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A b s t r a c t .  In this paper we present a method for improving the perfor- 
mance of RSA-type exponentiations. The scheme is based on the observa- 
tion that  replacing the exponent d by d' ---- d + kr  has no ari thmetic 
impact but results in significant speed-ups when k is properly chosen. 
Statistical analysis, verified by extensive simulations, confirms a per- 
formance improvement of 9.3% for the square-and-mult iply scheme and 
4.3% for the signed binary digit algorithm. However, the most at t ract ive 
feature of our method seems to be the fact tha t  in most cases, e x i s t i n g  ex- 
ponentiation black-boxes can be accelerated by simple external one-time 
pre-computations without any internal code or hardware modifications. 

1 I n t r o d u c t i o n  

R S A - t y p e  c ryp to sys t ems  use two func t ions  : 

m ~ m e m o d  n 

m ~-+ ~Tt d m o d  n 

where  n = p q  is genera l ly  the  p r o d u c t  of two pr imes ,  e d  _= 1 m o d  r  and  r  
is the  Euler  to t i en t  funct ion.  The  pub]ic  e x p o n e n t  can be  chosen shor t  ( typ ica l ly  
e = 3) b u t  the  secret  exponen t  d mus t  no t  have any  p a r t i c u l a r  s t ruc tu re .  

The  c o m p u t a t i o n  of m d m o d  n is c u m b e r s o m e  and  any  of i ts  speed -up  t r icks  
is po t en t i a l l y  in te res t ing  for a c t u a l  i m p l e m e n t a t i o n s .  The  s imples t  and  mos t  
p o p u l a r  way to  compu te  m d m o d  n is the  s q u a r e - a n d - m u l t i p l y  m e t h o d  which 
consis ts  of r e p e a t e d  squar ings  and  mul t i p l i ca t ions  by  m.  I t  can be s u m m a r i l y  
desc r ibed  by  the  following a l g o r i t h m  : 
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X:----I 
for i:= 1 to ~ do 

x := x 2 mod n 
i f  al- i  -- 1 t hen  x :---- xm mod n 

~-1 where d is an l-bit integer with binary representation d = ~-:~i=o ai2i" 

The complexity of this scheme is : 

c(d) = i(d) + ~w(d) 

where w(d) denotes the Hamming weight of the binary vector [ a~ - l , ' - - ,  al ,  ao] 
representing d (the number of a~'s equal to 1) and a represents the cost of a mod- 
ular multiplication compared to a modular squaring. For large n, using standard 
techniques it is asymptotically considered [8] tha t  c~ ~ 2. The cost c(d) therefore 
represents the squaring-equivalents needed to complete the exponentiation. Note 
that  in general, r  is of the same order of magnitude as n, so that  when d 
ranges over the integers 1, 2 , . . . ,  r - 1, the average Hamming weight of the 
binary representation of d is approximately �89 log 2 n; when c~ = 2 the average 
cost is therefore : 

~(d) ~ 2 log 2 n. 

For the sake of completeness, let us mention that  exponentiations are fre- 
quently done separately modulo p and q and re-combined modulo n using the 
Chinese remainder theorem [11]. 

There are several strategies and t ime-memory trade-offs for lowering the com- 
plexity of the computation of m d mod n in different scenarii : one line of research 
has been to look for short additions chains [14, 12] which prove to be suited to 
settings where squarings are not significantly faster than multiplications. Most 
methods adapted to the situation when squarings are faster than multiplications 
involve redundant binary representations (RBRs) of the exponent.  An RBR of 

t - - 1  d is a vector [be - i , - . . ,  bl, b0] where d = ~-~=o bi2i, and where the bi's belong to 
some enlarged set of integers B 3 {0, 1}. Given an RBR of d, the square-and- 
multiply algorithm generalises naturally to : 

pre-compute the set {m b mod n, b 6 B}. 

x:--I 
for i= 1 to ~ do 

x := x 2 mod n 
i f  bt- ,  # 0 t hen  x := xm b~-, mod n 

The time complexity of this algorithm is easily shown to be 

cs(d) = g(d) + ~ws(d)  + p(B) (1) 

where wB(d) is the Hamming weight of the vector [bt-1, ." ,bl ,bo] and p(B) 
denotes the number of squaring-equivalents necessary to pre-compute the set 
{mb mod n, b 6 B}. 
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Several choices of B have been put forward and extensively analysed. The set 
B = {0, 1, - 1 }  yields the signed digit binary representation of d and appears also 
useful in many (non-cryptographic) arithmetic contexts [2, 13]. The sets B' = 
{ 0 , 1 , 2 , 3 , . . . , 2  r - 1} and B = { - (2  ~ - 1 ) , . . . , - 2 , - 1 , } U B '  yield essentially 
the q-ary and signed q-ary representations of d [9]. An improved choice of B 
consists of the set B = {0, 1, 3 , - - . ,  2i + 1 , . . . ,  2 ~ - 1} which yields [7]. The set 
B = {0, 1, 3, 7 , . - . ,  2 ~ - 1 , . - . ,  2 ~ - 1} was considered in [6] and the set B obtained 
after a Lempel-Ziv parsing of the binary representation of d was also considered 
in the literature [1]. 

In this paper we decrease the exponentiation cost by replacing d by d+kr 
This approach, suggested in a sentence 1 but  never taken-up for study since, will 
increase the number l of squarings but, for properly chosen k, will diminish the 
number w of multiplications to do more than compensate. Finding the proper k 
may require a few thousands of additions but,  for RSA-type applications where 
d is fixed, this needs to be performed only once. In the next sections, we first 
apply this idea to the square-and-multiply method. We then adapt it to its 
various improvements involving RBRs and discuss its practical aspects. 

2 The  Binary Case 

From now on we write r for short instead of r Suppose that  we replace d by 
d + kr The number of squarings increases from ~ = ~(d) to ~(d + kr which we 
can consider approximately equal to ~(kr = ~(k) +~(r The size of d being most 
of the time very close to that  of r the number of squarings can be considered 
to be approximately (1 + t)~ where t~ = ~(k). The idea is to compensate the 
growth in the number of squarings by decreasing the number of multiplications, 
i.e. w(d + kr In theory, an extensive computing effort may be necessary to find 
the proper k. However this pre-computation needs to be performed only once 
per d and, as will appear from the equations to come, happens to be moderate 
for nearly-optimal exponents. 

We need to study the minimum of w(d § kr when k ranges over the set of 
integers of length t~. Let us set ~ = (1 + t)~ and d' = d + kr of minimum binary 
weight when k ranges over the integers of length tl. 

Let us make the further reasonable assumption (confirmed by field experi- 
ments) that  the set of the 2 tl binary (1 + t)~-tuples behaves as a set of vectors 
chosen randomly and independently among the 2 ~' binary vectors of length E. 
In this case, the expectation of the number of vectors of weight u in the set is : 

and is greater than 1 as long as 

1 "[11] : let us remark that the exponents dl and d2 may be chosen to be greater than 
p - 1  a n d q - l . "  



214 

Let t ing  w'  = infE~>l u, the  average  cost of a raising to the  power  d' = d +  kr  
is therefore  c' = g' + a w ' .  Set t ing  w'  = yg', we get  f rom (2) : 

in o ther  words 

e'H(y) = g, 

1 
H ( y )  - 1 + t 

where H(x) = - x  log 2 x - (1 - x) log 2 (1 - x) is the  b inary  en t ropy  funct ion [10]. 
Consequently,  

c ' / g : ( l + t ) ( l + o l H - l ( 1 - - ~ )  ) , 

the  evolution of which as a funct ion of t for c~ = 2 is depicted in figure 1. 
Note  tha t  we have : 

c'/g = ~ y )  (1 + ay) 

whence 

g(y )  (9 c' (1 . g ' (y )  = _ + ~ y ) ~ ( y )  g Oy oe 

f rom which we deduce t h a t  the  m i n i m u m  of c' is ob ta ined  when y satisfies 

cell(y) - (1 + cey)H'(y) = 0 

which (since H'(y) = log2((1 - y ) / y ) )  boils down to 

(1  - y ) l + ~  _ y = 0 .  ( 3 )  

Summaris ing ,  the  m i n i m u m  of c'/g is ob ta ined  when 

1 
t -  1 

g ( r  

where  ~ is the root  belonging to [0, 1/2] of equa t ion  (3), which yields, in the  
a sympto t i c  case c~ = 2 : 

We obta in  

4= 5 +5 +1  

t ~ 0.109. 

For this t, the  average  n u m b e r  of  squar ing-equivalents  diminishes f rom 2g to  
1.813g and represents  a non-negligible speed-up  of 9.3%, confirmed by  extensive 
simulations.  
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Fig. 1. Evolution of c'/e as a function of t, when k ranges over the integers of size tL 

3 T h e  S i g n e d  D i g i t  B i n a r y  C a s e  

A particular redundant binary representation is obtained when B = {-1,  0, 1}. 
In this case, the square-and-multiply requires the storing of m -1 mod n. 

If d is an integer, a signed digit binary representation of d is of the form 

= b 2' (4)  
t 

with bi E B = {-1 ,  0, 1}. Such a representation is not unique. Any form (4) with 
a minimal number wa (d) of nonzero coefficients bi is called minimal and wa (d) 
is called the arithmetic weight of d. A minimal representation is generally not 
unique. However, the representation: 

l - 1  

= b,2 (5)  
s z 0  

with bi �9 bi+l = 0 for i = 0, 1 , . . . ,  g - 2, (called nonadjacent form (NAF) of d) is 
unique, minimal, exists for all integers, and is easy to compute. If d is gbi t  long, 
then its NAF is at most (g + 1)-bit long and its average arithmetic weight is ~/3 
(see [3, 4]), whereas the average Hamming weight of a binary f-tuple is Q2. The 
cost (1) of computing m d rood n now becomes 

ca(d) =~(d)+awa(d)  
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plus an asymptotically negligible extra squaring and the amount of work neces- 
sary to pre-compute m -1. Consequently, the average cost of the scheme using the 
signed digit binary representation is essentially ~(d)+ al (d) /3  ~ (1 + a/3)  log 2 n, 
instead of e(d) + a~(d)/2 ,.~ (1 + a/2)  log 2 n for the binary representation (for 
a = 2, we get ~ log 2 n instead of 2 log 2 n). 

Now suppose that  we replace d by d + kr We need to study the minimum 
c~ of ca(d + kr when k ranges over the set of integers of length tg. As before, 
set lr = (1 + t)~ and d r = d + kr of minimum arithmetic weight when k ranges 
over the integers of length ft. 

Let us make again the assumption that  the 2 tt vectors representing d + kr 
behave like a set of 2 t~ vectors chosen randomly and independently amongst 
ternary nonadjacent vectors of length ~ = (1 + t)~. 

A random ternary nonadjacent vector of length ~, and of Hamming weight u 
can be looked upon as a string of i t _  u symbols of the form 0, 10, and -10 .  Any 
such vector can therefore be obtained by first choosing a binary vector of length 
~r _ u and weight u and then replacing each 1 symbol by either 10 or -10 .  Their 
number equals 24 (~ '~ ) .  The expectation of the number of ternary nonadjacent 
vectors of weight u in the set of ternary nonadjacent vectors representing d + kr 
is therefore : 

Eu = (g ' -U)u  x 2 t l+u-l '  

which is greater than 1 as long as 

(~r - u )  > 2~-~" u (6) 

As before, set w r = infEr_>1 u. The average cost of a raising to the power d r = 
d + k~b is therefore 

cr = ~' + aW r. 

Setting w' = yi ' ,  this time (6) yields : 

in other words 

where 

We have therefore 

1 
f (Y)  = 1 + t 

1 

The evolution of c~/i  as a function of t is represented in figure 2 for a = 2. 
The minimum of c~/~ is obtained for t = 0.0497 and the corresponding average 
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number of squaring-equivalents drops from 1.6671og 2 n to 1.5951og 2 n which 
represents a 4.3% time improvement. Although this appears small, one should 
keep in mind that  there is a/ready a 5/6 performance ratio between the s tandard 
and the signed binary exponentiation algorithms. 

1.66 

64 

) 0.05 

1 58 

01 015 02  

Fig. 2. Evolution of c~/g as a function of t, when k ranges over the integers of size t~. 

4 T h e  O d d - S e t  C a s e  

A potential drawback of the signed digit binary representation is that its pre- 
computation involves a modular division (m -I rood n). Alternative algorithms 
avoid this problem by pre-computing and storing m 3 rood n or some other odd 
powers of m. In other words, the set B is chosen to be B = {0, i, 3}. Let us de- 
scribe the idea by first observing that the square-and-multiply method computes 
at step i the number m [a~-1"'a~-'] where d = ~%1 a~-i21-i and [at-1 ... at-,] 

stands for the binary representation of ~j=l al-~ 2 t-j. 

If m 3 -- m [II] is pre-computed, then computing rn [a~-1"''a~-'-la~-'-2] from 
m [a~-1a~-4 requires two squarings and a multiplication if [ai-i-lai-i-2] equals 
[111 or  [10]. 
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We therefore observe that  the number of multiplications necessary in the 
square-and-multiply method is the number of nonzero symbols obtained when 
[a~- l . . . a0]  is parsed and represented as a string of characters belonging to 
the alphabet 0, 10, 11. In other words the number of multiplications equals the 
Hamming weight of the ternary vector obtained from [al-1 . . .  ao] by the above 
parsing. We see easily that  the analysis of the behaviour of the representation 
of d + kr obtained in this fashion is exactly the same as that  of the previous 
sections. 

More generally, the odd-set algorithm [7] uses B = {0, 1, 3, 5 , - - - , 2  r - 1}, 
and requires 2 r-1 pre-computations. Now if [a] is the binary representation of 
an integer, [b] the binary representation of an integer of length r and [a][b] 
their concatenation, then it is easy to check that  computing m [alIbI f r o m  m [a] 

requires r squarings and one multiplication. Therefore, if we parse the binary 
representation of an integer as a string of symbols belonging to the alphabet ,4 
made up of 0 and the binary vectors of length r starting with 1, we see that  the 
number of necessary multiplications is exactly the weight of the IAI-vector thus 
obtained. 

Now replace d by d + kr for 0 < k < 2 tl and choose d' of minimum Hamming 
weight when represented as a string of elements belonging to A. To evaluate the 
average weight of d ~ we proceed as in the previous sections. First evaluate the 
expectation of the number of tAI-strings of weight u : this is easily seen to be 

Eu =- 2 t~ X 
2 ~' 

Calculations proceed as before : this time we obtain that  the average cost of 
raising to the power d' equals 

with 

' ~(1+ t) (1 + af~-I ( ~ +  t)) C r 

( y ) f r ( Y ) = ( r - 1 ) y + ( 1 - ( r - 1 ) y ) H  1 - ( r - 1 ) y  ' 

For r = 3 and a = 2, the evolution of c ' / i  as a function of t is represented 
in figure 3. Since the original average weight is ~/(r  + 1), the game begins with 
(r + 3)~/(r + 1) squaring-equivalents for a = 2 and becomes 1.5g for r = 3; 
whereas the minimM cost 1.467~ results in a 2.2% speed-up 2. 

5 Applications and Further Research 

In this paper we investigated the impact of replacing an exponent d by a func- 
tionally equivalent d ~ = d + kr This surprisingly simple optimisation, to the 

2 when r gets bigger, the exponentiation engine's performances improve but the speed- 
up due to our optimisation strategy decreases. 
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Fig. 3. Evolution of c'3/g as a function of t, when k ranges over the integers of size tg. 

best of our knowledge never treated in the literature, appears to offer rather sig- 
nificant performance improvements and does not present any real disadvantage 
(at worst, the exponent size will increase by a few bits). Moreover, this strategy 
can be applied to ex is t ing  black-boxes (such as compiled arithmetic libraries or 
cryptographic co-processors) without any modification. We performed extensive 
practical tests on three existing platforms : Mathematica's PowerMod [ , ,  ] func- 
tion, BSAFE and the Miracl big number library. In each case we did not modify 
the source code and compared the performances of random exponentiations to 
those obtained with their optimal equivalents, generated by adding an appro- 
priate multiple of r Mathematica's PowerMod[, ,] became 7.1% faster while 
Miracl and BSAFE's performances improved by 5.4% and 6.9%. Elliptic-curves 
should feature even better : projective doubling over GF(2 m) requires 5 field 
squarings and 5 multiplications (4 temporary variables) and projective addition 
requires 5 squarings and 15 multiplications (9 temporary variables); wherefrom 
an c~ ~ 2.33. 

An interesting open question consists in optimising the time complexity of 
random exponentiation oracles (black-boxes that  compute m d mod n in a time 
complexity which does not depend on any regular function of d). In this setting, 
the optimiser only knows the oracle's expectation distribution and is allowed to 
make a polynomial number of queries in order to find a d' better than d. 
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