
Universally Verifiable Mix-net with Verification
Work Independent of the Number of Mix-servers

Masayuki Abe

NTT Laboratories
Nippon Telegraph and Telephone Corporation

1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan
E-mail: abe@isl . n t t . c o . jp

A b s t r a c t . In this paper we construct a universally verifiable Mix-net
where the amount of work done by a verifier is independent of the number
of mix-servers. Furthermore, the computational task of each mix-server
is constant against the number of mix-servers except for some negligible
tasks like addition. The scheme is robust, too.

K e y w o r d s : Mix-net, Electronic Voting, Universal Verifiability

1 I n t r o d u c t i o n

Many electronic voting schemes have been introduced in the literature so far
and some of them are being implemented. In national-scale elections, electronic
voting will strongly reduce the cost of counting vast numbers of votes and also
offer a high level of security. Not just for large scale elections, electronic voting
can also be a useful tool for quick decision making in several types of cooperative
projects on networks. Therefore, electronic voting schemes should comply with
a wide variety of voting policies [1].

Many efficient schemes, e.g., [8,9,7,2], compute the final tally without opening
each ballot for privacy. As they need to assure the validity of ballots by using
zero-knowledge proof, their scheme suits only elementary policies like binary
choice where the content of a ballot is limited to one of two fixed options. On
the other hand, there are schemes wherein each ballot is opened at the end so that
one can easily see if the content conforms to the policy which can be complicated
like allocative choice where voters distribute assigned points to several options.
Typically, schemes along this line, e.g., [6,10], assume anonymous channels to
assure the privacy of voters. As a cryptographic alternative to an anonymous
channel, Chaum introduced Mix-net [5] where a series of m entities called Mix-
servers sequentially decrypts and permutes encrypted ballots so that no collusion
of Mix-servers, except all, can distinguish which vote was from which voter. A
problem of Chaum's construction, based on RSA, is that the work needed for
each voter is proportional to the number of Mix-servers, i.e., each voter has
to repeat encryption and randomization m times. Kurosawa et al., overcame
this problem in [16] using EIGamal encryption so that the voter's work became

438

independent of m. Regarding verifiability in Chaum's construction, although
each voter can verify that his or her vote has been correctly counted, no voter can
be assured that all ballots have been accounted correctly. Such type of Mix-net is
called locally verifiable. Sako and Killian proposed a universally verifiable scheme
in [19], where anybody can verify correctness of the result. Universal verifiability
is very important especially for large scale elections as it is impractical to force all
voters to check the result. Regarding efficiency, since the scheme in [19] is based
on [16], voters' work can be independent of the number of Mix-servers but the
verifiers must verify that each server behaved correctly by using cut-and-choose
method. Thus, the verifier's work remains proportional to m, more precisely,
O(mlog e) where e is acceptable error probability (~ 2-8~ Furthermore, their
proof system required side information, and it was not known whether this would
leak any information about individual votes. Later, in [13], Michels et al. pointed
out that the side information can violate anonymity. Although a plausible fix
was shown in [18], it still uses side information and the scheme is not known to
be secure.

Another model of Mix-net was introduced by Ogata, et al., in [14] which
claims universal verifiability and robustness. As their scheme inherits proof sys-
tems from [19], the verification work needed for a verifier is O(m log 6). Further-
more, each mix-server must verify all other servers' behavior one by one. The
total work done by m servers will be O(m 2 loge).

In [11] Jakobsson proposed a novel model of robust Mix-net whose complexity
is claimed to be O(m + 1~ for N votes. Although the scheme is much more log N l

efficient than other schemes (including ours), it lacks one important property,
that is, universal verifiability. In their scheme, no one except mix-servers can be
assured of correctness of the result. If all servers are corrupt, incorrect result
may be published without being noticed by anyone.

In this paper we introduce a universally verifiable Mix-net where the verifier's
work is O(log e), i.e., independent of the number of mix-servers. Furthermore,
the computat ional work done by m servers is O(m log e) if we only take modular
exponentiation, which is the most expensive arithmetic operation in our scheme,
into account. Our scheme also enjoys robustness. More precisely, our scheme
satisfies the following properties.

R o b u s t n e s s If at least t servers are cooperative, the correct result is obtained.
Tha t is, the output of the Mix-net is the decryption of the input.

P r i v a c y Unless t or more servers are corrupt, no poly-bounded ent i ty can as-
sociate a particular output to input with probability better than random
guessing.

U n i v e r s a l Ve r i f i ab i l i t y Correctness of the result is verifiable for any verifiers.
E f f i c i ency The work done by a verifier is independent of the number of Mix-

servers. The computational work done by each server is independent of the
number of servers except some negligible ones like addition.

This paper is organized as follows. In section 2, we overview our scheme which
consists of several steps. Primitives that correspond to each step are detailed in
Section 3. The scheme is analyzed in section 4.

439

2 O v e r v i e w

We assume four types of participants: users, a bulletin board, mix-servers, and
verifiers. All of them are limited to have polynomial-bounded computat ional
resources. The users post encrypted messages to the bulletin board. The encryp-
tion is done by El Gama l encryption with mix-servers ' encryption key. After
submission is closed, mix-servers start working as follows.

The task of the servers can be divided into two phases; "Randomizat ion and
permutat ion" followed by "decryption". The following summarizes our scheme.

1. Randomizat ion and Permutat ion Phase

(1) Randomizat ion and Permutat ion The cascade of Mix-servers work
to randomize and permute inputs. Each server keeps his local random
factors and random permuta t ion secret.

(2) J o i n t P r o o f o f P e r m u t a t i o n Mix-servers cooperate to execute a pro-
tocol to issue P r o o f - P that proves correctness of the output in zero-
knowledge, tha t is, the fact that the servers know random factors and
permuta t ions that relate the input to the output . Each server verifies
the proof himself. If the proof fails, dishonest servers are identified and
removed. The remaining servers restart from the beginning.

2. Decrypt ion Phase
(3) Threshold Decrypt ion A quorum of servers cooperate to decrypt the

randomized and permuted messages.
(4) J o i n t P r o o f o f C o r r e c t D e c r y p t i o n The servers cooperate to exe-

cute a protocol to issue Proof -D that proves correctness of the decryp-
tion. If the proof fails, dishonest servers are identified and removed. A
new quorum of servers including new ones execute decryption again.

The resulting messages are written on the bulletin board together with
P r o o f - P and Proof -D which prove correctness of the result and which are ver-
ifiable by any verifier. As in former published schemes, users have to trust, for
privacy, at least one server because privacy can be violated by even the passwe
deviation of all servers. So it is impor tan t for honest servers, in order to main-
tain users' privacy, to assure themselves that their private random choices in
the randomizat ion and permuta t ion phase are not leaked, or canceled by other
servers. This is possible by verifying each servers' work one by one as done in
former schemes. Such a solution, however, needs each server and verifier to per-
form work proport ional to the number of servers. In section 3.3 and 3.5, we
demonstrate efficient protocols wherein the work performed by a verifier is con-
stant against the number of servers. The computat ional work for each server is
also constant except some negligible tasks like addition.

The removal of actively deviating servers is done based on the principle that
failure of proof at the end of a protocol identifies the dishonest participants.
Mix-servers must verify P r o o f - P before they proceed to the decryption phase. If
P r o o f - P fails, servers publish a transcription of all internal computat ion so that

440

the dishonest servers are identified. To have this strategy work, each server signs
their local outputs and the next server verifies the signature. Since such message
authentication can be realized as a function of the underlying network, and we
will not mention this point explicitly hereafter. If P roof -D fails, all internal
computat ions are published except shared decryption keys. We show how to
identify dishonest servers in the decryption phase in section 3.5. Note that once
the permuta t ion phase has been done correctly, failure in the decryption phase
will not endanger privacy.

3 P r o t o c o l s

3.1 P r e l i m i n a r i e s

Let p and q be large primes such that p = 2q+l . By Gq we denote a multiplicative
subgroup of order q in Z~. Let g be an element of Gq. We assume all ar i thmetic
is done in modulo p, unless otherwise stated. An E1Gamal decryption key x
of the Mix-network is shared into x t , . . . , xm by Shamir 's threshold scheme so
that x equals ~ i e q xiLi (mod q) where Li = YIjeQ,j~ i ~_, for any set Q C
{ 1 , . . . , m} of size k. Server i possesses xi and yi := gX,. The encryption key y is
distributed to all participants, and yis are published among servers.

By E0, we denote a list of encrypted messages appearing on the bulletin
board. The j - th entry of the list is (Mo,j,Go,j) such that Mo,j = vjy tJ and
Go,j = gto,j where to,j ER Zq is a random number and yj E Gq is a message.
To avoid the at tack shown in [17], the bulletin board must eliminate all copied
or correlated messages by having the user prove his/her knowledge of t0d. This
can be done efficiently by using the techniques of [20,4].

In the rest of this paper, we use i as an index for servers and runs from 1 to
m. Similarly, j is used as an index for messages and runs from 1 to N. We denote
the set of all possible permuta t ions on { 1 , . . . , N} by IlN. By #i for i < m, we
denote a series of m - i + 1 permuta t ions ~rirq+ 1 . . . r r m where ~ri E HN. We say
~r denotes rr149 7rm.

3.2 R a n d o m i z a t i o n a n d P e r m u t a t i o n

A list of encrypted messages is randomized and permuted by the cascade of m
Mix-servers. Task of each server is as follows. Server i receives a list Ei-1 :=
{(Ms-l,1, Gi- l , 1) , . . . , (Mi - l , g , Gi- t ,N)} . He then chooses a permuta t ion Iri ER
HN and N random factors ti,j ER Zq for all j . Randomizat ion and permuta t ion
are done as follows.

Mi,j : : Mi- l , r , (j)y t''~'O) , and

Gi,j := Gi-a,~,(j)g t''",~

(1)
(2)

for all j . The resulting list Ei := {(Mi,1, GiA) , . . . , (M,,N, Gi,N)} is sent to the
next server. The next server works in the same way, and processing succeeds
sequentially up to server m.

441

The result should be Em := {(Mm,1, Gin , l) , . . . , (Mm,N, GIn,N)} where

Mm,j = Mo,,r(j)y ~m'J , and (3)

Gm,j = Go,~(j)g ira'' , where (4)
m

i.~,j = Z ti,~,(j) (mod q). (5)

The following holds under the intractabili ty assumption of the Decision Diffie-
Hellman Problem.

Lemma 1. Given correct Ei-1 and El, no adversary can determine ~i(j) for
any j with probability better than 1 /N.

3.3 Joint P r o o f of Randomizat ion and Permutat ion

This section introduces a protocol for servers to jointly prove the correctness of
randomization and permutat ion to external verifiers. The proof also convinces
honest servers that they have contributed to the output, i.e., no one has can-
celed the randomization and permutat ion performed by the honest servers with
probability better than guessing them randomly.

Let ~r := - l o g 2 e where e is acceptable error probability (e _< 2 -s~ would
be convincing for most applications). We assume the use of a bit commitment

�9 N scheme B C whose inputs are from ~1, , m l x HN x 17" . Z. . As we assume
/ ' " " J J- s

that all participants are polynomial bounded, such B C will be implemented, in
practice, assuming the use of a hash function 7/ : { 1 , . . . , m} x FIN • 1-[;=1 Zq -+
{0, 1} 2~

Mix-servers cooperate to run the following protocol ~ times.

A-1 Server i receives/~i-1 := {(/1~/i-1,1, Gi -1 ,1) , . . . , (21~/i-1,N, Gi-I,N)}. He then
selects a random permutat ion Ai E / / N and calculates Jl~/i,j and G i j as

l~s , j = l~li_ l,),,O)y ~',x, (') , and

Gij = Gi-l,~,(j)g ~''~'('),

where ri,i Etr Zq. Server i then sends Ei :-- {(/1~/i,1, Gi ,1) , - . . , (/14i,N, Gi,N)}
to server i + 1. The last server publishes/~m.

A-2 Verifier publishes c ER {0, 1}.
A-3 If c ---- 0, server i computes a commitment bi := BC(i, Ai, r i ,1, . . . , ri,N)

and distributes bi to all other servers. After all commitments are exchanged,
server i opens bi by distributing Ai and all ~i,js. The last server publishes A :=
"~1 . . . '~ rn and rm,/ := ~-:~i~-i ri s mod q. Each server, then verifies that all
bis, A and § are correctly made. If this check fails, declare CHEATING
and stop.
I f c = 1, server i calculates ~i := rci-l~Oi-lAi and ~bi,j : = l V i _ l , A , (j) - [- r i , A . (j) -

ti,~,_lx,(j) (mod q) (for server 1, let 90 be identity permutation, and ~b0,j =
0). The last server then publishes ~ :-- Tm and all ~bm,js.

442

A - 4 Each server and verifier verify tha t if c = 0,

?

M,,~j / Mo,x(j) "- ye,~,, , and

GmjICo,x(.i) -~ g~"',

if c = 1,

(6)

(7)

~/Im,j /Mm,~(j) = y~"" , and (8)

d in , , / am,<j) = (9)

The following l e m m a states the security of this protocol .

L e I n m a 2. The above protocol is a honest verifier zero-knowledge proof of knowl-
edge for zr and tz,js that satisfy Equation 3 and 4. Furthermore, the protocol is
honest verifier zero-knowledge proof of knowledge for 7ri s and ti,j S held by honest
provers that satisfy Equation 3,4 and 5.

Proof. Completeness holds as follows. In the case of c = 1, the left term of
Equat ion 8 can be t ransformed to

A

~/fm,j / Mm,~(j) -: Mo,;~(j)ye",xO) / Mo,~rTr-~ ;~(j)y tm,--~ xO)

Furthermore, CVm,j can be t ransformed to

Wm,j : /b rn -1 ,)~m(j) "4- rrn,)~,~(j) -- trn,~.~_~.~(j)

i=1

: +rr~,X(j) - - i rn,~r-XX(j) �9

Hence, a group of provers who knows ti,j, ri,j, 7ri and)q can issue ~ and tb,,~,j
tha t are acceptable in Equat ion 8. The same is t rue for Equat ion 9. In the case
of c = 0, it is clear t ha t the provers can open all r a n d o m choices used to compute
[~m, and predicates 6 and 7 are satisfied.

To see tha t soundness holds, assume tha t the provers are able to answer bo th
c = 1 and c = 0 cases correct ly against the same)~ and /~m. Then, having ~ and
)~, one can extract rr as) ~ - 1 =) ~ (r r - 1) Q - 1 : 71". Similarly, get t ing both @m,j
and § from each case, one can extract tm,j by compu t ing ~m,~(j) - ~bm,~-Xj).

It is more involved to extract the individual knowledge of honest provers. We
mus t first show tha t a successful protocol run implies tha t instance Em is made
correctly according to each server 's choice of rri and ti , js. It begins by showing
tha t Ai owned by an honest prover is independent of Ak for k # i. Consider the
case of c = 0. By l e m m a 1, ,ki is unknown for a n y b o d y except server i before
A-3 is executed. In A-3, bi does not leak informat ion about)q by assumpt ion on

443

BC, and it is infeasible for server k to publish hk in a different way afterwards.
Furthermore, once the commitments are opened and verified correct, commit ted
server's identity k guarantees that bk is independent of hi. So we can conclude
that server k could have opened bt, before server i opened hi, i.e., before hi is
revealed. Thus, hi is independent of hk. In the same way, we can see that ri,js
are independent of ri,ks. As each server confirms that published his and ri,js
match the relation between/~m and E0, the absense of a CHEATING concludes
that / ~ has made correctly based on hi and r i j s . Next, consider the case of
c = 1 in the same protocol run. Succeeding in verification predicates 8 and 9
with correctly made Em implies that ~a involves)q. In this case, however, honest
prover does not reveal hi but ~ai which equals rr~t~i_l,ki. Hence, we see that
Em is based on 7ri. In the same way, we can see that Em is based on ti,js. As

wrong/~m is detected with probabil i ty larger than 1 - E, a successful protocol
run implies that the instance Em is made correctly according to honest servers'
knowledge on 7ri and ti,js.

Now we are ready to extract individual witnesses. From step A-3 with c = 0,
we have ,ki of honest server i. Similarly, f rom step A-3 with c = 1, we have
~i and ~i-1. Thus, we derive ~ i _ l h i ~ 1 = ~ i _ l h i h ~ l ~ p r i = rr,. We can
extract ti,js in a similar manner. Since his are independent, extracted rris are
independent knowledge of honest server. Note that even if some of his are chosen
in a dependent manner (possibly because of dishonest behavior by the servers),
and hence some rris owned by dishonest servers are not correctly extracted, it
will not influence the fact tha t the group of servers jointly know rr and im,j.

To show that the protocol is zero-knowledge, we construct m simulators that
work as follows. First they cooperate to pick up c En {0, 1}. If c = 0, simulate
each prover following the steps A-l ,2, and 4. It should be successful as predi-
cates 8 and 9 do not require knowledge of 7r and im,j. If c = 1, each simulator

randomly selects fake permuta t ion ~i and fake exponents ri,j. Simulators 1 to
m - 1, then, follow all steps of the protocol. In step A-l , s imulator m computes

~/.~,j = M~,y,. .(j)Y~',x~o), and

Gr.,j - - , = Gm,i.~(j)gr..,x-(J)

and publishes/~m. In step A-3, s imulator m publishes ~ = ~m and @m,5 = rm,j,
which satisfy predicate 8 as

Y/ir.,j/Mm,~(j) = M ~ ...Ye",x..(" /M,r,,~(j)
r n , A m ~ 3)
~

= yr-,,x,~ O)

= yv~-,.~O).

Predicate 9 can be satisfied as well. The outputs of each simulator distribute
uniformly over Gq or Zq and so do the permutat ions. Thus, the view of the
external verifier and each prover produced by the simulators and real protocol
run are perfectly indistinguishable. Thus the protocol is zero-knowledge both for
the servers and external verifiers. []

444

The [emma implies that once the protocol succeeds, honest servers are con-
vinced that his contribution to randomizat ion and permuta t ion has not been
canceled. If CHEATING is declared or verification in A-4 fails, all servers open
ri,js and Ais. This makes all computat ion traceable and cheating servers can be
identified.

Although the described protocol is interactive, we can derive the non-interactive
version of the protocol by using Fiat-Shamir heuristics, in which challenge c is
made via a hash function. In such a case, P r o o f - P consists of all outputs of
the last server. In order to assure verifiers of the presence of a server that each
verifier can trust for his privacy, each server signs P roo f -P .

3.4 Thresho ld E1Gamal Decrypt ion

A quorum of servers cooperate to decrypt messages in the randomized and per-
muted list. We assume Q = { 1 , . . . , t} and server i E Q works to decrypt message
(M,~,j, Gin,j) which is in the randomized and permuted list.

The protocol is as follows. Server i E Q calculates Wi,j := Wi-l , jGm,j ~'L'
(let W0,j = 1 for server 1), and sends all Wi,j to the next server. The last server,
t, then publishes Wt,j. Decryption is completed by calculating Mm,j /Wt , j .

If all t servers work correctly, the result, Wt,j, should equal Gm,j ~ as

t

~ m , 3 -: G m , j = G m , j .

i=1

3.5 Joint P r o o f of Correct D e c r y p t i o n

Next we introduce a way to jointly prove decryption correctness, i.e., t servers
in Q cooperate to prove log 9 y = logG,~, ~ Wt,j for all j .

B-1 Server i chooses ri E/r Zq and computes

Ui := Ui-1 g r ' , a n d

,j := Ui- 1,j G r'

(let U0 = Vo,j = 1 for the first server) for all j . Then pass Ui and ~ , j s over
to the next server. The last server publishes Ut and Vt,a.

B-2 Verifier publishes c En Zq.
B-3 Server i computes si := si-1 + ri - cxiLi mod q (let so = 0 for the first

server), then sends sl to the next server. The last server publishes st.
B-4 For all j , verifier verifies that

Ut ~ g~,yC, and (10)
9 8~ C Vt,j = G,~,j W;,j. (11)

The following l emma states the security of the above protocol.

445

L e m m a 3. The protocol for the joint proof of decryption is honest verifier zero-
knowledge proof of knowledge for relation logg y = logam,j Wt,j for all j .

Proof. Correctness holds because

gS,yC = g~-~.,eQ(r,-cx,L,)yC = g~'~.,~er, = Ut.

Similarly,
~'~ (r , -cx ,L ,) E , e Q r,

~' ~ = G " - ' '~Q" " W 5 = Vt. G m , j W t , j m,j t,j = Gm, j

For soundness, assume two protocol runs with the same Ut and Vt,j but differ-
ent challenges, say c' and c". If s~ and s~ I are the outputs of step B-3 in each
protocol run, witness x can be extracted as x = (s~ - s~ ') / (c"- c'). The pro-
tocol is zero-knowledge because for randomly chosen c and S l , . . . , st, the tuple

�9 CTs' T/17c/t (U1, Vx,j,.. Ut, Vt, j , . . .) such that /J, := g~,yC/t and ~ , j := v m , j , , t,j has uni-
form distribution and satisfies both predicates in step B-4. []

Note that soundness holds only for witness x. Tha t is, the protocol only
guarantees that there is a group of provers, the accumulat ion of whose knowledge
leads to x. However, the result is sufficient for successful cases, because what the
verifiers should be assured of through this protocol is the correctness of W.

If the proof fails, cheating server can be identified as follows�9 Suppose the
relation between Gm,j and Wt,j fails. Then Wi,j, Ui, Vi,j, si for all i E Q are
published. If server i has correctly computed,

hold, because

Ui/Ui-1 = g,,-s,_,y~i(i), and

�88 l V~_ ~ ,~ s,- ,,_ , = cm,s (w i j I W , _ l ~)~

(12)

(13)

g~ ,_ , , _ , yCL (i) = g r , - c L (,) r . y ~ L (,) = gr , = U i / U i - 1 ,

and, in a similar way,

~ , - ~ , - 1 = , - , ~,j/~_ Gm,j (W i , j / W i _ l , j) c r , -cL(i)x , ((~L(i)x]c : Gin, j ,--rn,3 , = Gin, j 1,j.

By continuing the verification from i = t to i -- 1, we must find i where Equa-
tion 12 or 13 does not hold as we assume the relation between Gmo and Wt,j
fails. We note that Wi,j, Ui, Vi,j and s,, do not leak xi as each server's view is
simulatable in the same way as we did in the proof of Lemma 2.

As usual, we can derive a non-interactive version of the above protocol by
using Fiat-Shamir heuristics, so dishonest verifiers can be put aside. In that case,
P roof -D consists of all outputs from server t. Similar non-interactive protocols
have been used in the context of multi-signatures [3,12], where the security is
proved in the random oracle model in [15].

446

4 A n a l y s i s

We claim that privacy is achieved because the protocol for randomization and
permutat ion leaks no useful information about rqs and ti,j, and honest servers
can assure themselves that their random rris were not canceled. Correctness
is achieved as P roo f -P guarantees that there are a permutat ion and random
factors that satisfy Equation 3 and 4. Furthermore, Proof-D guarantees that
the output is the correct decryption of the randomized messages. Robustness is
achieved because of threshold decryption, wherein only a quorum of servers need
to work to get the messages decrypted. As any verifier can verify P r o o f - P and
Proof-I) , the scheme is universally verifiable.

We discuss efficiency based on computat ional cost, throughput, and commu-
nication complexity. Computat ional cost is estimated by the number of exponen-
tiation operations. Assuming the use of the simple pre-computation technique,
double-base exponentiation is estimated as 1.2 times more expensive than sin-
gle base exponentiation. Looking at A-4 and B-3, one can see that total work
needed by verifiers is completely independent of the number of servers and the
cost is 2~N + 1.2(N + 1) exponentiations. For each server, 4~N + 5.2N + 2.2
exponentiations are computed in the successful cases. For instance, if we take
5 servers and a = 80, our scheme costs about 1626N exponentiations while
[14] takes about 4881N exponentiations. Sacrificing universal verifiability, one
can get down to approximately 130N exponentiations with Jakobsson's solution
in [11] for N ~ 106.

Throughput is not necessarily determined by total computational cost as we
can employ precomputation and parallel computation by servers. In fact, all ex-
ponentiations in the randomization and permutat ion protocol and in step A-l,
that is 2N + 2c~N for each server, can be computed beforehand. Although expo-
nentiations in other steps must be done during processing, each server can do it
in parallel. As a result, one will get an output after 2crN + 3.2N + 2.2 exponen-
tiations. Using the same setting as above, approximately 163N exponentiations
are needed for our scheme while 812N and 62N are needed for [14] and [11]
respectively.

Regarding communication complexity, as we can use the non-interactive ver-
sion of the protocols, verifiers do not need to talk to each server. Servers need
several interactions with other servers or the bulletin board as well as other
robust schemes.

A c k n o w l e d g m e n t s

The author wishes to thank E. Fujisaki, M. Michels and A. Fujioka for valuable
comments on the early draft of this paper.

R e f e r e n c e s

1. R. Alton-Seheidl, R. Schmutzer, P.-P. Sint, and G. Tscherteu. Voting and rating.
Technical report, Research Unit for Socio-Eeonomics, 1997.

447

2. J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In 26th STOC,
pages 544-553, 1994.

3. C. Boyd. Multisignatures based on zero knowledge schemes. Electronics Letters,
27(22):2002-2004, 1991.

4. S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In EUROCRYPT'97, volume 1233 of LNCS, pages 318-333. Springer-Verlag, 1997.

5. D. Chaum. Untraceable electronic mail, return address, and digital pseudonyms.
In Commumcations of the ACM, volume 24, pages 84-88, 1981.

6. D. Chaum. Elections with unconditionally-secret ballots and disruptions equivalent
to breaking RSA. In EUROCRYPT '88, volume 330 of LNCS, pages 177-182.
Springer-Verlag, 1988.

7. J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election
scheme. In Proceedings of the 26th 1EEE Symposium on Foundatsons o] Computer
Science, pages 372-382. IEEE Computer Society, 1985.

8. R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-
ballot elections with linear work. In EUROCRYPT '96, volume 1070 of LNCS,
pages 72-83. Springer-Verlag, 1996.

9. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In EUROCRYPT'97, volume 1233 of LNCS, pages
103-118. Springer-Verlag, 1997.

10. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In A USCRYPT'92, volume 718 of LNCS, pages 244-251. Springer-
Verlag, 1993.

11. Markus Jakobsson. A practical mix. In EUROCRYPT '98, 1998.
12. M. Michels and P. Horster. On the risk of disruption in several mult iparty signature

schemes. In ASIACRYPT'96, volume 1163 of LNCS, pages 334-345. Springer-
Verlag, 1996.

13. M. Michels and P. Horster. Some remarks on a receipt-free and universally veri-
fiable mix-type voting scheme. In ASIA CR YPT'96, volume 1163 of LNCS, pages
125-132. Springer-Verlag, 1996.

14. W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous
channel. In ICICS98, 1997. To appear.

15. K. Ohta and T. Okamoto. The exact security of multi-signature schemes. Technical
Report ISEC97-27, IEICE, July 1997.

16. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all /nothing
election scheme. In EUROCRYPT '93, volume 765 of LNCS, pages 248-259.
Springer-Verlag, 1994.

17. B. Pfitzmarm. Breaking an efficient anonymous channel. In EUROCRYPT '94,
volume 950 of LNCS, pages 339-348. Springer-Verlag, 1995.

18. K. Sako. An improved universally verifiable mix-type voting schemes. Unpublished
Manuscript, 1995.

19. K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth- . In EUROCRYPT '95, volume 921 of
LNCS, pages 393-403. Springer-Verlag, 1995.

20. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,
4(3):239-252, 1991.

