof checker. 
This decomposition enables us to make the proof checker, which is responsible 
for providing the last seal of approval, very simple and almost "verifiable by 
inspection". 

The paper is structured as follows. The next section introduces the basic 
notions: We present the small, yet representative, SIGNAL pprogram MUX; give 
the generated C-code of MUX, and explain why it "correctly implements" the 
source code. Then, we turn to the formal side. In Section 3 we introduce the 
synchronous transition system (STS) computational model. This formalism is 
used as the common semantic base for the description of both the synchronous 
source and the asynchronous target programs (SIGNAL and C resp., in our ex- 
ample). Section 4 formalizes the notion of "correct implementation" by means 
of a refinement relation. A generalization of the refinement-mapping simulation 
method is advocated as a proof method for the refinement relation. Automation 
of this proof method, based on syntactic representation of an appropriate proof 
rule, is the topic of Section 5, and finally, concluding remarks appear in Section 
6. A more detailed discussion of the proof-checker and the decision procedures 
that were used is saved for the full version. 

Re la t ed  Work  

Work in a similar direction was recently reported by Cimatti et al. [C97]. Due to 
the similarity between the source and target languages, the translation they con- 
sidered is rather straightforward, and is therefore verified using a much simpler 
technique than the one we develop here. 

Another related work is the "Proof-Carrying Code" mechanism of Necula 
and Lee, cf. [NL96,N97]. We believe that the translation validation approach 
may have several advantages over proof-carrying code. The translation valida- 
tion framework is more general due to its abstract computational model and 
refinement notions, which the proof-carrying code method does not enjoy. An- 
other important advantage of translation validation is that it is fully automatic, 
while in proof-carrying code the crucial part of the correctness proof, namely, 
the verification condition, is generated manually. 

2 A n  I l l u s t r a t i v e  E x a m p l e  

In this section we first illustrate details of the compilation process by means 
of an example and then explain the principles which underly the translation 
validation process. 
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SIGNAL [BGJ91] is a synchronous programming language used for design and 
implementation of reactive systems. Statements of SIGNAL a r e  intended to relate 
clocks (frequencies) as well as values of the various (internal and external) signal 
flows involved in a given reactive system. Variables (signals) in SIGNAL , as is 
often the case in synchronous languages, are volatile. That  is, they only hold 
values at specific time instances along a computation. Pu t  differently, variables 
are absent almost everywhere along a computation. 

Consider the following SIGNAL program: 

process MUX= 

( ? integer FB 

' integer N 
) 

(l N:= FB default (ZN-I) 
i ZN:= N $ I 
[ FB'=when (ZN<=I) 

l) 
where 

integer ZN init I ; 
e n d  

This program uses the integer variable FB as input, the integer variable N 
as output  and the local variable ZN. The body of MUX is composed of three 
statements which are executed concurrently as follows. An input FB is read and 
copied to N. If N is greater than 1 it is successively decremented by referring to 
ZN, which holds the previous value of N (using $ to denote the "previous value" 
operator) . No new input value for FB is accepted until ZN becomes (or is, in 
case of a previous non-positive input value for FB) less than or equal to 1. This 
is achieved by the satatement 

FB^=when (ZN<=I), 

which is read "the clock of FB is on when ZN _< 1", and allows FB to be present 
only when ZN < 1. A possible computation of this program is: 

N : 3  -- '~  N : 2  ~ N : I  ~ 5 "~ N ' 4  ~ . . .  
Z N  : 1 Z N  : 3 Z N  ' 2 Z N  1 Z N  ' 5 

Where _l_ denotes the absence of a signal. Note that  SIGNAL programs are 
not expected to terminate. 

Let us now consider the C-code obtained by compiling a SIGNAL program. 
The main-program consists basically of two functions: 

- An initialization function, which is called once to provide initial values to 
the program variables. 

- An iteration function which is called repeatedly in an infinite loop. This 
function, whose body calculates the effect of one synchronous "step" of the 
abstract  program, is the essential part  of the concrete code. 
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The iteration function obtained by compiling MUX is given below. 

logical MUX_iterate() 
{ 
i0: hl = TRUE; 

Ii: h2 = ZN <= I; 

12: if (h2) 

12.1: read(FB); 

13: if (h2) 

13.1: N = FB; 

else 

13.2: N = ZN - i; 

14: write(N); 

15: ZN = N; 

return TRUE; 
} 

Remark 1. The labels are not generated by the compiler but have been added 
for reference. 

The C-code introduces explicit boolean variables to represent the clocks of 
SIGNAL variables and events. Variable hl  is the clock of N and ZN, and h2 is 
the clock of FB. 

The C program works as follows. If h2, the clock of FB, has the value true, 
a new value for FB is read and assigned to the variable N. If h2 is false, N gets 
the value ZN - 1. In both cases the updated value of N is output (at 14) and also 
copied into ZN, for reference in the next s tep.  

A computation of this program is given below. We skip some of the inter- 
mediate states and use the notation X : �9 to denote that variable X has an 
arbitrary value. 

N ' *  N : *  N : *  N ' *  N : 3  
Z N  : 1 . . . _~*  Z N  . 1 _ _ ~ *  Z N  : 1 _ _ ~  Z N  . 1 _ . _ ~ *  Z N  . 1 
h l : *  | h l : t  h l : t  h l : t  h l : t  
h 2 : *  h 2 : t  h 2 : t  h 2 : t  h 2 : t  

p c  " l 0 p c  : 12 p c  . 13 p c  : / 3 . 1  p c  : 15 

N : 3  N : 3  N : 3  N : 3  N : 2  
7 , N  : 3 _ . _ ~ *  ~ , N  : 3 ~ Z N  : 3 . _ ~  Z N  : 3 _ ~ *  Z N  ' 3 _ _ ~  
]11 : t / h l  . t h l  : t h l  ' t h l  ' t " " " 
h 2  : t h 2  . f h 2  : f h 2  : f h 2  : f 

p c  : 10 ~, p c  . | 2  ~, p c  : 13 p c  ' 1 3 . 2  p c  : | 5  

Note the introduction of the variable pc which is the program counter point- 
ing to the location of the statement which is next to be executed. When com- 
paring this computation to the computation of the SIGNAL program, one finds 
that the location 15 is of particular interest: at this location the values of the 
concrete variables FB, N, and ZN, whose absence or presence is determined by 
the variables hl  and h2, coincide with the values of the corresponding abstract 
variables. 
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Taking into account tha t  h l  is the clock of N and ZN and tha t  h2 is the 
clock of FB, we have an accurate state correspondence between the computat ion 
of the SIGNAL program and the following computat ion of the C-code, where we 
restrict our observations to subsequent visits at location 15: (F,3)_ (F,3}_ (FBs)_ (F.} 

N : 3  N : 2  N : I  N : 5  N ' 4  
Z N  : 1 - - . h . *  Z N  : 3 . . . ~ *  Z N  : 2 _ . . ~ *  Z N  ' 1 . . . ~ *  Z N  : 5 _ . . ~ *  
h l  . t h l  : t h l  . t h l  : t h l  : t ~ " " " 
h 2  : t h 2  : .f  h 2  . J h 2  " t h 2  : ~r 

p c  . 15  p c  : 1 5  p c  . 1 5  p c  : t 5 p c  : 1 5  

The central observation is tha t  there exists a designated control location in the 
C-code (15 in our example) where the variables of the concrete (target) system 
correspond to their abstract  (source) counterparts.  This is a general pa t te rn  
for programs generated by the SACRES compiler. Intuitively, the generated C- 
code correctly implements the original SIGNAL program if the sequence of states 
obtained at the designated control location corresponds to a possible sequence 
of states in the abst ract  system. 

In the rest of the paper,  we show how this approach can be put  on formal 
grounds and yield a fully automat ic  translation validation process. 

3 T h e  C o m p u t a t i o n a l  M o d e l  

In this section, we present synchronous transition systems (STS), which is the 
computat ional  model on which the process of translation validation is based. 

We assume a vocabulary of typed variables )2. Some of the variables are 
identified as persistent while the others are identified as volatile. The volatile 
variables are intended to represent signals in the sense of the language SIGNAL. 
The domains of volatile variables contain the designated element _L to indicate 
absence of the respective signal. 

A state s is a type-consistent interpretation of ];, assigning to each variable 
v E )2 a value s[v] over its domain. We denote by Z the set of all s tates over )2. 

D e f i n i t i o n  1. The following components define a synchronous transit ion sys- 
tem (STS) A = (V,O,p,E) (cf. [PS97]): 

- -  V C_ 1) : A finite set of system variables. 
- O : An initial condition. A satisfiable assertion characterizing the initial 

states of system A. 
- p : A transition relation. This is an assertion p(V, W), which relates a state 

s E Z to its possible successors s r E E by referring to both unprimed and 
pr imed versions of the system variables. An unprimed version of a system 
variable refers to its value in s, while a primed version of the same vari- 
able refers to its value in s ~. If  (s, s ~) ~ p(V, W), we say that  s tate  s ~ is a 
p-successor of s tate  s. 

- E C V : A set of externally observable variables. 

Next, we define a computation of an STS. 
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D e f i n i t i o n  2. Let A = (V, O, p, E)  be an STS. The infinite sequence 
a = so, s l , s 2 , . . . ,  where si E Z for each i E 1~, is a computation of A i f  it 
satisfies the following requirements: 

Initiation : so ~ 0 
Consecution : (si, si+l) ~ p for each i E 1~. 

We denote by HAll the set of computations of the STS A. 

3.1 STS r e p r e s e n t a t i o n  o f  t h e  SIGNAL p r o g r a m  

The SIGNAL program MUX is represented by the STS A = (V, O, p, E),  where 

Y = {FB, N, ZN, x.N} 

O = (FB = & A N  = _ L A Z N  = _ k A x . N  = _L) 

p = 
V 

V 

if FB ~ #_L then FB ~ } 
A N  ~= else if ZN ~ _ L t h e n  ZN ~ - 1  

else _L 
Ax .N ~= if N ~7~_Lthen N ~else x.N 

if N ~ =_L then _l_ } 
AZN ~= else if x . N = _ L t h e n  1 

else x.N 
A ZN ~ < 1 ++ FB ~ 7~ _L 

FB ~ = _L A N ~ = _L A ZN ~ = _L Ax.N ~ = x.N) 

E = {FB, N, ZN} 

Two points here require further explanation: 

- Besides maintaining all variables occurring in the SIGNAL-program as volatile 
variables, the STS-encoding of SIGNAL-programs introduces persistent mem- 
orization variables for those variables occurring in S-expressions. In our ex- 
ample, there is only one memorization variable, namely, x.N. 

- The second disjunct of p guarantees the stutter robustness of A. Tha t  is, 
at any step, the system may choose to take a stutter (idling) step in which 
all signals are set to _L and all memorization variables retain their previous 
values. 

3.2 STS  r e p r e s e n t a t i o n  o f  t h e  C p r o g r a m  

The representation of the C code is less straightforward than that  of the SIGNAL 
program. So, we first present the STS and then follow with detailed explanations. 

The C code is described by STS C presented below. The predicate pres(U) = 
Avev (V  ~ = v) in this presentation expresses that  the variables in set U _C V 
remain unchanged during the current transition, cf. [MP91]. 
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C = (V, O, p, E)  where 

V = {FB, N, ZN, x.N, h l ,h2 ,pc}  

O = (FB ~t •  ~ 2 A  ZN = 1Ax.N = 2 A p c =  lo) 

V (pc = l0 A h l '  = true A pc r = ll A pres(V \ {pc, hl}))  

V (pc = il A h2' = (ZN < 1) A pc' = 12 A pres(V \ {pc, h2})) 

V (pc -- 12 A h2 A pc' = 12.1 A pres(V \ {pc})) 

V (pc = 12 A ~h2 A pc' = I3 A pres(Y \ {pc))) 

V (pc = 12.1 A FB' ~ .L A p e  = la A pres(V \ {pc, FB})) 

p = V (pc = la A h 2 A p c '  = 13.1 Apres (V  \ {pc})) 

V (pc = 13 A ~h2 A pc ~ = 13.2 A pres(V \ {pc})) 

V (pc = is.1 A N' = FB A pc t = la A pres(V \ {pc, N})) 

V (pc = 13.2 A N' = ZN - 1 A p e  = 14 ^ pres(V \ {pc, N})) 

V (pc = l,t A x.N' = N A pc' = 15 A pres(V \ {pc, x.N})) 

V (pc = 15 ^ ZN' = N A pc' = lo ^ pres(V \ {pc, ZN})) 

E = {FB, N, ZN} 

Some remarks are in order. 

I n p u t  fo r  FB: Being at location 12.1, we allow FB to take an arbi t rary non- 
bot tom value, which corresponds to a new input for FB from the environ- 
ment. If h2 is false and we proceed directly from 12 to 13, the value of FB 
remains unchanged as stated by the pres(V \ {pc}) clause. 

O u t p u t  o f  N: The explicit writing of N at location 14 in the C-program has 
been removed; instead, the memorization of N is introduced. 

T h e  o b s e r v a t i o n  po in t :  As explained above, entering location 15 means tha t  
the m u x _ i t e r a t e  function has cumulatively computed one transition of the 
abstract  system. The values of the persistent variables FB, N, and ZN are 
considered to be present only when being at location 15 and if their respective 
clock expressions have the value true. This will become apparent  when we 
define the refinement mapping from STS C to STS A. All other persistent 
variables are considered internal. 

M e m o r i z a t i o n  o f  N: The generated C-code does not use any memorization 
variables but  rather encode memorization by means of scheduling. In order 
to match the abstract memorization variables we augment the STS-encoding 
of the generated C-program with memorization variables which have the 
same name as their abstract counterparts. The general pat tern for memo- 
rization is that  all variables which are memorized in the abstract system, are 
memorized in the concrete system directly before entering the observation lo- 
cation, i.e. the location where the state correspondence is to be established. 
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In our example, the value of N is copied to a memorization variable x.N, at  
location 14, just  before the observation location 15. 

4 Correc t  I m p l e m e n t a t i o n :  R e f i n e m e n t  

In this section, we consider the notion of correct implementation which is the 
relation tha t  should hold between a source code and its correct translation. We 
suggest tha t  the appropriate  relation is tha t  of refinement adapted to our special 
circumstances tha t  involve a translation from a synchronous language such as 
SIGNAL into an asynchronous language such as C. 

In general, we consider refinement between an abstract system A and a con- 
crete system C. System A can be viewed as a specification or a high-level de- 
scription of the application we wish to construct,  while C is a description closer 
to the final implementation.  An elaborate development process may progress 
through several refinement steps, each making the representation more concrete. 
In many  cases, the abstract  system is described in a more declarative style while 
the concrete system is presented in a more operat ional / imperat ive  style. 

In order to make the implementat ion refinement relation maximally  effective, 
we should make it as liberal as possible, provided the essential features of the 
system are preserved. 

4.1 Refinement between Systems 

Consider the two systems A = (V A , ~gA, PA, EA) and C = (Vc, (9 c,  Pc, Ec ) ,  to 
which we refer as the abstract and concrete systems, respectively. 

We assume tha t  E A C_ E c . Tha t  is, the abst ract  observable variables are a 
subset of the concrete observable variables. 

For T 6 {A,C},  we denote by E r , the set of T-states,  i.e., the set of states 
obtained by assigning values to the variables V r .  We denote by E~. the set of 
states which only assign values to the variables in E r C_ V r . 

For a state s 6 Z r ,  we denote by s ~ the restriction of s to the subset 
of observable T-variables, i.e., to E r .  This restriction can be lifted point-wise 
to a computat ion a 6 IITII, denoted by a E, and then to the complete set of 
computat ions IITIh denoted by IITII ~. 

For the two systems A and C, we define an interface mapping to be a function 

mapping  each concrete state s 6 Zc  to an abstract  observable s tate  I ( s )  6 E l .  
An interface mapping 2: is said to be a clocked mapping if, for each observable 

variable x 6 E A (which also belongs to E c since E A C_ E c)  and every concrete 
s tate  s 6 E c , 

z(~)[~] : s[~] or Z(~)[~] = I. 
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That  is, the effect of the mapping I on a variable x which is observable in both 
systems is either to preserve its value (S(s)[x] = s[x]) or to declare it absent at 
the current abstract state (2:(s)[x] = J_). 

We can point-wise lift the interface mapping Z to a concrete computation 
a E I ICIh denoted by 2:(a), and then to the complete set of concrete computations 
IICIh denoted by E(lIVll ). 

Definition 3. For systems A and C with EA C_ Ec,  and a clocked interface 
mapping Z from C to A, we say that C refines A relative to Z if Z(IICII ) c 
JfAIJ 

That  is, C refines A relative to E if applying the mapping I to any concrete 
computation ~ E IICII, we obtain an abstract computation restricted to the 
observable variables E A . 

Definition 4. For systems A and C, we say that C refines A if there exists a 
clocked interface mapping 5[ from C to A such that C refines A relative to I .  

We write C _ A to denote the fact that  system C refines system A. In the 
next section we investigate a proof method which allows to establish that  C E A 
indeed holds for some given A, C E STS. 

4.2 Proving Refinement by the Method of  Refinement Mapping 
(Simulation) 

As proof method for the refinement notion introduced above we employ a gener- 
alization of the well-established concept of simulation with refinement mapping 
[AL91]. Refinement mappings define a correspondence between the variables of a 
concrete system and the variables of an abstract system such that  observations 
are preserved. Refinement mappings, or more generally simulation techniques 
(see, e.g., [Jon91,LV91]), are the means to inductively prove a semantically de- 
fined notion of containment between observable behaviors. 

Note that ,  while we employed the notion of clocked interface mapping in 
the definition of refinement, requiring mapping of concrete states only to the 
observable part  of the abstract state, a general refinement mapping is expected 
to yield a mapping of a concrete state to a full abstract state. Thus, a refinement 
mapping can be viewed as one of the many possible extensions of an interface 
mapping. 

We define a refinement mapping from C to A to be a function f : Z c 
~A, mapping concrete to abstract states. A refinement mapping f is called a 
clocked refinement mapping if it satisfies 

f(s)[x] =s[x] or f(s)[x] = _L, for every s e ~c  and x e E A . 

From now on, we restrict our attention to clocked refinement mappings, which 
preserve the observables up to stuttering. 

The proposed proof method for refinement is based on finding an inductive 
refinement mapping as defined below. In the definition, we denote by ~ r  the set 
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of all reachable states of system C, i.e., all states appearing in some computation 
of C. 

Definition 5. A clocked refinement mapping f : E c ---+ E A is called inductive 
if it satisfies the requirements of 

- Initiation: s ~ Oc implies f ( s )  ~ OA, for all s e ~ c ,  and 
- Propagation: (s, s') ~ Pc implies ( f (s) ,  f ( s ' ) )  ~ PA, for all s, s' ~ ~ .  

The use of an inductive refinement mapping as a proof method is stated in the 
next  theorem. 

Theorem 1. If f : S c ----+ S a is an inductive (clocked) refinement mapping 
from C to A, then C E_ A. 

5 A u t o m a t i n g  t h e  T r a n s l a t i o n  V a l i d a t i o n  P r o c e s s  

The proof method presented in the previous section was based on an inductive 
refinement mapping formulated in semantic terms. Among other things, it as- 
sumed an available characterization of the set of reachable concrete states Z~ 
which is very difficult to compute for even the simplest systems. 

In the quest for automating the process, we present in this section a syn- 
tactical representation of the notions of refinement mapping, and its associated 
proof method. In this, we follow the ideas in [Lam91,KMP94] and adapt them 
to deal with the particular notion of refinement needed for our case. Then, we 
describe how the main components used in the proof can be computed, so that  
the translation validation process can be carried out fully automatically. 

5.1 Syntactic Representation and Proof  Rules 

Consider two STSS A and C with EA C_ EC, to which we refer as the abstract and 
the concrete system, respectively. Let ~ : VA - -~  g(Vc) be a substitution that  
replaces each abstract  variable v E VA by an expression s over the concrete 
variables Vc. Such a substitution ~ induces a mapping between states, denoted 
by -~. Let s c be some state in ~ c ;  we refer to s c as a concrete state. The 

abstract state s A ~f ~ ( s  c) corresponding to s o under substitution ~ assigns to 
each variable v E V A  the value of expression Ev evaluated in s c . In this way, 
refinement mappings can be syntactically defined by means of an appropriate 
substitution ~. 

Now we show how to syntactically formulate the requirements of initia- 
tion, propagation, and preservation of observation (the requirement tha t  -~ is 
a clocked refinement mapping) for such a state function 6 .  For an expression 
or state formula qo over VA, we define the formula (resp. expression) ~[c~] over 
Vc obtained from ~ by replacing each occurrence of v E V A  by gv. In the case 
that  qa contains a primed variable v ~, this variable is replaced by E~v obtained by 
replacing all occurrences of variables v E Vc in s by their primed versions. 
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Given a concrete state s c and substitution c~, we have that  the value of any 
evaluated over -d>(sc) is the same as the value of ~[~] evaluated over s c . This 

holds, since in both cases ~ is evaluated using for v E V A  its value in -5~(sv) 
which is the same as the value of Ev evaluated over s c . In particular, for a state 
formula ~ over VA we have ~ ( s c )  ~ ~ iff s c ~ ~[a]. This equivalence allows to 
write the proof obligations of Definition 5 as stated in the following syntactical 
proof rule REF for proving refinement of STS-systems. 

Definition 5 imposed the requirement of inductiveness only with respect to 
reachable C-states. Since these are difficult to characterize precisely, rule REF 
makes the stronger requirement which is that  the mapping be inductive with 
respect to all states satisfying some C-invariant inv. If inv is indeed a C-invariant 
then all C-reachable states must satisfy inv and, therefore, inductiveness over 
all inv-states clearly implies inductiveness over all reachable states. 

For assertion inv and substitution c~ : VA --+ E(Vc) 

R1.  O c  --~ inv 

R 2 .  inv A PC --+ ind  

R3.  O c  --+ OA[O~] 
R4. inv A PC --r pn[ot] 

r t s .  i n v  = .  v = • 
C E A  

inv holds initially 

inv is propagated 

Initiation 

Propagation 

for all v E EA 

Rule REF: Proving Refinement 

Two existential quantifications are hidden in this rule: "find an invariant 
inv and a substitution a,  s.t . . . .  ". Generally, finding inv and a is left to the 
ingenuity of the verifier. In order for rule REF to be useful in a fully automatic 
translation validation process, an appropriate invariant of the concrete system 
and a suitable substitution have to be generated automatically. 

5.2 G e n e r a t i n g  inv a n d  a 

In general, there is no chance of developing an algorithm which, presented with 
arbi t rary systems A and C, can automatically construct the needed invariant inv 
and refinement substitution a as well as automatically verify the validity of the 
premises in rule REF. The reason that  this is possible in the case of translation 
validation applied to the language SIGNAL is that  we rely on some very strong 
assumptions about the connections between A and C, based on the fact tha t  C 
was produced as a result of translation of system A by a code generator of a 
very specific structure and mode of operation. 

The general structure of the main loop in the C-code is illustrated in the 
figure below. 
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CalculaeCock xpessm s ~ h l  TRUE \ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  h_2_ _=_ Z.N_ _<=_ )_  . . . . . . . . . . . .  

. . . . . . . .  . . . .  - ; - ;  . . . . .  . . . . . . . . . . . . .  i 

t j~ . , j  \ < ~ j  ,, 
T read(FB) T ! h 2 ?  

, , 

i Calculate Outputs i 

' "~N=FB _ ( ~  N = Z , - ! ~  ' 

t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ .  J 

. . . .  ~ . . . . . . . . . . . . . . . . . . . . .  / 
, Z N =  N , I Update Past-Dependent Variables ~ 
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

As we see in the figure, the body of the infinitely repeated loop consists of 
the following stages: 

1. Calculation of clock expressions. This stage assigns values to the boolean 
auxiliary variables hi, i - 1, . . .  ,k. Each of these variables is associated 
with an abstract observable variable, and is used to represent the "exis- 
tence"/"absence" of it. 

2. Reading inputs. This stage reads the inputs of program, sometimes condi- 
tioned on the values of the appropriate clock variables. 

3. Calculating outputs. This stage calculates the value of output variables. 
4. Writing outputs. This stage write to external files (or channels) the com- 

puted values of output variables. 
5. Update "previous" expressions. This stage updates the values of (usually lo- 

cal) variables defined by expressions containing the previous operator ($). 

We use this special structure for the construction of the invariant inv and 
the substitution a. We start by noting that using the program counter variable 
pc, which is always a member of Vc, we can present the refinement substitution 
a as follows: 

1. For each memorization variable x.v EVA, we include in a the substitution 

x , v  ) x . v .  
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2. For every other variable v 6 VA, we include in ~ the substitution 

v ~ i f  pc = ~obs A c lk (v )  t h e n  v e l s e  _L, 

where clk(v) is the clock expression for v, indicating whether a new value 
had been assigned to v in the current iteration. 

The detailed algorithm for computing the clock expressions above, and the 
accumulative invariant inv ,  which is omitted here for lack of space, is described in 
the full version of this paper. The construction is based on viewing the main loop 
of the C-code (procedure MUX-iterate, in our example) as a (cyclic) directed 
graph, in which ~0 and ~obs are two of the nodes, and every edge e is labeled by 
either a guard 7(e) or an action which can be a read into an input variable, a 
write out of an output  variable, or an assignment to a (local or output)  variable. 
For an edge labeled by an action, we can take its guard to be true. 

The clock expression clk(v) is computed by considering the guards along 
paths leading to assignments to v. For the MUX-example, the clock expressions 
obtained are 

clk(FB)  = h2 
clk(N) = h2 V-~h2 (= true) 
c lk(ZN) = h2 V ~h2 (= true) 

Based on this, the identification of the observation point as 15 and the general 
"skeleton" of c~ given above, we obtain the following refinement substitution 

FB I" if h2 A pc --15 then FBe l se  _L 
N / if p c = l s t h e n  Nelse  _L 

: ZN ---+ if p c = l s t h e n  ZNelse _L 
x.N x.N 

The invariant i nv  is computed by taking the initial values of variables, and 
then adding the cumulative effect of the actions that  are executed along paths. 
For the MUX-example, we obtain the following proposal for an invariant 

FB#_L A N#_L A ZN#_L 
pC 6 {/0, ll, 12, /2.1, /3, /3.1, /3.2, /4, /5} 

A 
A 
A 
A 
A 

inv = A 
A 
A 
A 
A 
A 

pc 6 {11,12,12.1,13,13.1,13.2,14,15} -'+ hl  
pc 6 {12,12.1,13,13.1,13.2,14,15} -~ h2 = (ZN < 1) 
pc 6 {/4,/5} Ah2 --+ N = FB 
pc 6 {/4,/5} A -~h2 --+ N = ZN - 1 
pc = 12.~ --+ h2 
pc = /3.1 ~ h2 
pc =/3.2 --~ -~h2 
pc # 15 --~ ZN = ( i f  x .N = _L t h e n  1 e l s e  x .N) 
pc = 15 -~ x.N = N 

We have verified all the premises of rule REF, using the TLV proof system of 
[PS96]. The script files, which are omitted here for lack of space, will appear in 
the full version of this paper. 
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6 C o n c l u s i o n s  

We introduced the new approach of translation validation, described the main 
components of the construction together with the underline theory, and pre- 
sented an illustrative example of the method by validating a compilation from a 
synchronous language to an asynchronous one. 

The concept of translation validation is general, and the interest is obviously 
not limited to translations from SIGNAL to C. We believe that  the main ideas 
presented in this paper can serve as a basis to the translation validation for a 
large family of source and target languages. 

Our intui t ionis  based on the following. First, the STS computational model 
is very general and can model both synchronous and asynchronous languages. 
Second, the existence of designated control location(s) in the STS computations 
of the source and target programs, that  can serve as an observation point(s) for 
comparing the values of a set of externally observable variables ( input /output  
variables, for example), is a reasonable thing to expect for. Otherwise, in what 
sense could one say that  the target program correctly implements the submitted 
source code? Finally, our notion of refinement via an interface mapping and the 
associated proof method, based on syntactic representation of the refinement 
mapping, is again of a general kind. 

The approach described here seems to work in all cases that  the source and 
the target  programs each consist of a repeated execution of a single loop body, 
and the correspondence between the executions is such that  a single loop itera- 
tion in the source corresponds to as single iteration in the target. This seems to 
be a characteristic of most code generators for synchronous languages such as 
Esterel [BG], Lustre [CHPP87], and Statecharts [H87], as well as for languages 
such as Unity [CMB88]. 

It is clear that  a translation validation "tool-set" should be tailored for the 
particular translator (compiler) involved. The construction can be carried out 
by following (and modifying) the guidelines of the framework presented here. (In 
some cases, it may be useful to augment the translator as to make it easier to 
identify the observation points.) We suspect that  in some cases the construction 
would turn out to be simpler than what was called for in the example presented 
here. This is so because most of the difficulties we had faced were due to the fact 
that SIGNAL is a synchronous language while C in asynchronous. 
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