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A b s t r a c t .  In this paper we construct a universally verifiable Mix-net 
where the amount of work done by a verifier is independent of the number 
of mix-servers. Furthermore, the computational task of each mix-server 
is constant against the number of mix-servers except for some negligible 
tasks like addition. The scheme is robust, too. 
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1 I n t r o d u c t i o n  

Many electronic voting schemes have been introduced in the literature so far 
and some of them are being implemented. In national-scale elections, electronic 
voting will strongly reduce the cost of counting vast numbers of votes and also 
offer a high level of security. Not just for large scale elections, electronic voting 
can also be a useful tool for quick decision making in several types of cooperative 
projects on networks. Therefore, electronic voting schemes should comply with 
a wide variety of voting policies [1]. 

Many efficient schemes, e.g., [8,9,7,2], compute the final tally without opening 
each ballot for privacy. As they need to assure the validity of ballots by using 
zero-knowledge proof, their scheme suits only elementary policies like binary 
choice where the content of a ballot is limited to one of two fixed options. On 
the other hand, there are schemes wherein each ballot is opened at the end so that 
one can easily see if the content conforms to the policy which can be complicated 
like allocative choice where voters distribute assigned points to several options. 
Typically, schemes along this line, e.g., [6,10], assume anonymous channels to 
assure the privacy of voters. As a cryptographic alternative to an anonymous 
channel, Chaum introduced Mix-net [5] where a series of m entities called Mix- 
servers sequentially decrypts and permutes encrypted ballots so that  no collusion 
of Mix-servers, except all, can distinguish which vote was from which voter. A 
problem of Chaum's construction, based on RSA, is that  the work needed for 
each voter is proportional to the number of Mix-servers, i.e., each voter has 
to repeat encryption and randomization m times. Kurosawa et al., overcame 
this problem in [16] using EIGamal encryption so that  the voter's work became 
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independent of m. Regarding verifiability in Chaum's construction, although 
each voter can verify that  his or her vote has been correctly counted, no voter can 
be assured that  all ballots have been accounted correctly. Such type of Mix-net is 
called locally verifiable. Sako and Killian proposed a universally verifiable scheme 
in [19], where anybody can verify correctness of the result. Universal verifiability 
is very important  especially for large scale elections as it is impractical to force all 
voters to check the result. Regarding efficiency, since the scheme in [19] is based 
on [16], voters' work can be independent of the number of Mix-servers but  the 
verifiers must verify that  each server behaved correctly by using cut-and-choose 
method. Thus, the verifier's work remains proportional to m, more precisely, 
O(mlog e) where e is acceptable error probability (~  2-8~ Furthermore, their 
proof system required side information, and it was not known whether this would 
leak any information about individual votes. Later, in [13], Michels et al. pointed 
out that  the side information can violate anonymity. Although a plausible fix 
was shown in [18], it still uses side information and the scheme is not known to 
be secure. 

Another model of Mix-net was introduced by Ogata, et al., in [14] which 
claims universal verifiability and robustness. As their scheme inherits proof sys- 
tems from [19], the verification work needed for a verifier is O(m log 6). Further- 
more, each mix-server must verify all other servers' behavior one by one. The 
total work done by m servers will be O(m 2 loge). 

In [11] Jakobsson proposed a novel model of robust Mix-net whose complexity 
is claimed to be O(m + 1~ for N votes. Although the scheme is much more log N l 

efficient than other schemes (including ours), it lacks one important  property, 
that  is, universal verifiability. In their scheme, no one except mix-servers can be 
assured of correctness of the result. If all servers are corrupt, incorrect result 
may be published without being noticed by anyone. 

In this paper we introduce a universally verifiable Mix-net where the verifier's 
work is O(log e), i.e., independent of the number of mix-servers. Furthermore, 
the computat ional  work done by m servers is O(m log e) if we only take modular 
exponentiation, which is the most expensive arithmetic operation in our scheme, 
into account. Our scheme also enjoys robustness. More precisely, our scheme 
satisfies the following properties. 

R o b u s t n e s s  If at least t servers are cooperative, the correct result is obtained. 
Tha t  is, the output  of the Mix-net is the decryption of the input. 

P r i v a c y  Unless t or more servers are corrupt, no poly-bounded ent i ty can as- 
sociate a particular output  to input with probability better  than random 
guessing. 

U n i v e r s a l  Ve r i f i ab i l i t y  Correctness of the result is verifiable for any verifiers. 
E f f i c i ency  The work done by a verifier is independent of the number of Mix- 

servers. The computational work done by each server is independent of the 
number of servers except some negligible ones like addition. 

This paper is organized as follows. In section 2, we overview our scheme which 
consists of several steps. Primitives that  correspond to each step are detailed in 
Section 3. The scheme is analyzed in section 4. 
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2 O v e r v i e w  

We assume four types of participants: users, a bulletin board, mix-servers, and 
verifiers. All of them are limited to have polynomial-bounded computat ional  
resources. The users post encrypted messages to the bulletin board. The encryp- 
tion is done by El Gama l  encryption with mix-servers '  encryption key. After 
submission is closed, mix-servers start  working as follows. 

The task of the servers can be divided into two phases; "Randomizat ion and 
permutat ion"  followed by "decryption". The following summarizes our scheme. 

1. Randomizat ion  and Permutat ion  Phase  

(1) Randomizat ion  and Permutat ion  The cascade of Mix-servers work 
to randomize and permute  inputs. Each server keeps his local random 
factors and random permuta t ion  secret. 

(2) J o i n t  P r o o f  o f  P e r m u t a t i o n  Mix-servers cooperate to execute a pro- 
tocol to issue P r o o f - P  that  proves correctness of the output  in zero- 
knowledge, tha t  is, the fact that  the servers know random factors and 
permuta t ions  that  relate the input to the output .  Each server verifies 
the proof himself. If  the proof fails, dishonest servers are identified and 
removed. The  remaining servers restart  from the beginning. 

2. Decrypt ion  Phase  
(3) Threshold  Decrypt ion  A quorum of servers cooperate to decrypt the 

randomized and permuted messages. 
(4) J o i n t  P r o o f  o f  C o r r e c t  D e c r y p t i o n  The servers cooperate to exe- 

cute a protocol to issue Proof -D that  proves correctness of the decryp- 
tion. If the proof fails, dishonest servers are identified and removed. A 
new quorum of servers including new ones execute decryption again. 

The resulting messages are written on the bulletin board together with 
P r o o f - P  and Proof -D which prove correctness of the result and which are ver- 
ifiable by any verifier. As in former published schemes, users have to trust, for 
privacy, at least one server because privacy can be violated by even the passwe 
deviation of all servers. So it is impor tan t  for honest servers, in order to main- 
tain users' privacy, to assure themselves that  their private random choices in 
the randomizat ion and permuta t ion  phase are not leaked, or canceled by other 
servers. This is possible by verifying each servers' work one by one as done in 
former schemes. Such a solution, however, needs each server and verifier to per- 
form work proport ional  to the number  of servers. In section 3.3 and 3.5, we 
demonstrate  efficient protocols wherein the work performed by a verifier is con- 
stant  against the number  of servers. The computat ional  work for each server is 
also constant except some negligible tasks like addition. 

The removal of actively deviating servers is done based on the principle that  
failure of proof at the end of a protocol identifies the dishonest participants.  
Mix-servers must  verify P r o o f - P  before they proceed to the decryption phase. If 
P r o o f - P  fails, servers publish a transcription of all internal computat ion so that  



440 

the dishonest servers are identified. To have this strategy work, each server signs 
their local outputs  and the next server verifies the signature. Since such message 
authentication can be realized as a function of the underlying network, and we 
will not mention this point explicitly hereafter. If  P roof -D fails, all internal 
computat ions are published except shared decryption keys. We show how to 
identify dishonest servers in the decryption phase in section 3.5. Note that  once 
the permuta t ion  phase has been done correctly, failure in the decryption phase 
will not endanger privacy. 

3 P r o t o c o l s  

3.1 P r e l i m i n a r i e s  

Let p and q be large primes such that  p = 2q+l .  By Gq we denote a multiplicative 
subgroup of order q in Z~. Let g be an element of Gq. We assume all ar i thmetic 
is done in modulo p, unless otherwise stated. An E1Gamal decryption key x 
of the Mix-network is shared into x t , . . . ,  xm by Shamir 's  threshold scheme so 
that  x equals ~ i e q  xiLi (mod q) where Li = YIjeQ,j~ i ~_, for any set Q C 
{ 1 , . . . ,  m} of size k. Server i possesses xi and yi := gX,. The encryption key y is 
distributed to all participants,  and yis are published among servers. 

By E0, we denote a list of encrypted messages appearing on the bulletin 
board. The j - th  entry of the list is (Mo,j,Go,j) such that  Mo,j = vjy tJ and 
Go,j = gto,j where to,j ER Zq is a random number  and yj E Gq is a message. 
To avoid the at tack shown in [17], the bulletin board must  eliminate all copied 
or correlated messages by having the user prove his/her knowledge of t0d. This 
can be done efficiently by using the techniques of [20,4]. 

In the rest of this paper, we use i as an index for servers and runs from 1 to 
m. Similarly, j is used as an index for messages and runs from 1 to N.  We denote 
the set of all possible permuta t ions  on { 1 , . . . ,  N} by IlN. By #i for i < m, we 
denote a series of m - i + 1 permuta t ions  ~rirq+ 1 . . . r r  m where ~ri E HN. We say 
~r denotes rr149 7rm. 

3.2 R a n d o m i z a t i o n  a n d  P e r m u t a t i o n  

A list of encrypted messages is randomized and permuted by the cascade of m 
Mix-servers. Task of each server is as follows. Server i receives a list Ei-1 := 
{(Ms-l,1, Gi- l , 1 ) , . . . ,  (Mi - l , g ,  Gi- t ,N)} .  He then chooses a permuta t ion  Iri ER 
HN and N random factors ti,j ER Zq for all j .  Randomizat ion and permuta t ion  
are done as follows. 

Mi,j : :  Mi- l , r , ( j )y  t''~'O) , and 

Gi,j := Gi-a,~,(j)g t''",~ 

(1) 
(2) 

for all j .  The resulting list Ei := {(Mi,1, GiA) , . . . ,  (M,,N, Gi,N)} is sent to the 
next server. The next server works in the same way, and processing succeeds 
sequentially up to server m. 
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The result should be Em := {(Mm,1, Gin , l ) , . . . ,  (Mm,N, GIn,N)} where 

Mm,j = Mo,,r(j)y ~m'J , and (3) 

Gm,j = Go,~(j)g ira'' , where (4) 
m 

i.~,j = Z ti,~,(j) (mod q). (5) 

The following holds under the intractabili ty assumption of the Decision Diffie- 
Hellman Problem. 

Lemma 1. Given correct Ei-1 and El, no adversary can determine ~i(j) for 
any j with probability better than 1 /N.  

3.3 Joint  P r o o f  of  Randomizat ion  and Permutat ion  

This section introduces a protocol for servers to jointly prove the correctness of 
randomization and permutat ion to external verifiers. The proof also convinces 
honest servers that  they have contributed to the output,  i.e., no one has can- 
celed the randomization and permutat ion performed by the honest servers with 
probability better than guessing them randomly. 

Let ~r := - l o g  2 e where e is acceptable error probability (e _< 2 -s~ would 
be convincing for most applications). We assume the use of a bit commitment 

�9 N scheme B C  whose inputs are from ~1, , m l  x HN x 17" . Z. .  As we assume 
/ ' " " J J- s  

that all participants are polynomial bounded, such B C  will be implemented, in 
practice, assuming the use of a hash function 7/ : { 1 , . . . ,  m} x FIN • 1-[;=1 Zq -+ 
{0, 1} 2~ 

Mix-servers cooperate to run the following protocol ~ times. 

A-1 Server i receives/~i-1 := {(/1~/i-1,1, Gi -1 ,1 ) , . . . ,  (21~/i-1,N, Gi-I,N)}. He then 
selects a random permutat ion Ai E / / N  and calculates Jl~/i,j and G i j  as 

l~s , j  = l~li_ l,),,O )y ~',x, (') , and 

Gij  = Gi-l,~,(j)g ~''~'('), 

where ri,i Etr Zq. Server i then sends Ei :-- {(/1~/i,1, Gi ,1) , - . . ,  (/14i,N, Gi,N)} 
to server i + 1. The last server publishes/~m. 

A-2 Verifier publishes c ER {0, 1}. 
A-3 If c ---- 0, server i computes a commitment  bi := BC(i,  Ai, r i ,1, . . . ,  ri,N) 

and distributes bi to all other servers. After all commitments are exchanged, 
server i opens bi by distributing Ai and all ~i,js. The last server publishes A := 
"~1 . . . '~ rn  and rm,/ := ~-:~i~-i ri s mod q. Each server, then verifies that all 
bis, A and § are correctly made. If this check fails, declare CHEATING 
and stop. 
I f c  = 1, server i calculates ~i := rci-l~Oi-lAi and ~bi,j : =  l V i _ l , A , ( j ) - [ - r i , A . ( j )  - 

ti,~,_lx,(j) (mod q) (for server 1, let 90 be identity permutation, and ~b0,j = 
0). The last server then publishes ~ :-- Tm and all ~bm,js. 
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A - 4  Each server and verifier verify tha t  if c = 0, 

? 

M,,~j / Mo,x(j) "- ye,~,, , and 

GmjICo,x(.i) -~ g~"', 

if c =  1, 

(6) 

(7) 

~/Im,j /Mm,~(j) = y~"" , and (8) 

d in , , / am,<j )  = (9) 

The  following l e m m a  states the security of  this protocol .  

L e I n m a  2. The above protocol is a honest verifier zero-knowledge proof of knowl- 
edge for zr and tz,js that satisfy Equation 3 and 4. Furthermore, the protocol is 
honest verifier zero-knowledge proof of knowledge for 7ri s and ti,j S held by honest 
provers that satisfy Equation 3,4 and 5. 

Proof. Completeness holds as follows. In the case of  c = 1, the left term of  
Equat ion  8 can be t ransformed to  

A 

~/fm,j / Mm,~(j)  -: Mo,;~(j)ye",xO) / Mo,~rTr-~ ;~(j)y tm,--~ xO) 

Furthermore,  CVm,j can be t ransformed to 

Wm,j : /b rn -1 , )~m( j )  "4- rrn,)~,~(j) -- trn,~.~_~.~(j) 

i=1  

: +rr~,X(j) - -  i rn,~r-XX(j)  �9 

Hence, a group of  provers who knows ti,j,  ri,j, 7ri and )q can issue ~ and tb,,~,j 
tha t  are acceptable in Equat ion  8. The  same is t rue for Equat ion  9. In the case 
of  c = 0, it is clear t ha t  the provers can open all r a n d o m  choices used to compute  
[~m, and predicates 6 and 7 are satisfied. 

To see tha t  soundness holds, assume tha t  the provers are able to  answer bo th  
c = 1 and c = 0 cases correct ly against  the same )~ and /~m.  Then,  having ~ and 
)~, one can extract  rr as ) ~ - 1  = ) ~ ( r r - 1 ) Q - 1  : 71". Similarly, get t ing both  @m,j 
and § from each case, one can extract  tm,j by compu t ing  ~m,~(j) - ~bm,~-Xj). 

It  is more involved to extract  the individual knowledge of  honest provers. We 
mus t  first show tha t  a successful protocol  run implies tha t  instance Em is made  
correctly according to each server 's  choice of rri and ti , js.  It  begins by showing 
tha t  Ai owned by an honest prover is independent  of  Ak for k # i. Consider the 
case of  c = 0. By l e m m a  1, ,ki is unknown for a n y b o d y  except server i before 
A-3 is executed. In A-3, bi does not  leak informat ion  about  )q by assumpt ion on 
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BC, and it is infeasible for server k to publish hk in a different way afterwards. 
Furthermore,  once the commitments  are opened and verified correct, commit ted  
server's identity k guarantees that  bk is independent of hi. So we can conclude 
that  server k could have opened bt, before server i opened hi, i.e., before hi is 
revealed. Thus, hi is independent of hk. In the same way, we can see that  ri,js 
are independent of ri,ks. As each server confirms that  published his and ri,js 
match  the relation between/~m and E0, the absense of a CHEATING concludes 
that  / ~  has made correctly based on hi and r i j s .  Next, consider the case of 
c = 1 in the same protocol run. Succeeding in verification predicates 8 and 9 
with correctly made Em implies that  ~a involves )q. In this case, however, honest 
prover does not reveal hi but ~ai which equals rr~t~i_l,ki. Hence, we see that  
Em is based on 7ri. In the same way, we can see that  Em is based on ti,js. As 

wrong/~m is detected with probabil i ty larger than 1 - E, a successful protocol 
run implies that  the instance Em is made correctly according to honest servers' 
knowledge on 7ri and ti,js. 

Now we are ready to extract  individual witnesses. From step A-3 with c = 0, 
we have ,ki of honest server i. Similarly, f rom step A-3 with c = 1, we have 
~i and ~i-1.  Thus, we derive ~ i _ l h i ~  1 = ~ i _ l h i h ~ l ~ p r i  = rr,. We can 
extract ti,js in a similar manner.  Since his are independent, extracted rris are 
independent knowledge of honest server. Note that  even if some of his are chosen 
in a dependent manner (possibly because of dishonest behavior by the servers), 
and hence some rris owned by dishonest servers are not correctly extracted, it 
will not influence the fact tha t  the group of servers jointly know rr and im,j. 

To show that  the protocol is zero-knowledge, we construct m simulators that  
work as follows. First they cooperate to pick up c En {0, 1}. If  c = 0, simulate 
each prover following the steps A-l ,2,  and 4. It  should be successful as predi- 
cates 8 and 9 do not require knowledge of 7r and im,j. If c = 1, each simulator 

randomly selects fake permuta t ion  ~i and fake exponents ri,j. Simulators 1 to 
m -  1, then, follow all steps of the protocol. In step A-l ,  s imulator m computes 

~/.~,j = M~,y,. .( j)Y~',x~o),  and 

Gr.,j  - - , = Gm,i.~(j)gr..,x-(J) 

and publishes/~m. In step A-3, s imulator  m publishes ~ = ~m and @m,5 = rm,j, 
which satisfy predicate 8 as 

Y/ir.,j/Mm,~(j) = M ~ ...Ye",x..(" /M,r,,~(j) 
r n , A m ~ 3  ) 
~ 

= yr-,,x,~ O) 

= yv~-,.~O). 

Predicate 9 can be satisfied as well. The outputs  of each simulator  distribute 
uniformly over Gq or Zq and so do the permutat ions.  Thus,  the view of the 
external verifier and each prover produced by the simulators and real protocol 
run are perfectly indistinguishable. Thus the protocol is zero-knowledge both for 
the servers and external verifiers. [] 
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The [emma implies that  once the protocol succeeds, honest servers are con- 
vinced that  his contribution to randomizat ion and permuta t ion  has not been 
canceled. If CHEATING is declared or verification in A-4 fails, all servers open 
ri,js and Ais. This makes all computat ion traceable and cheating servers can be 
identified. 

Although the described protocol is interactive, we can derive the non-interactive 
version of the protocol by using Fiat-Shamir  heuristics, in which challenge c is 
made via a hash function. In such a case, P r o o f - P  consists of all outputs  of 
the last server. In order to assure verifiers of the presence of a server that  each 
verifier can trust  for his privacy, each server signs P roo f -P .  

3.4 Thresho ld  E1Gamal Decrypt ion  

A quorum of servers cooperate to decrypt messages in the randomized and per- 
muted list. We assume Q = { 1 , . . . ,  t} and server i E Q works to decrypt message 
(M,~,j, Gin,j) which is in the randomized and permuted  list. 

The protocol is as follows. Server i E Q calculates Wi,j := Wi-l , jGm,j  ~'L' 
(let W0,j = 1 for server 1), and sends all Wi,j to the next server. The last server, 
t, then publishes Wt,j. Decryption is completed by calculating Mm,j /Wt , j .  

If all t servers work correctly, the result, Wt,j, should equal Gm,j ~ as 

t 

~ m , 3  -:  G m , j  = G m , j  . 

i=1  

3.5 Joint  P r o o f  of  Correct D e c r y p t i o n  

Next we introduce a way to jointly prove decryption correctness, i.e., t servers 
in Q cooperate to prove log 9 y = logG,~, ~ Wt,j for all j .  

B-1  Server i chooses ri E/r Zq and computes 

Ui := Ui-1 g r ' , a n d  

,j := Ui- 1,j G r' 

(let U0 = Vo,j = 1 for the first server) for all j .  Then pass Ui and ~ , j s  over 
to the next server. The last server publishes Ut and Vt,a. 

B-2  Verifier publishes c En Zq. 
B-3  Server i computes si := si-1 + ri - cxiLi mod q (let so = 0 for the first 

server), then sends sl to the next server. The last server publishes st. 
B-4  For all j ,  verifier verifies that  

Ut ~ g~,yC, and (10) 
9 8~ C Vt,j = G,~,j W;,j. (11) 

The following l emma states the security of the above protocol. 
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L e m m a  3. The protocol for the joint proof of decryption is honest verifier zero- 
knowledge proof of knowledge for relation logg y = logam,j Wt,j for all j .  

Proof. Correctness holds because 

gS,yC = g~-~.,eQ(r,-cx,L,)yC = g~'~.,~er, = Ut. 

Similarly, 
~'~ (r , -cx ,L , )  E , e Q  r, 

~' ~ = G " - ' '~Q"  " W 5  = Vt. G m , j W t , j  m,j  t,j = Gm, j  

For soundness, assume two protocol runs with the same Ut and Vt,j but differ- 
ent challenges, say c' and c". If s~ and s~ I are the outputs  of step B-3 in each 
protocol run, witness x can be extracted as x = (s~ - s~ ' ) / (c"-  c'). The pro- 
tocol is zero-knowledge because for randomly chosen c and S l , . . . ,  st, the tuple 

�9 CTs' T/17c/t (U1, Vx,j,.. Ut, Vt, j , . . . )  such that  /J, := g~,yC/t and ~ , j  := v m , j , ,  t,j has uni- 
form distribution and satisfies both  predicates in step B-4. [] 

Note that  soundness holds only for witness x. Tha t  is, the protocol only 
guarantees that  there is a group of provers, the accumulat ion of whose knowledge 
leads to x. However, the result is sufficient for successful cases, because what the 
verifiers should be assured of through this protocol is the correctness of W. 

If  the proof fails, cheating server can be identified as follows�9 Suppose the 
relation between Gm,j and Wt,j fails. Then Wi,j, Ui, Vi,j, si for all i E Q are 
published. If server i has correctly computed,  

hold, because 

Ui/Ui-1 = g,,-s,_,y~i(i),  and 

�88 l V~_ ~ ,~ s,- ,,_ , = cm,s ( w i j I W , _ l  ~)~ 

(12) 

(13) 

g~ ,_ , , _ , yCL ( i )  = g r , - c L ( , ) r . y ~ L ( , )  = gr ,  = U i / U i - 1 ,  

and, in a similar way, 

~ , - ~ , - 1  = , - ,  ~,j/~_ Gm,j ( W i , j / W i _ l , j ) c  r , -cL( i )x , ( (~L(i )x]c  : Gin, j ,--rn,3 , = Gin, j 1,j. 

By continuing the verification from i = t to i -- 1, we must  find i where Equa- 
tion 12 or 13 does not hold as we assume the relation between Gmo and Wt,j 
fails. We note that  Wi,j, Ui, Vi,j and s,, do not leak xi as each server's view is 
simulatable in the same way as we did in the proof  of Lemma  2. 

As usual, we can derive a non-interactive version of the above protocol by 
using Fiat-Shamir  heuristics, so dishonest verifiers can be put aside. In that  case, 
P roof -D consists of all outputs from server t. Similar non-interactive protocols 
have been used in the context of multi-signatures [3,12], where the security is 
proved in the random oracle model in [15]. 
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4 A n a l y s i s  

We claim that  privacy is achieved because the protocol for randomization and 
permutat ion leaks no useful information about rqs and ti,j, and honest servers 
can assure themselves that their random rris were not canceled. Correctness 
is achieved as P roo f -P  guarantees that  there are a permutat ion and random 
factors that  satisfy Equation 3 and 4. Furthermore, Proof-D guarantees that  
the output  is the correct decryption of the randomized messages. Robustness is 
achieved because of threshold decryption, wherein only a quorum of servers need 
to work to get the messages decrypted. As any verifier can verify P r o o f - P  and 
Proof-I) ,  the scheme is universally verifiable. 

We discuss efficiency based on computat ional  cost, throughput,  and commu- 
nication complexity. Computat ional  cost is estimated by the number of exponen- 
tiation operations. Assuming the use of the simple pre-computation technique, 
double-base exponentiation is estimated as 1.2 times more expensive than sin- 
gle base exponentiation. Looking at A-4 and B-3, one can see that  total work 
needed by verifiers is completely independent of the number of servers and the 
cost is 2~N + 1.2(N + 1) exponentiations. For each server, 4~N + 5.2N + 2.2 
exponentiations are computed in the successful cases. For instance, if we take 
5 servers and a = 80, our scheme costs about 1626N exponentiations while 
[14] takes about 4881N exponentiations. Sacrificing universal verifiability, one 
can get down to approximately 130N exponentiations with Jakobsson's solution 
in [11] for N ~ 106. 

Throughput  is not necessarily determined by total computational cost as we 
can employ precomputation and parallel computation by servers. In fact, all ex- 
ponentiations in the randomization and permutat ion protocol and in step A-l, 
that  is 2N + 2c~N for each server, can be computed beforehand. Although expo- 
nentiations in other steps must be done during processing, each server can do it 
in parallel. As a result, one will get an output  after 2crN + 3.2N + 2.2 exponen- 
tiations. Using the same setting as above, approximately 163N exponentiations 
are needed for our scheme while 812N and 62N are needed for [14] and [11] 
respectively. 

Regarding communication complexity, as we can use the non-interactive ver- 
sion of the protocols, verifiers do not need to talk to each server. Servers need 
several interactions with other servers or the bulletin board as well as other 
robust schemes. 
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