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Abst rac t .  We study a corpus of particular Boolean functions: the idem- 
potents. They enable us to construct functions which achieve the best 
possible tradeoffs between the cryptographic fundamental properties: 
balancedness, correlation-immunity, a high degree and a high nonlinear- 
ity (that is a high distance from the affine functions). They all represent 
extremely secure cryptographic primitives to be implemented in stream 
ciphers. 

K e y w o r d s :  Boolean function, correlation, nonlinearity, balancedness, idempo- 
tent, stream cipher. 

1 I n t r o d u c t i o n  

One of the most important  types of keystream generators is the one generally 
used for stream cipher. A number n of linear feedback shift registers (LFSRs) 
are combined by a Boolean function, that is to say a function mapping F~ to 
F2. Standard cryptographic criteria concerning the LFSRs are well-known (good 
statistical properties, large period, large period complexity). The Boolean func- 
tion, whose main goal is to erase, to break the intrinsic linearity of the LFSRs 
is of great importance and must have some properties to resist certain attacks 
and particularly the Siegenthaler's correlation attack [23]. The different criteria 
for a Boolean function (balancedness, correlation-immunity and high nonlinear- 
ity) have been extensively separately studied, but it has been shown that  it is 
impossible to combine simultaneously these criteria [22, 14]. Necessary tradeoffs 
are to be considered and much work leaves to be done in that  direction. 

Since Boolean functions are important  primitives of such keystream gener- 
ators, achieving the best possible tradeoffs is the main goal, which generally 
remains a difficult problem [6]. Recent results [7] have shown that  if the exis- 
tence of such functions can be proved, exhibiting some of them is very difficult, 
as soon as n > 7. The nonlinearity, i.e. the distance from the affine functions, is 
the criterion which presents the greatest difficulty. Recall that  nonlinearity is of 
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great importance in block cipher too, where the substitution-boxes must be as 
nonlinear as possible. 

This paper presents significant results on the search of as good as possible 
Boolean functions and gives method of construction. 700 functions have been 
obtained for n = 9, which meet theoretical bound defined in [22]. Thus they are 
of great interest for cryptographic use all the more so since a survey of them 
show an unexpected additional tradeoff between the correlation-immunity order 
and the distribution of the (non zero) values of the existing correlations. 

In Section 2, basic concepts and notation are given. Section 3 exposes the 
basic criteria for a Boolean function, related to the main existing attacks. Sec- 
tion 4 presents the corpus of the idempotent functions. As an important tool in 
Coding Theory, the use of the idempotents for finding Boolean functions with 
certain properties has been initiated by C. FONTAINE [7]. It will be presented 
and extended in this paper to find good cryptographically Boolean functions. 
In Section 5, results are exposed along with applications. The most significant 
one is that about 52000 balanced Boolean functions achieving the best possi- 
ble tradeoff between correlation-immunity and nonlinearity are obtained, 700 of 
them meeting the Siegenthaler's bound. 

2 B a s i c  C o n c e p t s ,  D e f i n i t i o n s  a n d  N o t a t i o n  

We will denote by Fq the finite field with q elements. A Boolean ]unction ] of 
n variables is a mapping from F~ into F2. We denote by ~-n the set of such 
functions. We will use several representations for Boolean functions: 

(1) Let B = (b l , . . . ,  bn) be a basis of F~. The Algebraic Normal Form (ANF) of 
2 f relatively to B is the polynomial Qf,B of F2[xl , . . . ,  xn]/(x~ - X l , . . . ,  xn - 

x,~) given by 

Q 1 , , ( x l , . . . ,  x~) = 
n 

E H (1 +gi  +x ' )"  
g = ~ = 1  g, bi �9 F~ i=l 

](g) = 1 

This means that there are several ANFs for each function, depending on the 
basis we consider. 

(2) If we identify the vector space F~ with the finite field F2-, we can also 
represent f by a formal polynomial of the multiplicative algebra F2[F2-, x]: 

f = f (g ) (g ) .  
g E F ~  

We recall that if fl  and ]2 belong to this algebra, and ]1 -- ~geF~. ]l(g) (g), 
f2 = EgeF~ .  ]2(g) (g), then we have ]1 + ]2 : Zg~F~. (/l(g) + /2(g) )  (g) 

and ]1f2 = ~geF;~ (Ehk:g fl(h)f2(k)) (g). 
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(3) We can also represent f by a polynomial of F2- [Z]/(Z 2"-1 - 1), its Mattson- 
Solomon (MS) polynomial: 

2 n - -2  2 " - - 1  

MSf (Z )  = ~ A jZ  2"- l- j ,  Aj = y ~  f (a i )a  ij 
3=0 i----0 

where a is a primitive element of F2-. 

Example 1. For n = 3, let a be a root of the primitive polynomial X 3 + X + 1. 
We identify F~ with the finite field F2-. 

(1) We consider two bases B1 = {a~  2} (the canonical basis) and B2 = 
{a a, a 6, a 5} of this field. Now let f be defined by f ( a  ~ = f ( a  1) = f ( a  2) = 
f ( a  4) = 1 and f(O) = f (a  3) = f ( a  5) = f (a  6) = O. We have 
QI,B1 (Xl, x2, x3) = Xl d-x2 q-x3 q-x2x3 and Qf,~2 (xl,  x2, x3) = xlx2 + X2X3 "~ 
XlX3. 

(2) f = ( s  ~ + + + 
(3) M S I ( Z  )=  Z 3 + z 5 + Z 6. 

Now let us introduce some definitions concerning Boolean functions: 

- The degree of f is the global degree of the ANFs of f (they have all the same 
global degree). It is denoted by deg(f). 

- The support off, denoted by supp(f), is the set of the elements x such that  
f (x)  r O. 

- the distance between two Boolean functions f and g is given by d(f, g) = 
[supp(f + g)], where + denotes the bitwise exclusive-or. 

- f is said to be balanced if [supp(f)[ = 2 n-1. 
- The Walsh-Hadamard transform of f is, for x in F~, the mapping ](x) = 

~yeF~.(--1)='Yf(y), where x.y = }-~i"=1 xiyi and the sum is evaluated over 

the real numbers. In fact, for a given Boolean function f ,  we will use only the 
Walsh-Hadamard transform of ( - 1 )  f = 1 + 2 f  (mod 2) - -  the representation 
of f with +1 - -  that  is finally: 

~"~(x) = ~ ( - 1 )  ='~+l(v). 
veF~' 

Let An be the set of the a]fine Boolean functions, that  is with degree at most 
1. Since the set of the Boolean functions of ~n with degree at most r is the r-th 
order binary Reed-Muller code of length 2 n and dimension n + 1 [11, p. 373], 
An is in fact the first-order Reed-Muller code. The distance between a Boolean 
function f and An is given by d(f, An) = minge.4, d(], g) and it is called the 
nonlinearity off. 

We will denote by N L ( f n )  the maximal nonlinearity for functions in 5rn. We 
recall in the following table the current knowledge about NL(~'n): 

- even n : we know that NL(~rn) = 2 n-1 - 29 -1 and the functions whose 
nonlinearity is equal to NL(Jrn) are called bent functions [18]. 
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- odd n : we only know that 

3, 5, 7 knowledge abOUtn 1 NL(~n)._, 
N n ( y n )  = 2 - - 2 T  

9, 11, 13 2 n-1 - 2e-~ < NL(Yn) < 2 n-1 - 
[odd > 15[2 n-1 - 2 - ~  < Nn(Yrn) <_ 2 n-1 - 

I 
[2,15]  I 

2[~J-1 b 2L~J-t [16, 17,3] 

Definit ion 1. For a function f of Y:n, the coset Cf of An generated by f is 
the set { f  + g,g E An}. The weight distribution of Cf is the polynomial of the 

2,~ form W D ( f )  = ~ = o  WiX~, where Wi is the number of functions g in An such 
that d(f, g) = i. Remark that the nonlinearity of f corresponds to the smallest i 
such that Wi ~ O. It is obvious that all the functions lying in Cf have the same 
nonlinearity, and the same degree. 

The Walsh-Hadamard transform of a function f and the weight distribution 
of Cf are related by the following theorem: 

T h e o r e m  1. [11, p. 415] Let us consider the coset Cf of An, and W D ( f )  its 
weight distribution. Then we have Wi r 0 for all i �9 {1 [2 n 4- ~"~(u)], u e F~}. 

3 C r y p t o g r a p h i c  C r i t e r i a  o f  B o o l e a n  F u n c t i o n s  

Boolean functions are of great importance in the design of running-key gener- 
ators for stream ciphers. These latter are a very important class of encryption 
algorithms. Encrypting binary digits of a plalntext one at a time, stream ciphers 
are widely used, being very fast and particularly well adapted to telecommuni- 
cations applications (allowing stream decryption). 

To be considered cryptographically secure, the sequence produced by the 
running-key generator must fulfill the following properties: the period must be 
large, as well the period complexity and good statistical properties must be 
achieved. 

A well-known method for designing such a pseudo-random generator con- 
sists in using n linear feedback shift registers (LFSRs) with primitive feedback 
polynomials whose lengths are relatively prime. Additionally they are supposed 
not to be sparse (see [5, 13]). Their output sequences xl, x2 , . . . ,  Xn are taken as 
arguments of a Boolean function f of n variables whose output f ( x l , . . . , x n )  
forms the running-key s (Fig. 1). The secret key of the system then consists of 
the initialization of all the LFSRs. 

There exists a huge theoretical knowledge of such combining generators [19- 
21]. 

Let us review the different necessary criteria a Boolean function must fulfill 
to yield a cryptographically secure scheme, at least to resist known attacks. 

3.1 Balancedness  Criterion 

In this case exactly half of the values of f are 0. The output of f must obviously 
be uniformly distributed to behave as an unpredictable variable. 
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LFSR 1 xl~x2Xl 

LFSR 2 I 

LFSR n ] 

/ * s 

Fig. 1. Nonlinear combination generator 

3.2 N o n l i n e a r i t y  Cr i ter ion  

In order to break the linear properties of the LFSRs, to increase the period 
complexity of the output sequence s, and to avoid some well-known attacks [24, 
25], the combining function f must be highly nonlinear. But as J .L.  MASSEY 
pointed it out [12] the main difficulty is to quantify what cryptographers need 
and call "nonlinearity". The first (historically) approach is to consider it as the 
degree of the function. 

But let us consider for example f ( x l , x 2 , x 3 )  = x l  + x2 + x3 + XlX2X3. f is 
of degree 3, but it is easy to see that  in fact f is very close to a linear function 
(whose order is 1). Then this approach of nonlinearity is not sufficient. The 
second approach then consists in defining the nonlinearity of a Boolean function 
as its distance from affine functions, using the theoretical tools of Coding Theory. 
From this point of view, a combining function must be as far as possible from 
any linear (or affine) function. 

3.3 C o r r e l a t i o n - I m m u n i t y  C r i t e r i o n  

This criterion was defined in response of the correlation-attack of such schemes, 
developed by T. SIEGENTHALER [23] and which constitutes their main crypt- 
analytical approach. This cryptanalysis method aims to recover the different 
initializations separately - or at least an enough part of the secret key to greatly 
reduce the cost of the remaining exhaustive search. 

The complexity of a brute-force attack (i. e. the number of trials) is 1-[~= 1 ( 2 L ' -  
1) where Li is the length of the i-th LFSR. But if the combining function is such 
that  there exists a correlation between the keystream s and the output sequence 
of the i-th LFSR i.e. if 

1 
P [ x i = f ( x ) ] - - -  5 I=E • 

it is possible to try in a first step, all the 2 L' - 1 possible initializations of the 
i-th register only. The correct one will then be detected with a high probabil- 
ity. Thus the complexity of the brute-force attack is considerably reduced to 
]-Ijnl,j#i(2 Lj - 1) + 2 L' - 1. 

More generally, the corre la t ion- immuni ty  order is defined as follows: 
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Def in i t i on  2. A Boolean function f of n variables is t-th order correlation- 
immune if, for any subset T C {1, 2 , . . .  ,n} of size t, the probability distribution 
of its output is unaltered when the xi are fixed, for i E T.  Moreover a balanced 
t-th order correlation-immune function is said to be t-resilient. 

In term of cryptanalysis, if the combining function is t-th order correlation- 
immune, any correlation attack must consider at least (t + 1) different LFSRs 
simultaneously. Suppose for example that  f is 2-resilient (let us say that  there 
is a correlation between with LFSRs 1, 2 and 3). We then have: 

P[Xl -}- x2 + x3 = f(x)] = 5 1 4- 

Being 2-resilient, all entries of ~ of weight less than 3 are zero. But according 
to the Parseval equation: 

 72(u) = 22- 
uEF~ 

the value ~'~(7) corresponding to LFSRs 1, 2 and 3 will be higher, that  is to say 
the correlation will be stronger. 

The problem is how to exploit such an important bias without performing 
a too complex exhaustive search. Despite refinements of Siegenthaler's attack 
and attempts to give an answer to this problem, made by J. GOLIC and M. 
MIHALJEVIC [8-10], it is still an open problem. 

A combining function should then fulfill all these criteria (high degree, bal- 
ancedness, correlation-immunity and high nonlinearity). But some of these con- 
ditions are incompatible: 

- -  W. SIEGENTHALER [22] showed that  there is a necessary tradeoff between 
achieving high degree and high-correlation immunity. 

- Since the nonlinearity is a global property of the functions, contrary to the 
correlation-immunity which is a local one, only a tradeoff can be achieved 
for these two criteria. 

- When n (number of entries) is even, the functions of highest nonlinear- 
ity are the bent functions and it is a well-known fact that  they cannot 
be balanced[ll ,  p. 426]. Then balanced functions having the highest pos- 
sible nonlinearity must be considered. Until now, finding such functions is a 
very difficult problem[6]. When n is odd, exhibiting functions of the high- 
est nonlinearity is a hard problem in itself. Among the available candidates, 
balanced ones exist. 

Finding some Boolean functions which achieve a good tradeoff between all these 
criteria is then of great importance in cryptography. Until now only theoretical, 
nonconstructive characterizations are known. We do not even know the value of 
the highest possible nonlinearity of a balanced Boolean function. It is also a very 
difficult problem to exhibit highly nonlinear functions meeting the Siegenthaler's 
bound for the t-resilient functions: 

deg(f) + t < n - 1 unless t = n - 1 (1) 
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In the following part,  a constructive method is given to obtain balanced Boolean 
functions with a high nonlinearity and a good correlation-immunity order, some 
of them meeting the Siegenthaler's bound. 

4 The Corpus of the Idempotents 

A first approach to the problem of finding balanced Boolean functions with a high 
nonlinearity could be to pick functions at random, in hope that  they have the 
required properties. It is obviously not a suitable algorithm since the proportion 
of such functions seems to be small. 

It is then necessary to restrict our investigation to a corpus of particular 
Boolean functions. Here we are interested in those which lie in cosets of An 
generated by idempotents. We choose idempotents for their role in the statement 
of important  results in Coding Theory [1]; moreover, N. J. PATTERSON and D. 

- 2 - T -  with in fact the H. WIEDEMANN have shown that NL(Y:15) > 215-1 15-1 
help of idempotents [16, 17]. 

We will first recall some definitions and properties of idempotents, and then 
give our numerical results. 

4.1 De f in i t i ons  

D e f i n i t i o n  3. Using the representation (2) introduced page 2, f is an idempo- 
tent if and only if f2 = f ,  that is: 

This means that: 

Z f(g)(g2)= /(g)(g). 
geF~,~ 9EF~,~ 

- Vg E F2. ,  ](g) = f ( g 2 ) .  Then, if c~ is a primitive element of F2-,  supp(f) is 
a union of conjugacy classes of some c~ i, that  is supp(f) = (.Jiei{(~, (~2~,..., 

c~2"-1i}, where I is an arbitrary set of representative elements of the 2- 
cyclotomic cosets modulo 2 n - 1 (we recall that  the 2-cyclotomic coset gen- 
erated by i is the set { i , 2 i , . . . , 2n -1 i} ,  with the elements taken modulo 
2 n --  1). 

- The coefficients of the MS polynomial of f belong to F2. Moreover, Aj = Ak 
for all k in the 2-cyclotomic coset modulo 2 '~ - 1 generated by j .  Then we 
use a short MS polynomial: ~-~3eRep AJ Z2"-I- j ,  where A 3 E F2 and Rep 
denotes the set of all the representative elements of the 2-cyclotomic cosets 
modulo 2 '~ - 1. 

- The ANF of f expressed relatively to a normal basis - -  that  is if ( x l , . . . ,  x,~) 

corresponds to a basis of the form (%~/2,. . .  ,72 "-1) where 7 is a primitive 
element of F2~ - -  remains invariant if all subscripts are permuted with a 
circular shift. So we can keep only one term per class of shifts to express it 
as a short ANF. 
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Example 2. We take n = 3, and we consider the idempotent .f whose support  is 
{a ~ a, a2 ,aa} ,  where a is a root of the primitive irreducible polynomial X 3 + 
X + I :  

- its MS polynomial is Z 3 + Z 5 + Z 6. The nonzero coefficients are A1, A2, Aa. 
But 1, 2, 4 are all in the cyclotomic coset containing 1. Then the short MS 
polynomial of f has only one nonzero coefficient - -  At - -  and is equal to 
Z 6 . 

- the ANF expressed in the normal basis {Or 3, Ol6, Ot 5} is XlX~ + X2X3 -{-XlX3. 
These terms are all in the same shift class, and then the short ANF is xlx2. 

Then the corpus of idempotent functions has the useful property to be short 
to represent. It is a gain of space in computation, and then a gain of memory. 
Another important  point is that  the short MS polynomial has its coefficients into 
F2: it is then a gain of time for computations since idempotents can be stored 
as a computer word (shorter than 2 n which is the number of the values taken 
by f ) .  

4.2 R e s u l t s  

As explained at the beginning of this section, our aim is to study cosets of ~4n 
generated by idempotents. This means that  for a given idempotent function f 
in ~'n we look at the coset C/ = { f  + g,g E An} and the weight distribution 

2,~ WD(f)  = ~-]i=o W* Xi" The nonlinearity of any function in C/ is the smallest 
i such that  W~ ~ 0, and the number of balanced functions in C I is given by 
W2n-1. It is obvious that all the Boolean functions of C I have the same degree, 
and since they all differ from each other only on their affine terms, they are said 
to be equivalent [11, p. 416]. We will say that  the weight distribution WD(f)  is 
maximal if the nonlinearity of f is equal to NL(~n). 

We will first resume our results for n = 5, 6, 7, 8 and then give in a table 
the number of highest nonlinear Boolean functions we obtained. Then we will 
expose our results for n = 9, the first case when NL(~n) is unknown. 

For our examples, we will use the short ANF of the idempotent functions, 
relatively to a normal basis 7 , 7 2 , . . .  ,72"-1. a will be a root of the primitive 
polynomial Pn(X) of degree n and 7 is the pawn th power of a. Here, we take 
Ps(X)  = X 5 + X 2 + 1,paw5 = 3, P6(X) = X 6 + X + 1,pow6 = 5, PT(X) = 
XT+X+l ,pow7  = 13, P8(X) = X S + X 4 + X 3 + X 2 + I , p o w s  = 11, P9(X) = 
X 9 + X  s + 1,pow9 = 13. 

W h e n  NL(:gc,~) i s  k n o w n  

n = 5, 7 We have computed all the idempotent functions with the highest non- 
linearity (NL(~5) = 12, NL(FT) = 56). They are of degree 2, 3 for n -- 5 and 
2, 3, 4, 5, 6 for n = 7. Moreover, the cosets generated by them contain a lot of 
balanced functions. Another important  point is that we obtained four distinct 
maximal weight distributions for n = 7. 
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We give some examples of the highest nonlinear idempotent balanced func- 
tions we have found (using their short ANF): 

E x a m p l e  3. n = 5 :x lx3  and XlX  3 --[- XlX2X 3 -~- XlX2X 4 
n ~ 7 :  

�9 X l X 2  -{- X l X 3  -{- X l X 4  

�9 X l X 3  -[- X l X 2 X 3  --[- X l X 2 X 4  -[- X l X 2 X 5  -b X l X 3 X 5  

�9 X l X 3  --[- X l X 2 X 5  .-~ X l X 3 X 5  ~ X l X 2 X 3 X 4  --[- X l X 2 X 3 X  6 ~ X l X 2 X 4 X 5  "4- X l X 2 X 4 X 6  

�9 X l  --[- X l X 2  --[- X l X 2 X 3  --[- X l X 2 X 5  "-b XlX2X6 -[- X l X 2 X 3 X 5  -{- X l X 2 X 3 X 6  "{- X l X 2 X 4 X 6  '[- 

X l X 2 X 3 X 4 X 6  

�9 X l X  2 --~ X l X  4 --[- X l X 2 X 3 X  4 --[- X l X 2 X 3 X 4 X  5 .-{- X l X 2 X 3 X 4 X 5 X  6 

n = 6, 8 We obtained all the idempotent functions with the highest nonlinearity, 
that  is the bent functions (NL(~'6) = 28, NL(gVs) = 120). We have obtained all 
the possible degrees for these functions: 2, 3 for n = 6 and 2, 3, 4 for n = 8. But 
since they are bent, they can not be balanced. 

In [6], H. DOBBERTIN give for even n a result on the highest nonlinearity 
for balanced Boolean functions in term of the values of the Walsh-Hadamard 
transform. In term of nonlinearity (using theorem 1) and in our case, this result 
is the following: for n = 6, the highest nonlinearity for balanced functions is 26, 
and for n = 8, it is 116 or 118. 

For n = 6 we have computed all the idempotent functions, and we have 
found balanced functions with nonlinearity 26. All the highest nonlinear balanced 
functions we have found are of degree 5 .  

For n = 8, we did not compute all the idempotent functions. But we applied 
the following algorithm: we fix the number of nonzero coefficients nb in the short 
MS polynomial, and then look at all the cosets generated by the idempotents 
corresponding to short MS polynomial with nb nonzero coefficients. Fixing nb 

to 1 , . . . ,  8 we obtained a lot of balanced functions with nonlinearity 116, but  
no balanced one with nonlinearity 118. We then focused on the nonlinearity 
118, looking at all the possible short MS polynomials, but we did not find any 
balanced function with this nonlinearity. 

We give some examples of the idempotent bent functions we have found 
(using their short ANF): 

E x a m p l e  4. n = 6: x l  + x l x 4  and x l  + XlX4 -{- XlX2X3 --~ XlX3X5 
n - - ~ 8 :  

$ X l X  5 

�9 X l X 2  "-[- X l X 5  "b X2X5  "I- X l X 2 X 3  "-{- X l X 2 X 4  -'[- X l X 2 X 7  "~ X l X 3 X 6  

�9 x ~ x 2 . - ~ x ~ x 3 . - ~ - x ~ x 4 - - [ - x ~ x 2 x 3 . . . b ~ x 2 x 5 - b x ~ x 2 x 7 - ~ - x ~ x 3 x 5 - - [ - x ~ x 2 x 3 x 4 - [ - x ~ x 2 x 4 x 5 - - [ -  

X l X 2 X 4 X 6  

The balanced functions we obtained with the highest nonlinearity are not 
idempotents. Their ANFs are too long to be written here. 

We now give in the following table the number of highest nonlinear Boolean 
functions we have found for n = 5, 6, 7, 8: 
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highest nonlinear functions 
In YL(~'n)]nb. of f.lup to equiv. 

5 12 576 9 
6 28 1536 12 
7 56 754432 2947 
8 120 1933312 3776 

highest nonlinear balanced functions 
max. nonlin, for bal. f.lnb, of f.lup to equiv. 

12 288 9 
26 832 40 
56 259420 9 

116 (it is perhaps 118)i 328480 4737 

T h e  F i r s t  C a s e  w h e n  NL(:Tz,~) i s  N o t  K n o w n :  n ---- 9 In this case, we 
do not know the real value of NL(~9), we only know that NL(~9) _> 240. 
Our aim was to obtain Boolean functions with nonlinearity at least 240, and 
perhaps higher. We decided to restrict the set of the functions to look at, fixing 
the number of nonzero coefficients in the short MS polynomial, as previously 
explained in the case n = 8 for the search of balanced functions. We looked at 
the short MS polynomials with at most 11 nonzero coefficients, and we have 
found 83 new weight distributions corresponding to the nonlinearity 240. We 
give in the following table a sample of them, showing that the corresponding 
cosets contain a lot of balanced functions. 

117 210 72 46 134 
126 190 76 66 10~ 
138 172 64 84 10~ 
144 163 58 93 10f 
145 156 72 84 111 

Wi 162 136 40 120 10~ 
162 156 100 18~ 
180 120 136 151 
211 180 241 
217 156 274 
220 144 29( 
226i 120 33~ 

In total, we have found 1169812480 functions with nonlinearity 240, that is 
1142395 functions up to equivalence; 549339200 of these functions are balanced, 
that is 1142390 up to equivalence (this means that there are balanced functions 
in almost any coset with nonlinearity 240 we have found). They are of degree 
2,3,4,5,6,7. 

5 A p p l i c a t i o n s  

In general, the functions we obtained with the maximal nonlinearity are not 
correlation immune. It is actually very difficult to find a balanced function which 
has a high correlation-immunity order and a high nonlinearity. 
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In 1991, P. CAMION, C. CARLET, P. CHARPIN and N. SENDRIER have pre- 
sented in [4] a construction of t-resilient functions: let f be a t-resilient function 
of ~'n, and g be the function of ~ + 1  defined by (the ANFs are expressed in the 
canonical basis): 

g ( X l , . .  . , X n , X n + l )  ---- f ( X l , . . . , X n )  -.{- Xn.[_ 1. 

Then g is (t + 1)-resilient. 
We will apply it to our balanced highly nonlinear functions in order to con- 

struct balanced highly nonlinear functions with a good Correlation Immunity 
order. 

T h e o r e m  2. 
f by 

The degree and nonlinearity of g can be deduced from the ones of 

deg(g) = deg(f) 
d(g, .An+l) ~- -  2d(f, An) 

Proof. It is obvious that  f and g have the same degree. We will now prove the 
result on the nonlinearity. 

We have d(g,.4n+l) = min{d(g, l), l E An+l}. Let l be an affine function of 
An+l: it can be written as l ( x l , . . .  ,xn+l) = l ' (Xl , . . .  ,xn) +cxn+l with l' in An 
and c in F2. 

Let Vf denote the vector corresponding to the values of ] .  We also introduce 
Vg, ~ and Vv. We have Vg -- (VflVf), where Vf denotes the complement of V I, 
and ~ = (Vv IVy). And since the distance between two Boolean functions g and 
l is the sum of the elements of the vector Vg + Vi, we have: 

If e -- 1, then d(g, l) -- d(f,  l') + d(f ,  l') = 2 d(f ,  l'). 
If e = 0, then d(g, l) = d(f ,  l') + d(-], l') = d(f ,  l') + d(f ,  P) = 2 n. 
And then d(g, An+l) = minveA.{2 d(f , l ' ) ,  2 n} = minveA.{2 d(f , l ' )}  = 

2 d(f ,  An). 

Then if we use a 0-correlation-immune balanced function of ~,~ with nonlin- 
earity N L I ,  we obtain by iterating t times this construction a t-resilient function 
of ~',~+t with nonlinearity 2tNLI .  

Example 5. We take the idempotent function of ~'7 whose short ANF relatively 
to the normal basis ( a l a , . . . ,  a 7~ (where a is a root of the primitive polynomial 
X r + X + 1) is 
f = X2 "~- X lX7  Jr" X lX2X3  -t- XlXhX7 ~t- X2XhX6 -{- X2XhX7 .~. X2X6X7 Jr" X lX2XaX4  -}- 
x~x2xax6 + XlXaX4X7 + x2xhx6xr + x lxaxsxsxr  + XlX2XaX4XsX~. 
This function is balanced of degree 6 and has the highest nonlinearity, 56. We 
apply the construction twice, and then obtain a 2-resilient function g of ~'9 with 
degree 6 and nonlinearity 22 * 56 -- 224. The inequality given in Equation 1 
is here 6 + 2 < 9 - 1 and is then an equality. We have optimized the degree 
regarding to the resilience order. 

This function g is representative of all the functions we obtained, they are 
particularly well-suited for implementation in stream ciphers as the most se- 
cure cryptographic primitive of this kind, since they optimally combine all three 
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necessary criteria, precedently presented. One more important point in this 
kind of application is a very good behavior (better than expected) toward the 
correlation-immunity. Being 2-resilient, the different nonzero values of ](w), yet 
more important than for 1-resilient functions (due to the Parseval's equation), 
are however very well distributed. It can be considered as an additional tradeoff 
between the correlation-immunity order and the most unfavorable existing cor- 
relation values. Cryptographically speaking, not only we are forced to consider 
3 LFSRs simultaneously in a correlation attack (which is generally intractable 
if the sum of their length exceeds about 80) but also the correlation values will 
be weak enough to offer far more resistance since it will oblige the cryptana- 
lyst to consider a generally too long keystream s to recover the secret elements 
with acceptable probability of success. From this point of view, these obtained 
functions are cryptographically secure regarding to known attacks. 

And since we have 700 functions with the same characteristics as f (154 
functions up to equivalence), we can construct 700 functions with the same 
characteristics as g. 

Moreover we have 51744 functions of 7 variables which are balanced, of degree 
5 and with nonlinearity 56 (they are 1176 up to equivalence). They enable us 
to construct 51744 functions of 9 variables which are 2-resilient, of degree 5 and 
nonlinearity 224. 

6 C o n c l u s i o n  

The need for the most possible secure cryptographic primitives in cipher sys- 
tems is of great importance. In case of stream ciphers most of the reliability 
and security lies in the Boolean functions which must combine different criteria 
(balancedness, correlation-immunity, nonlinearity) to ensure resistance to known 
attacks. 

Precedent studies showed that only tradeoffs could be envisaged, these cri- 
teria being impossible to be obtained simultaneously. Until now, only existence 
results were known and no effective construction method were given, which could 
have been used to exhibit best as possible Boolean functions. In this paper, the 
use of a particular of Boolean functions, called idempotents, has been widely 
used to give such a constructive method. 700 Boolean functions for n = 9 have 
been obtained. They not only present the best possible tradeoff between the de- 
sired criteria but also meet the theoretical Siegenthaler's bound. An additional 
tradeoff has been observed, between the correlation-immunity order and the dis- 
tribution of the nonzero values of the existing correlations. All that make these 
functions particularly well-suited for implementation in stream ciphers thus re- 
sisting all the known attacks. 
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