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A b s t r a c t .  We show that oblivious transfer can be based on a very gen- 
eral notion of asymmetric information difference. We investigate a Uni- 
versal Oblivious Transfer, denoted UOT(X, Y), that gives Bob the free- 
dom to access Alice's input X in an arbitrary way as long as he does not 
obtain full information about X. Alice does not learn which information 
Bob has chosen. We show that oblivious transfer can be reduced to a sin- 
gle execution of UOT(X, Y) with Bob's knowledge Y restricted in terms 
of Rdnyi entropy of order ~ > 1. For independently repeated UOT the 
reduction works even if only Bob's Shannon information is restricted, i.e. 
if H ( X I Y  ) > 0 in every UOT(X, Y). Our protocol requires that honest 
Bob obtains at least half of Alice's information X without error. 

Keywords .  Cryptographic Protocols, Oblivious Transfer, Shannon En- 
tropy, Rdnyi Entropy, Statistical Security, Multiparty Computation. 

1 I n t r o d u c t i o n  

Oblivious transfer is a cornerstone in the foundations of cryptography.  Obliv- 
ious transfer was introduced some t ime ago in several variations [24,15] and 
has since become the basis for realizing a broad class of interactive protocols, 
such as bit commitment ,  zero-knowledge proofs, and general secure mul t ipar ty  
computat ion [26,16,17,21]. 

In this paper,  we view oblivious transfer (OT) as asymmetr ic  information 
distribution between two part icipants.  An OT from Alice to Bob corresponds 
to a pair of correlated random variables X and Y with specially connected 
distributions. Alice's input X is t ransformed into Bob's  output  Y according to 
the specification of the OT protocol. 

In Rabin 's  OT, Alice sends a bit tha t  is received by Bob with probabil-  
1 [24]; in chosen one-out-of-two OT, denoted by (12)-OT, Bob has the choice ity 

of obtaining one of two bits sent by Alice [15]. A generalized oblivious transfer  
(GOT)  allows Bob to choose among all binary functions from Alice's two bits [5]. 

All of these are protocols in which Alice is willing to apply a probabilistic 
mapping  to her information X ,  i.e., to send X over some channel X --+ Y to 
Bob, where Bob may choose the channel hidden from Alice from a previously 
agreed-on set and /o r  the channel may  add noise to the transmission. 
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The question we investigate is: What if we allow Bob to choose from a much 
more general class of channels that is characterized only by the amount of in- 
formation that observing the channel output gives about the input? The corre- 
sponding primitive is called a universal oblivious transfer (UOT) and has been 
proposed by Brassard and Cr~peau [4]. For example, Bob could be allowed to 
read both of Alice's bits through a binary symmetric channel, which flips each 
bit independently with some probability. Or Bob could compute secretly any 
function of Alice's information as long as the function's range is smaller than its 
domain. 

In terms of correlated random variables, UOT is a protocol in which Bob can 
choose PxY, the joint distribution of X and Y, subject only to an upper limit on 
the amount of information that Y will give him about X. (Naturally, his choice 
has to be consistent with Px, Alice's view of the UOT.) Bob can obtain some 
part of X without error; our reductions require this part to be at least one half 
of X, generally. 

Key factors that distinguish different flavors of UOT are whether repeated 
execution of UOT is allowed and which information measure is used to restrict 
Bob's knowledge. 

As an example of UOT consider the black-box function model, as e.g. studied 
by Kilian [20]. This paper shows how a black box computing any function f with 
a certain property can be used as the basis for secure two-party protocols. (The 
extension to multi-party computation is given by Kushilevitz et al. [22].) In the 
two-party case, Alice and Bob send their inputs to f over private channels to 
the black box but the output of f is public and available to both. The particular 
f computed by the box is known to Alice and Bob. UOT can be considered 
as a generalization of this scenario where the box is produced by Bob and f is 
unknown to Alice; she can only observe the size of the public output. 

We stress that this work is not about realizing UOT in terms of other prim- 
itives (as e.g. [19]). Furthermore, the results on general secure multiparty com- 
putation cited before imply that GOT and its extension to arbitrary lengths can 
be reduced to (2)-OT. (Such a reduction seems however not possible for COT 
because Bob can choose to access Alice's information in infinitely many different 
ways.) The focus of UOT is to weaken Alice's security requirements in oblivious 
transfer by giving Bob more options to choose from. The question we investigate 
is how much freedom Bob can be given such that UOT still retains the power of 
oblivious transfer. 

1.1 Our  Resu l t s  

Let a universal oblivious transfer UOT(X, Y) be a protocol for a sender Alice 
and a receiver Bob, where Alice sends a random variable X with alphabet X 
and Bob obtains a random variable Y. Bob can secretly specify the distributions 
PYIx=~ for all x E X such' that Y does not give Bob complete information 
about X. 

We present security proofs for the reduction of (~)-OT to UOT. The results 

are stated in terms of the extension of (~)-OT to k-bit string oblivious transfer, 
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denoted (12)-OT k [15]. The protocol is essentially the same as used by Brassard 
and Cr~peau for simplifying the implementation of string OT from (12)-OT [4] 
and is based on privacy amplification [2]. In extension of their work, our protocol 
can be based on any universal hash function. Bob's information is measured in 
terms of min-entropy H~,  R~nyi entropy Ha of order a > 1, and Shannon 
entropy H (see Section 2 for definitions). 

UOT Without Repetition--R~nyi Entropy,  M i n - E n t r o p y  (Thm.  3): 
(12)-Ow k string OW can be reduced to a single execution of WOW(X, Y) when 
H ~ ( X [ Y  = y) = Y2(~-~f_lk) for all y E Y and a > 1; in particular also if 
H ~ ( X [ Y  = y) = Y2(k) for all y E Y. 

I n d e p e n d e n t  R e p e a t e d  U O T - - S h a n n o n  En t ropy  (Thm.  5): 
String OT can be reduced to independent repetitions of UOT(X, Y) when 
H ( X [ Y )  > O. 

Adaptive Repeated WOW--Shannon Entropy (Thm. 6): 
String OT can be reduced to n repetitions UOT(X (i), y(0)  for i = 1 , . . . ,  n, 
where Bob can choose Px~,~ Y~.~ adaptively when for all y(1),. . . ,  y(n), it holds 
H(X(i)[y(1) = y(1), . . .  ,y(n) = y(n)) > O. 

Connecting the second and third results (Theorems 5 and 6), we show also 
that string OT cannot be reduced to adaptively linked repetitions of UOT if 
only H ( X I Y  ) > 0 is assumed. 

The security of the reductions is statistical, tolerating an exponentially small 
failure probability and leakage of an exponentially small amount of information. 

1.2 Re la t ed  Work  

Reductions among oblivious transfers and disclosure problems have a long his- 
tory in cryptography. It is known how to implement any of the basic variants, 
OT, Q-OT,  and GOT, in terms of each other [5,11], even in a way where an 
online protocol uses only precomputed transfers [1]. Several ways to weaken 
the security assumptions for oblivious transfer were considered previously by 
Cr~peau and Kilian [13]. 

Research on reductions from 0 - O T  k string OT to bitwise 0 - O T  has for a 
long time concentrated on using self-intersecting codes for the constructions [6], 
but recent work by Brassard and Cr~peau [4] shows that the reduction can be 
done much more efficiently using privacy amplification [3,18,2]. This technique 
allows to weaken the security assumptions for Bob, permitting him not only to 
read one of the two bits, but also the XOR of both bits or even any binary 
function of them (GOT). Brassard and Cr~peau also suggested the further gen- 
eralization to UOT. This paper extends their work [4] and solves most of their 
open problems. 

1.3 Organization of the Paper 

UOT and the protocol for reducing (~)-OT k to UOT are introduced in Section 3. 
In Section 4, reduction to one execution of UOT is investigated. Conditions 
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under which (~)-OT k can be reduced to repeated use of UOT are described in 
Section 5 and Section 6 examines a further generalization of UOT. We start 
with defining terminology, assembling some tools, and introducing information- 
theoretic notions. 

2 P r e l i m i n a r i e s  

We consider four basic variants of oblivious transfer: 

OT: In Rabin's OT, Alice sends a bit b and Bob receives either A ("failed") or 
b, both with probability x ~, but Alice does not learn which one. 

0 - O T :  In chosen one-out-of-two OT, Alice has two input bits b0 and bl, Bob 
chooses c and obtains be, but Alice does not learn c. 

(~)-OTk: In string OT, Alice has two k-bit input strings w0 and Wl, Bob chooses 
c and obtains wc, but Alice does not learn c. 

GOT:  In generalized OT, Alice has input bits b0 and bl, Bob chooses any 
function f : {0, 1} 2 --+ {0, 1} and obtains f(bo, bl), but Alice does not learn f .  

Our reductions follow the information-theoretic definitions of unconditional 
security for oblivious transfer and other multiparty protocols [6,4,14], but formal 
treatment lies not in the scope of this paper. Informally, an OT protocol is correct 
if it accomplishes the transmission of information between honest parties. The 
protocol is private if a malicious party cannot obtain information about the 
honest party's input beyond the specification, except with negligible probability. 
Since UOT is by definition perfectly private for Bob, privacy is only an issue 
with respect to Alice (against a malicious Bob). 

We now repeat some definitions of information theory [10] and introduce the 
notation. A random variable X induces a probability distribution Px over an 
alphabet 2(. Random variables are denoted by capital letters. The cardinality of 
a set S is denoted by IS[ and logarithms are to the base 2. Usually, the alphabet 
of a random variable is denoted by the corresponding script letter. Concatenation 
is denoted by o or by juxtaposition. 

The (Shannon) entropy of a random variable X with probability distribution 
Px and alphabet X is defined as 

H(X)- = - Z Px (x) log Px (x). 
~EX 

The binary entropy function is h(p) = - p  l ogp - (1 -p )  log(i-p).  The conditional 
entropy of X conditioned on a random variable Y is 

H(XIY ) = y ~  PY(y)H(XIY = y) 
yEY 

where H(X[Y = y) denotes the entropy of the conditional probability distribu- 
tion PxlY=y" 
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The Rdnyi entropy of order ~ of a random variable X with alphabet 2( is 

1 log Px(x)  a Ha(X)  = 1 - 
x E X  

for c~ _> 0 and ~ # 1 [25]. The limit of R~nyi entropy for ~ --+ 1 is Shannon 
entropy. The other limiting case c~ --+ oo is min-entropy, defined as 

Hoo (X) = - log mea ~ Px (x). 

For a fixed random variable X,  R6nyi entropy is a continuous positive de- 
creasing function of a. For 0 < a </3,  we have Ha(X)  >_ H z(X ) ,  with equality 
if and only if X is the uniform distribution over a subset of 2(. In particular 

log lXl > H ( X )  >_ H2(X) > Hoo(X). (1) 

The well-known Fano inequality gives a lower bound on the error probability 
of guessing X from knowledge of a correlated random variable Y [10]. W.l.o.g. 
the estimate X for X is a function of Y. The Fano inequality states that  the 
error probability p~ = P[_~ # X] satisfies 

h(pe) + p ~ l o g ( ] 2 ( ] -  1) > H(X]Y) .  (2) 

Universal hash functions were introduced by Carter and Wegman [9]. A uni- 
versal hash function is a set G of functions 2( -4 y if, for all distinct Xl, x2 E 2(, 
there are at most ]G]/]Y[ functions g in G such that  g(xl)  = g(x2). 

Entropy smoothing by universal hashing is a widely-used technique to con- 
centrate the randomness inherent in a probability distribution known in different 
contexts as privacy amplification [3,2] or the leftover hash lemma [18]. 

In cryptography, privacy amplification can be used to extract  a short secret 
key from shared information about which an adversary has partial knowledge. 
Assume Alice and Bob share a random variable W, while an eavesdropper Eve 
knows a correlated random variable V that  summarizes her knowledge about W. 
The details of the distribution Pwy ,  and thus of Eve's information V about  W, 
are unknown to Alice and Bob, except that  they assume a lower bound on the 
R~nyi entropy of order 2 of PwIv=~ for the particular value v that  Eve observes. 

Using a public channel, which is susceptible to eavesdropping but immune 
to tampering, Alice and Bob wish to agree on a function g such that  Eve knows 
nearly nothing about  g(W). The following theorem shows that  if Alice and Bob 
choose g at random from a universal hash function G : )4; --+ y for suitable y ,  
then Eve's information about  Y = g(W) is negligible. 

T h e o r e m  1 ( P r i v a c y  A m p l i f i c a t i o n  [2]). Let X be a random variable over 
the alphabet 2( with Rgnyi entropy H2(X),  let G be the random variable cor- 
responding to the random choice (with uniform distribution) of a member of a 
universal hash function G : 2( -+ Y, and let Y = G(X) .  Then 

2log lYI-H2(X) 
H(YJG) >_ l o g J Y l -  ln2 (3) 
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To apply the theorem in the described scenario, replace P x  by the con- 
ditional probability distribution PwIv=v. The theorem can be extended from 
R6nyi entropy of order 2 to any order a > 1 [8]. 

Proofs for applications of privacy amplification often involve spoiling knowl- 
edge [2,7]: Suppose side information is made available to Bob by an oracle. 
The side information is tailored for Bob's distribution and serves the purpose 
of increasing his R6nyi entropy of order 2. This can be exploited to extract a 
larger secret key by privacy amplification. Note that the oracle giving spoiling 
knowledge is used only as a proof technique and not for carrying out privacy 
amplification. 

We will need the following lemma about the reduction of min-entropy induced 
by observing side information. 

L e m m a  2. Let X and U be random variables with alphabets X and U, respec- 
tively, and let s be a security parameter. With probability at least 1 - 2 -s ,  U 
takes on a value u for which 

H o o ( x l u  = u) >_ H~o(X) - log l U l  - s. 

Proof. Let po = 2-VlUl. Then values u for which Pu(u)  < Po occur with prob- 
ability less than 2 -8. Thus, for all u with Pu(u)  >_ Po and for any x 

PxIu=~(x) - P x u ( x , u )  < P x ( x )  < P x ( x )  = P x ( z ) ' I U I ' 2  8. 
Pu(u)  - Pu(u)  - Po 

The lemma follows by taking logarithms. [] 

3 U n i v e r s a l  O b l i v i o u s  T r a n s f e r  ( U O T )  

We introduce our notion of a universal oblivious transfer, in which only the 
amount of information that Bob obtains about the input is bounded and de- 
scribe the protocol that is used for reducing string OT to UOT under several 
assumptions. 

Defini t ion 1. A universal oblivious transfer, denoted by UOT(X, Y), is a pro- 
tocol for a sender Alice and a receiver Bob, where Alice sends a random variable 
X with alphabet X and Bob obtains a random variable Y. Bob can secretly 
specify the distributions Prlx== for all x E X such that Y does not give Bob 
complete information about X. 

Remark .  The requirement that Bob "is not given complete information" about 
X is deliberately imprecise. In terms of entropy this could be expressed by the 
condition H ( X I Y  ) > 0. But for the reductions to UOT, we usually need stronger 
and more complex assumptions about P x r .  It is therefore the general idea of 
Bob choosing and obtaining some, but not all information that the notion of a 
universal oblivious transfer tries to capture. We insist, however, that the restric- 
tion of Bob's information is given in terms of an information measure, such as 
entropy. In particular, the size of Y is not explicitly bounded, as is the case for 
O - O T  or GOT. 
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Since Bob's input to the UOT, the distributions PYIx== for x E X, is equiv- 
alent to specifying P x Y  consistent with Alice's P x ,  these formulations are used 
interchangeably. For the simplicity of notation, we assume that  Alice's input to 
the UOT is a binary string of fixed length. 

We use the following protocol to implement UOT and prove its security later 
with different restrictions on Bob's information about  X.  This protocol has been 
used by Brassard and Cr6peau for the efficient reduction of string OT to (21)-OT 
and to GOT [4]. 

In the protocol and the security proofs in Section 4, X is a binary string of 
length 2n that  is the concatenation of two n-bits strings X0 and X1. However, 
X could be any uniformly distributed random variable with at least 2 2n values. 
The protocol implements a reduction of (2)_OW k (Wo, Wl)(C) to UOT(X,  Y), such 
that  X = {0, 1} 2n. 

3 . 1  T h e  P r o t o c o l  f o r  (2)-OTk(wo, wl)(c) 
1: Let X = X0 o X1, where X0 and X1 both are random binary strings of length 

n and chosen by Alice according to the uniform distribution. 
2: Alice and Bob run UOT(X,Y) ,  where Bob chooses PYIx== for x E 2d to 

obtain Xc, i.e. such that  Y = Xc. 
3 :  Alice chooses independently two members Go, G1 from a universal hash func- 

tion mapping n-bit strings to k-bit strings and announces them to Bob. 
4: Alice computes Mo = Go(Xo) and M1 = GI(X1).  She encodes w0 and wl as 

Zo = Mo @ Wo and Z1 = M1 @ wl and sends Zo and Z1 to Bob. 
5: Bob computes we as Go(Y) @ Zc. 

We first investigate a single execution of UOT in Section 4. Then we slightly 
modify the protocol for Section 5 and examine the repeated use of UOT in step 2 
of the protocol. It makes sense to distinguish these two cases: On the one hand, 
repetitions can often be t reated independently of each other- -such methods 
are used widely. On the other hand, there are scenarios in which repetition of 
an experiment does not help because the adversary is free to link repetitions 
arbitrarily. 

4 UOT Without  Repetition 

We show under what conditions a k-bit string OW, (2)-OWk(wo,wl)(C), can be 
reduced to a single execution UOT(X,  Y). Recall that  Bob free to specify P x y  
at his choice and that  X = Xo oX1 consists of two n-bit strings. If Bob is honest, 
he follows the above protocol and obtains Y = Xc. Alice knows only X and the 
restriction on Bob's output  Y. 

T h e o r e m  3. Let s > O, let a > 1, and let UOT(X, Y )  be a universal oblivious 
transfer such that X is a 2n-bit string and Hc,(XIY = y) > l for all y E 32, 
where 

n > 1 > a ( 2 k + l o g ( n + s + 3 ) + 3 s + 2 ) .  (4) 
- - a - 1  

Then string OT can be reduce  to single e=,cution of UOT(X, r). 
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In particular, these conditions hold if H ~ ( X [ Y  = y) >_ I for all y E Y,  where 

n > l >_ 2 k + l o g ( n + s + 3 ) + 3 s + 2 .  (5) 

Remark .  In all our results, s is implicitly used as the security parameter. The 
resulting 0 - O T  k protocol is perfectly private for Bob (Alice learns nothing 
about Bob's choice by the definition of the UOT) and unconditionally private 
for Alice with leaking at most 2 -s bits of information to Bob, except with prob- 
ability 2 -s. 

Proof. It is straightforward to verify that the protocol is correct. We show that 
Bob has substantial uncertainty about at least one of Xo, X1 after step 3 of the 
protocol. From this we conclude that he obtains at most an exponentially small 
amount of information about either Mo or M1 and thus also about one of w0, 
Wl because wo and wa are encrypted with a one-time pad using Mo and M1 as 
keys, respectively. 

In the proof we examine Bob's uncertainty about Xo and his uncertainty 
about X1 given any particular value of Xo. A similar argument applies with Xo 
and X1 interchanged. 

First, we note that the main statement of the theorem (4) follows from the 
second statement (5) by the following observation. For any c~ > 1 and any 
random variable V, it holds 

a l H ~ ( V ) _  1 logmaxPy(v )~  > ~ 1  l o g Z p v ( v )  a = Ha(V).  
c~ - 1 -  o~ v ~ v - 1 -  o~ 

rE12 

Therefore, if H ~ ( X I Y  = y) is at least ~ times bigger than Ho~(XIY = y), the 
general bound (4) follows from (5). This leaves to prove the particular case (5). 

Fix the particular y that Bob has received. Suppose he obtains from an Oracle 
side information that depends on his distribution Pxoly=y" The purpose of side 
information is to induce an almost uniform distribution on Bob's view of X0. 
Although Bob may not actually receive the side information, he cannot deny 
having seen it and therefore have more knowledge. 

The side information is the random variable U = f (Xo)  with alphabet H = 
{0, . . . ,  d} for some fixed d to be specified later, defined by 

d if Pxo[r=u(x) < 2 -d 

f ( x )  = [- logPxolr=y(x)J  otherwise. 

(Side information U of this type has also been called log-partition spoiling knowl- 
edge [8]). U partitions the values of X0 into sets of approximately equal prob- 
ability under Pxoly=u,v=~. For d _> log IXIo = n, the values of the probability 
distributions PxolY=u,v=~ differ at most by a factor of two for all u except for 
u = d and therefore 

1 
~ m oaXPXolr=u,u:~,(Xo) <_ minPxoly=y,u=~,(xo). (6) 

~go 
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We now make sure tha t  U ~ d with high probability. Choosing d = n + s + 2 
guarantees that  

P [ U =  d] = Z PxolY=u (x~ <- 2"-d  < 2-8-1" (7) 

gO : P X o [ Y = v ( = o )  < 2 - a  

We assume u ~ d for the rest of the proof. Lemma 2 imposes an upper bound 
on the reduction of Bob's rain-entropy about XoX~ induced by observing the 
side information U. With probability at least 1 - 2 -8-1,  U takes on a value u 
such that  

H o o ( X o X x l Y  = y , U  = u) >_ H o o ( X o X l l Y  = y) - l og (d+  1) - s - 1 

> 2 k + 2 s + l ,  (S) 

where the second step follows from the assumption of the theorem. We have for 
all Xo and xl 

max  PXoXllY=u,U=u(Xlo,X~) 
(=~,=i) 

>_ PxolY=u,u=u(xo) " P x ,  IY=u,u=u,Xo==o (x l )  

_> m!n Pxo IY=u,u=~ (Xlo) " P x l  IY=u,u=~,,Xo==o (xa ) 
x o 

1 
>- ~ moax PxotY=u,v=~,(Xto) " P x ,  w=u,u=~,,xo==o (Xt ) 

where the last step follows from (6). Because this holds for all Xl, we can rewrite 
it in terms of min-entropy. Inserting (8) we obtain 

H ~ ( X o ] Y  = y, U = u) + H c ~ ( X l l Y  = y, U = u, Xo : xo) 

> H o o ( X o X x [ Y = y , U = u ) - I  >_ 2 k + 2 s  (9) 

for all x0. Either the min-entropy of X0 or the min-entropy of X1 given any 
particular value of Xo is at least k + s. 

Privacy amplification transforms the n-bit strings Xo and X1 into the k-bit 
strings 5//0 and M1. Because the min-entropy of a random variable is a lower 
bound for its R~nyi entropy of order two, Theorem 1 guarantees tha t  Bob's 
information about either Mo or M1 given any Xo = Xo is exponentially small 
in s. Formally, there is a value t > 0 such that  H ~ ( X o [ Y  = y, U = u) = t and 

H ( M o l G o , Y  = y , U  = u) >_ k -  2 k - t / l n 2  

on the one hand and H o o ( X l l Y  = y , U  = u, Xo = xo) >_ H ~ ( X o X l l Y  = y , U  = 
u) - t >__ 2k + 2 s -  t and 

H ( M I l G 1 , Y  = y , U  = u, Xo  = xo) > k -  2-k+ t -2S / ln2  

for any x0 on the other hand. (To apply Theorem 1, we have made implicit use 
of (1).) At least one of the exponents is not greater than - s .  This analysis can 
fail in (7) or (8) with probabili ty at most 2 -8-1 each, so that  the overall failure 
probability is bounded by 2 -8. [] 
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In particular, the above theorem covers the case that  Bob knows any deter- 
ministic function of X with output  size no more than 2n - l bits, i.e. such that  
Y = f ( X )  satisfies log ]y] < 2n - l. The following corollary is an immediate 
consequence of fact that  Px is the uniform distribution over 2n-bit strings. 

C o r o l l a r y  4. Let s > 0 and let UOT(X, f ( X )  ) be a universal oblivious transfer 
such that X is a 2n-bit string and Bob can obtain f ( X )  for any function f of his 
choice with output size at most 2 n - l  bits, where n > l > 2k+log(n+s+3)+3s+2. 
Then 0 - 0 7 r  string OT can be reduced to a single execution of UOT(X, f ( X ) ) .  

As mentioned in Section 1.2, string OT can be reduced to generalized obliv- 
ious transfer (GOT),  where Bob can obtain any binary function from a pair of 
bits held by Alice [4]. The reduction from string OT uses GOT n times, so that  
Bob in fact can obtain any n-bit function of n pairs of bits that  can be computed 
pairwise. Corollary 4 generalizes this to arbi t rary n-bit functions of Alice's 2n 
bits. 

We note that  Theorem 3 is the most general result with respect to a that  
we can obtain in the non-repetitive case. For c~ -+ 1, R6nyi entropy of order 
becomes Shannon entropy, but  a lower bound on the Shannon entropy H ( X ] Y  = 
y) is not sufficient for applying privacy amplification [2]. For example, suppose 
H ( X ] Y  = y) >_ I. Then Bob could choose to obtain the complete 2n-bit string 
X with probability ~ 1 - 2-~ and an uncorrelated 2n-bit string otherwise. No 
mat ter  what Alice does, Bob obtains Alice's complete information with constant 
probability. 

5 R e p e a t e d  U O T  

In this section we consider repeated application UOT from pairs of bits. The n 
bit pairs sent by Alice are denoted by 

x ( "  = o , . . . ,  x ( ~  = X o~ o ~ 

and the random variables received by Bob are y ( a ) , . . . ,  y(,~). The repetitions are 
denoted by UOT(X (i), Y(')) for i = 1 , . . . ,  n and the second step in the protocol 
is replaced by: 

2':  For i = 1 , . . . , n ,  Alice and Bob run UOT(X(i) ,Y( i)) ,  where Bob chooses 

Pr(')rx(')=x(') for x(*) E {0, 1} such that  he obtains Xc (*). 

Repeated UOT was proposed by Brassard and Cr~peau [4] without explicitly 
addressing the question of independence among the instances of UOT. We dis- 
tinguish between three forms of dependence for the repetition of UOT in order 
of increasing generality, corresponding to increasing power for Bob. 

I n d e p e n d e n t  U O T :  In the most restrictive case, Bob must choose all n UOT 
to be independent. For example, Bob would have the freedom to obtain all 
of Alice's bits over a discrete memoryless channel. 
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D e p e n d e n t  U O T :  Bob can induce some dependence among successive UOT 
such that  the resulting probability distribution can be seen as a discrete 
channel with memory. 

A d a p t i v e  U O T :  The most powerful strategy available to Bob is adaptive. 
Thus, he chooses the distribution for the i-th UOT based on the outcome of 
the first i - 1 UOT. 

We consider first independent UOT. In this case, Bob has to fix Py(,)Ix(')=,(,) 

for i = 1 , . . . ,  n in advance and his knowledge about X (/) is determined only by 
y(i).  We show that  if in every UOT Bob does not get the full information about  
Alice's bits in terms of Shannon entropy, then string OT can be realized from 
independent repetitions of UOT. 

T h e o r e m  5. Let s > 0 and fl > O. Then (~)-OT ~ string OT  can be reduced 
to n independent repetitions of UOT(X,  Y)  such that X E {0, 1} 2 with uniform 
distribution, H ( X I Y  ) > fl, and n = O((k  + s) / log p-~), where p~ is a constant 
depending on ft. 

Proof. Again, the protocol from Section 3 is used, which is easily seen to be 
correct. 

Because Alice's input to the UOT are uniformly random bits and Bob's 
choices of Py(')lx(')=x(') are independent, we have for all i = 1 , . . .  ,n,  

H(X(O iy(1).., y(n)) = g (x ( i ) [y ( , ) ) .  

For guessing the value of X (i) , Bob needs only consider Y(~). Let )~(i) = f ,  (y(i))  

denote Bob's optima] guess for X(')  and let p!*) = P[)((~) • X(*)]. Then we have 

p[2(1)  = X ( 1 ) , . . . , ~ ( n )  = X(n)] = 1-ii~=1(1 _ p~i)). It follows from the Fano 
inequality (2) that  

h(P!i))+P!~)log3 >_ g ( x ( i ) ] Y  (i)) >_ Z 

for all i -- 1 , . . . , n .  Let p~ be the unique value in [0, 3] satisfying h(pfl) + 

pfi log 3 = ft. It follows that  p~ is a lower bound for all p!i). The probability that  
Bob can guess X(1 ) , . . . ,  X ('~) correctly is at most p~n and his min-entropy about 
X ( 1 ) , . . . , X  (n), given any particular observation y 0 )  = y 0 ) , . . .  ,y(n)  = y(n) 
satisfies 

Ho~(X(1) . . .  X(n) ly(1) = y (1) , . . . ,  y(n) = y(n)) > - n  logpfl. 

T h e o r e m 3  completes the proof. [] 

If Bob is allowed dependent choice of the UOT, then this reduction is not 
possible. Consider the following adaptive strategy. Alice transmits n pairs of 
bits X (~) for i - 1 , . . . ,  n. Let B be a uniformly random bit chosen before the 
protocol starts. When B -- 0, Bob chooses his distributions such that  y(i) = 
X (i) for all i = 1 , . . . ,  n. Otherwise, he does not want to learn anything about  
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X ( 1 ) , . . . ,  X (n) at all (e.g. y(i) = A for all i). This choice satisfies H ( X  (i) [y(i)) _> 
I and even H ( X  (i) [y(1) . . .  y( i ) )  >_ 1, but  Bob obtains everything from Alice with 
probability 1 

Although this example suggests that  dependence gives Bob too much free- 
dom, adaptive UOT can nevertheless be used when Bob's information is re- 
stricted in every particular case and not only on the average through the condi- 
tional entropy, as in Theorem 5. 

Theor e m 6. Let s > 0 and fl > O. Then (2)-OT~ string OT can be reduced 
to n adaptive repetitions of U O T ( X , Y )  such that X (~) E {0,1} 2 with uniform 
distribution and H(X(i)IY(1) = y (1 ) , . . .  , y (n )  = y(n)) ~_ ~ for i = 1 , . . .  , n  and 
all y (D, . . .  ,y(n), where n -- O ( ( k + s) / log p-~) ]or some constant p~ depending 
on [3. 

Proof. In contrast to the proof of the preceding theorem, Bob's information 
about  X (i) can depend on all of y ( 1 ) , . . . ,  y(n) .  W.l.o.g. his optimal guess )~(i) 
for X (i) is a deterministic function f i ( y ( 1 ) , . . . ,  y(n))  for i -- 1 , . . . ,  n. Then for 
all y ( 1 ) , . . . ,  y(n), we have conditional independence 

pD~(I )  = X ( 1 ) , . . . , ) ~ ( 1 )  = X(1) Iy (1  ) = y ( l ) , . . . , y ( n )  = y(n)] 

n 

= H P[X(') = X(i) IY(1) = y(1) , . . . ,  y(n) = y(n)]. 
4----1 

and the theorem follows from the Fano inequality and from Theorem 3 in a 
similar way as Theorem 5. [] 

6 E x t e n s i o n s  

In a UOT as described so far, Bob can always access at least half of X without 
error. It seems possible to extend UOT to the notion of a noisy UOT, where 
Bob cannot obtain even a small part  of Alice's information without the chance 
of an error. 

In non-repeated use of noisy UOT, error correction has to  succeed always 
except with negligible probability; methods similar to those used in worst-case 
communication complexity [23] can be employed to correct errors, but the mat ter  
is complicated by the fact that  interaction is generally not possible or Alice could 
learn something about  Bob's choice. 

For an example of a noisy UOT, assume that  in an UOT(X,  Y), any number 
of up to I bits in Alice's bit string X = Xo o X1, are flipped before it is sent 
over the channel selected by Bob. Then our protocol can still be used to reduce 
(21)-owk to noisy UOT when Alice sends Bob also the syndromes of Xo and Z l  
using a linear systematic code that  corrects up to I errors. (The reduction of 
Bob's entropy can be bounded by Lemma 2.) 

In repeated use of noisy UOT, bet ter  error correction techniques can be ap- 
plied and the scenario resembles the repeated use of a binary symmetric channel 
in work to reduce OT to a noisy channel from Alice to Bob [13,12]. 
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The noisy channel model differs from UOT in another way: knowledge about 
the channel characteristics is symmetric  for Alice and Bob (both of them know 
the transition probabilities). In contrast, UOT is inherently asymmetric. We raise 
the question whether there is a concept of information distribution between two 
parties tha t  encompasses both UOT and the noisy channel model as special 
cases. 

Acknowledgment 

I am grateful to Amos Beimel, Claude Cr~peau, Ivan Damgs Julien Marcil, 
Ueli Manrer, Markus Stadler, and Alain Tapp for helpful comments and discus- 
sions on this work. 

References 

1. D. Beaver, "Precomputing oblivious transfer," in Advances m Cryptology: 
CRYPTO '95 (D. Coppersmith, ed.), vol. 963 of Lecture Notes in Computer Sci- 
ence, Springer, 1995. 

2. C. H. Bennett, G. Brassaxd, C. Cr6peau, and U. M. Maurer, "Generalized privacy 
amplification," IEEE Transactions on Information Theory, vol. 41, pp. 1915-1923, 
Nov. 1995. 

3. C. H. Bennett, G. Brassard, and Jo-M. Robert, "How to reduce your enemy's infor- 
mation," in Advances in Cryptology: CRYPTO '85 (H. C. Williams, ed.), vol. 218 
of Lecture Notes in Computer Science, pp. 468-476, Springer, 1986. 

4. G. Brassard and C. Cr6peau, "Oblivious transfers and privacy amplification," in 
Advances in Cryptology: EUROCRYPT '97 (W. Fumy, ed.), vol. 1233 of Lecture 
Notes in Computer Science, pp. 334-347, Springer, 1997. 

5. G. Brassard, C. Cr6peau, and J.-M. Robert, "Information theoretic reductions 
among disclosure problems," in Proc. 27th IEEE Symposium on Foundations of 
Computer Science (FOCS), 1986. 

6. G. Brassard, C. Cr6peau, and M. S~ntha, "Oblivious transfers and intersecting 
codes," IEEE Transactions on Information Theory, vol. 42, pp. 1769-1780, Nov. 
1996. 

7. C. Cachin, Entropy Measures and Unconditional Security in Cryptography, vol. 1 
of ETH Series in Information Security and Cryptography. Konstanz, Germany: 
Hartung-Gorre Verlag, 1997. ISBN 3-89649-185-7 (Reprint of Ph.D. dissertation 
No. 12187, ETH Ziirich). 

8. C. Cachin, "Smooth entropy and R6nyi entropy," in Advances in Cryptology: EU- 
ROCRYPT '97 (W. Fumy, ed.), vol. 1233 of Lecture Notes in Computer Science, 
pp. 193-208, Springer-Verlag, 1997. 

9. J. L. Carter and M. N. Wegman, "Universal classes of hash functions," Journal of 
Computer and System Sciences, vol. 18, pp. 143-154, 1979. 

10. T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley, 1991. 
11. C. Cr6peau, "Equivalence between two flavours of oblivious transfer," in Advances 

in Cryptology: CRYPTO '87 (C. Pomerance, ed.), vol. 293 of Lecture Notes in 
Computer Science, pp. 350-354, Springer, 1988. 



374 

12. C. Cr~peau, "Efficient cryptographic protocols based on noisy channels," in Ad- 
vances in Cryptology: EUROCRYPT '97 (W. Fumy, ed.), vol. 1233 of Lecture Notes 
in Computer Science, pp. 306-317, Springer, 1997. 

13. C. Cr~peau and J. Kilian, "Achieving oblivious transfer using weakened security 
assumptions," in Proc. 29th IEEE Symposium on Foundations of Computer Science 
(FOCS), 1988. 

14. I. B. Damgs T. P. Pedersen, and B. Pfitzmann, "Statistical secrecy and multi-bit 
commitments." BRICS Report, RS-96-45, 1996. 

15. S. Even, O. Goldreich, and A. Lempel, "A randomized protocol for signing con- 
tracts," in Proc. CRYPTO '82 (R. L. Rivest, A. Sherman, and D. Chaum, eds.), 
pp. 205-210, Plenum Press, 1983. 

16. O. Goldreich, S. Micali, and A. Wigderson, "How to play any mental game or a 
completeness theorem for protocols with honest majority," in Proc. 19th Annual 
ACM Symposium on Theory of Computing (STOC), pp. 218-229, 1987. 

17. O. Goldreich and R. Vainish, "How to solve any protocol problem - an efficiency im- 
provement," in Advances in Cryptology: CRYPTO '87(C. Pomerance, ed.), vol. 293 
of Lecture Notes in Computer Science, pp. 73-86, Springer, 1988. 

18. R. Impagliazzo, L. A. Levin, and M. Luby, "Pseudo-random generation from one- 
way functions," in Proc. 21st Annual ACM Symposium on Theory of Computing 
(STOC), pp. 12-24, 1989. 

19. Y. Ishai and E. Kushilevitz, "Private simultaneous messages protocols with appli- 
cations," in Proc. 5th Israel Symposium on the Theory of Computing and Systems, 
1997. 

20. J. Kilian, "A general completeness theorems for 2-party games," in Proc. 23rd 
Annual ACM Symposium on Theory of Computing (STOC), pp. 553-560, 1991. 

21. J. Kilian, "Founding cryptography on oblivious transfer," in Proc. 20th Annual 
ACM Symposium on Theory of Computing (STOC), pp. 20-31, 1988. 

22. E. Kushilevitz, S. Micali, and R. Ostrovsky, "Reducibility and completeness in 
multi-party private computations," in Proc. 35th IEEE Symposium on Foundations 
of Computer Science (FOCS), pp. 478-489, 1994. 

23. A. Orlitsky, "Worst-case interactive communication I: Two messages are almost 
optimal," IEEE Transactions on Information Theory, vol. 36, pp. 1111-1126, Sept. 
1990. 

24. M. O. Rabin, "How to exchange secrets by oblivious transfer," Tech. Rep. TR-81, 
Harvard, 1981. 

25. A. R~nyi, "On measures of entropy and information," in Proc. 4th Berkeley Sym- 
posium on Mathematical Statistics and Probability, vol. 1, pp. 547-561, Univ. of 
Calif. Press, 1961. 

26. A. C.-C. Yao, "How to generate and exchange secrets," in Proc. 27th IEEE Sym- 
posium on Foundations of Computer Science (FOCS), pp. 162-167, 1986. 


