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A b s t r a c t .  This paper is about the design of improved algorithms to 
solve Isomorphisms of Polynomials (IP) problems. These problems were 
first explicitly related to the problem of finding the secret key of some 
asymmetric cryptographic algorithms (such as Matsumoto and Imai's 
C* scheme of [12], or some variations of Patarin 's  HFE scheme of [14]). 
Moreover, in [14], it was shown that IP can be used in order to design an 
asymmetric authentication or signature scheme in a straightforward way. 
We also introduce the more general Morphisms of Polynomials problem 
(MP). As we see in this paper, these problems IP and MP have deep 
links with famous problems such as the Isomorphism of Graphs problem 
or the problem of fast multiplication of n • n matrices. 

The complexities of our algorithms for IP are still not polynomial, but 
they are much more efficient than the previously known algorithms. For 
example, for the IP problem of finding the two secret matrices of a 
Matsumoto-Imai C* scheme over K = Fq, the complexity of our al- 

gorithms is O(q n/2) instead of O(q (n2)) for previous algorithms. (In [13], 
the C* scheme was broken, but  the secret key was not found). Moreover, 

we have algorithms to achieve a complexity O(q~ n) on any system of 
n quadratic equations with n variables over K = Fq (not only equa- 
tions from C*). We also show that the problem of deciding whether 
a polynomial isomorphism exists between two sets of equations is not 
NP-complete (assuming the classical hypothesis about Arthur-Merlin 
games), but solving IP is at least as difficult as the Graph Isomorphism 
problem (GI) (and perhaps much more difficult), so that IP is unlikely 
to be solvable in polynomial time. Moreover, the more general Mor- 
phisms of Polynomials problem (MP) is NP-hard. Finally, we suggest 
some variations of the IP problem that may be particularly convenient 
for cryptographic use. 

N o t e :  An extended version of this paper  can be ob ta ined  from the authors .  
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1 I n t r o d u c t i o n  

This paper presents new algorithms for the Isomorphism of Polynomials (IP) 
problem. IP was explicitly described in [14], where it was shown that  if some 
efficient algorithm exists for IP, then the secret key of some asymmetric cryp- 
tosystems (such as the C* scheme of [12] or some variations of the HFE scheme 
of [14]) would be found. (The cryptanalysis of C* given in [13] breaks the scheme 
without finding the secret key). No polynomial algorithm is known for IP. On the 
other side, in [14], it was also shown that if no efficient algorithm exists for IP, 
then this IP problem can be used to design some zero-knowledge authentication 
schemes. These schemes can also be transformed in order to have an asymmetric 
signature scheme. 

This paper is divided into two parts. In part I, we present different variations 
of IP and we study a closely related problem, called MP for "Morphisms of 
Polynomials".  We then show that  these problems are closely related to other and 
more famous problems such as the Graph Isomorphism problem, and Fast Matrix 
Multiplication. In part  II, we present our improved algorithms for IP. These 
algorithms are not polynomial (so the schemes based on IP are not broken), but 
they are much more efficient than the previously known schemes. 

Part I: Presentat ion and general properties  of  the 
IP and MP problems 

2 T h e  I P  a n d  M P  p r o b l e m s  

IP was presented in [14]. Let us recall what this problem is, in the particular 
case of quadratic forms (the problem can be generalized without difficulties to 
cubic forms, as well as forms of higher degree). 

Let u and n be two integers. Let Fq be a finite field. Let (.A) be a public set 
of u quadratic equations with n variables al,  ..., an over the field Fq. We can 
write these equations as follows: 

b k = E E ~ / i j k a i a j + E p i k a i + b k  ( l < k < u ) .  (A) 
i j i 

Now let s be a bijective and affine transformation of the variables ai, 1 < i < n, 
and let t be a bijective and affine transformation of the variables bk, 1 < k < u. 

We denote s(al ,  ..., an) = (Xl, ..., Xn) and t(bl, ..., bn) = (Yl , . . . ,  Y,,). 
From (,4) we obtain another set (B) of k equations that  give the Yk values 

from the xi values: 

i j i 

We say that  (s, t) is an isomorphism from (M) to (B), and we say that  (M) and 
(B) are isomorphic. 
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The IP problem is the following: if (`4) and (B) are two public sets of u 
quadratic equations, and if (.4) and (B) are isomorphic, find an isomorphism 
(s, t)  from (.4) to (B). 

When s and t are not necessary bijective, we call the corresponding problem 
the "Morphism of Polynomials" problem (MP). 

3 E x a m p l e s  

We now present three "toy examples" in order to become more familiar with the 
IP and MP problems. 

E x a m p l e  of  IP w i th  two secrets  
Let K = F2 be the field in which all the variables x0, ..., x4, Y0, ..., Y4, so, ..., 

a4, b0, ..., b4 lie. 
Let: 

bt  = a l  + a l a 5  + a 2 a 3  + a2a4  + a3a4  

b2 a3 + a4 + a5 + ala2 + ala4 + a4a5 

(`4)  b3 a5 + a l a 2  + a l a 3  + a l a 5  + a2a3  4- a 3 a s  A- a4a5  

b4 a2 + a3 + a4 + a5 + alas  + a3a4 + a3a5 

b5 a4 + ala3 + ala5 + a2a3 + a2a4 + a2a5 + a3a4 + a3a5 + a4a5 

and let: 

Yl  ~ X l  Jr- gg3 "-[- X4 + X5 "4- X l X 2  -i t- XlX3 -Jr- X l X 5  + X2X4 -1 t- X3X5 n t- X4X5 

y2 = X l X 4  + XlX5 -1- x 2 x 3  + X2X4 Jr- XlX 5 -~- X4X5 

Y3 : Xl Jr- X3 "~ X4 "~ Z l X 2  + X1$5 "J- X2X3 -~- X3X4 

Y4 : X3 "~ X4 "4- X l X 2  .Jr- X l X 5  Jr_ X3X4 -t- X3X5 -~- X4X5 

Y5 = x2  + x4  + x5  + XlX3 91- XlX4 --~ x 2 x 3  -4- x 2 x 4  -Jr- x 2 x 5  

The problem is to find two bijective and linear transformations s and t such that  
( x l , . . . ,  Xh) = s (a t , . . . , a5 ) ,  (Yt,...,Y5) = t (b l , . . . ,b5)  and such that  (`4) becomes 
(B) with these transformations. (This is sometimes called an "IP problem with 
two secrets" since here there are two secret affine transformations to find: s and 
t). 

N o t e  1: This "toy example" comes from the "toy example" given in [12] for 
C*, when the 8 variables are separated in 3 + 5 variables, as explained in [13]. 
The equation (.A) come from the equation b = a 3 in F25. 

N o t e  2: It is possible to show that,  when s is found, then t is easy to find. 
However, an exhaustive search on s would require 2 '~ = 225 computations in 
this toy example. Our aim is to improve this complexity. 
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Fig. 1. Graph (I) Graph (II) 

E x a m p l e  o f  I P  w i t h  o n e  s e c r e t  
Let us consider the problem of finding an isomorphism between graphs (I)  and 

(II) of figure 1. 

Let K be the finite field F2. 

Let (.A) and (/3) be the two following sets of equations: 

(.,4) ~ Yl = al  a3 -4- a l  a4 -4- a2a3 -4- a2a4 -4- a3a4 
Y2 a2 + a2 T a2 + a 2 ( 

and 

I Yl ---- XlX2 -~- X l X 3  "~ X2X3 -~- X2X4 -~- x 3 x 4  
(/3) = + + + 

The problem is to find a bijective and linear t ransformat ion s such tha t  (xl,  ..., 
x4) = s(al , . . . ,  a4), and such that  - with this change of variables - the system 
(,4) becomes the system (/3) (i.e. such that  Yl becomes as writ ten in (B), and Y2 
also becomes as writ ten in (/3)). 

If  we are able to find all the solutions of this IP problem (this is sometimes 
called an "IP problem with one secret" since here there is one affine t ransforma-  
tion s to find), then some of these solutions will be Graph  Isomorphisms from 
graph (I) to graph (II) .  This comes from the fact that  - in (A) Yl was writ ten 
such tha t  the monomial  aiaj is in Yl if and only if the point i is linked with the 
point j in graph (I).  S imi l a r ly -  in (/3) - Yl was written such tha t  the monomia l  
xix j  is in Yl if and only if the point i is linked with the point j in graph (II) .  
Moreover, Y2 was chosen to be a symmetr ic  polynomial  of the variables, so tha t  
any graph isomorphism between graph (I) and graph (II)  will be a solution to 
this part icular  IP problem with one secret. In section 4, we will generalize this 
construction to study more precisely the links between Graph  Isomorphism and 
IP with one secret. 

E x a m p l e  o f  M P  
The variables belong to a ring or to a field K.  Let (.4) and (B) be the two 
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following sets of equations: 
! 

bl = ala  i 
b2 -= a2a~ 
b3 = a3a'3 

(A)  b4 = a4a'4 
b5 = asa'5 
b6 = a6a'6 
b7 = aTa17 

and 

X t y l  = x lx ' l  + 3x2 

(~) y~ = ~ i  + ~ ' ~  
y3 = z lx'3  + z3x'4 

! 
y4 = x~x'3 + x4x4 

The problem is to find two (non bijective) linear transformations s and t such 
that  (e l , . . . ,  aT, a t , . . . ,  a~) = s ( x l , . . . ,  x4, x], ..., x~), (Yl, ..., Y4) = t (b l , . . . ,  bT), s of 
rank 8, t of rank 4, and such that  when (.4) is satisfied and when these two 
transformations s and I are done, then (B) is satisfied. 

We can notice that  the system (B) is the system of equations of a product  of 
two 2 x 2 matrices: 

y~ y4 z~ z4 " x'2 x'4 J 

In the system (~4), we have exactly seven multiplications, so that  solving the 
MP problem is solving the problem: "How to multiply 2 • 2 matrices with 7 
(instead of 8) multiplications". (The number of additions, subtractions and mul- 
tiplications with constants of K can be high, but the number of multiplications 
of terms of the matrices is at most 7). 

V. Strassen found in 1969 how to multiply 2 • 2 matrices with 7 multiplica- 
tions (cf [16]). His solution is: 

al = x 3 - x 4  [ ' a  t = x ~ W x ~  
a2 = x l + x 4  / a ~ - - - x ~ W x ~  

I ! ! a3 ---- Xl -- x2 a 3 ---- X 1 --~ X 3 
! 

a4 ~- Xl-~-x3 a 4 - -  x~ 
a5 x 1 a~ ----- t i x 3 -- x 4 

! 
a6 x4 a 6 ---- x~ -- x~ 
a7 x2 + x4 a~ ---- x~ 

and 

Yl = b l - F b 2 - b 4 + b 6  
Y2 = b6+b7  
Y3 = b 4 + b 5  
y4 = b ~ - b 3 + b 5  - b 7  

4 I P  w i t h  o n e  secre t  is at least  as d i f f icul t  as G r a p h  
I s o m o r p h i s m  

This section is given in appendix 1. 

5 M P  is N P - h a r d  

In this section, we prove that  the Morphism of Polynomials (MP) problem, 
defined in section 2, is NP-hard for any finite field, and for the rational numbers. 

The proof uses some properties of three-dimensional tensors. Let us first 
recall some basic definitions: 
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Defini t ions:  

1. A three-dimensional tensor is a th ree-d imens iona l  a r ray  T = (tijk) of  num-  
bers.  

2. I t  has r a n k  I iff it can be wr i t t en  as the outer  p roduc t  of  three  vectors  (i.e. 
iff there  exist three  vectors  x, y and z such t ha t  mijk = x,yjzk for all indices 
i , j , k ) .  

3. T h e  rank  of a general  tensor  T is the min ima l  n u m b e r  of  r ank  1 tensors  T~, 
such t ha t  T = ~ T , .  

/2  

T h e  following result  abou t  the complex i ty  of  finding the rank  of a three-  
d imens iona l  tensor  was proved by Johan  Hs  in [10]: 

T h e o r e m  5.1 ( H & s t a d )  Tensor rank ,s NP-complete for any finite field and 
NP-hard for the rational numbers. 

Let us now see how this f u n d a m e n t a l  p rope r ty  can be appl ied to  our  M P  
problem.  

Let us suppose  we have an a lgor i thm �9 t ha t  solves the  M P - p r o b l e m  in poly-  
nomia l  t ime  (in par t icular ,  this  a lgor i thm can be used to know whe ther  there  
exist a solut ion or not  for some given instance of the M P - p r o b l e m ) .  

Let T = (tijk) be a rn x n x g ( three-dimensional)  tensor.  I t  is well known 
(see for ins tance [17]) t ha t  the rank  of T is exact ly  equal  to the m i n i m a l  n u m b e r  
of  mul t ip l ica t ions  needed to c o m p u t e  the following cor responding  set of  bi l inear  
forms  by a bi l inear n o n - c o m m u t a t i v e  a lgor i thm:  

* = 1 j = 1  

�9 

/ = 1  j = t  

Let r (=  rank(T))  be this m in ima l  value. By definition, r can be t hough t  as the  
smal les t  integer u such t ha t  two linear t r ans fo rma t ions  s : (x l , . . . ,  xm, x~, ..., x~) 
~-~ (a l , . . . ,  a~, a l ,  ... , a~) and t :  (bl, ..., b~) ~-+ (Yl,---, Y~) exist, t h a t  t r a n s f o r m  

bl = a l  -a~ 
(•) �9 

! 
b u ~ a u �9 a u . 

into (B). 
Th is  is a par t i cu la r  ins tance of the MP prob lem.  For u = ran, finding a 

solut ion (s, t) is qui te  easy. Namely ,  we can define s and t by  the  following 
formulas :  

a ( i - 1 ) n + j  = X z  

Vi, 1 < i < m, Vj, 1 <_ j < n, a~i_l)n+ 3 xtj. 
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Vk, 1 < k  < ~, Yk = ~.~ ~ tijkb(i-1)n+j. 
i=1 3=1 

It is therefore easy to build an algorithm that  outputs the correct value of r 
after at most mn calls to the (polynomial) ~ algorithm, so that  we have built an 
algorithm that  computes the rank of a three-dimensional tensor in polynomial 
time. According to the result of Johan Hs mentioned above, we can thus 
conclude that  the MP-problem is NP-hard for any finite field, and for the rational 
numbers. 

Remarks:  

1. MP is clearly a very important  problem in mathematics:  an efficient al- 
gori thm would give the computat ion of the minimum number of s tandard 
multiplications to compute the product of two 3 x 3, 4 x 4 or k x k matrices, 
for small k, and - from this improved algorithms for Gaussian reductions 
and related problems may be found. (The best known asymptotic algorithms 
are at the present in O(nC), where c ~ 2.3755, see [4]. It is also interesting 
to see what kind of brute-force computations have been done so far to solve 
such problems, see [9].) 

2. The fact that  MP is NP-hard, and moreover the fact that  MP is a very 
important  problem that seems to be very difficult even with very small pa- 
rameters, are strong motivations to design cryptographic algorithms based 
on this problem. From [2] and [6], it is known that  any problem of NP can 
be used to design an asymmetric authentication scheme (with the help of 
"good" hash functions). (The proof is extendable to design asymmetric sig- 
nature schemes, again with the help of "good" hash functions). Since MP 
is in NP, we can apply these general results. However, these very general 
constructions are not very practical, and it may be more difficult to design 
efficient schemes from MP than from IP. 

6 Deciding IP is not NP-complete  

We call "Deciding IP" the problem of finding whether there exist an isomorphism 
between two sets of multivariate polynomials equations. In this section, we prove 
that  the Deciding IP problem is not NP-complete, under the classical hypothesis 
that  the so-called "polynomial-time hierarchy" does not collapse. 

The proof is based on the following general results (see [8] and [3] for proofs): 

T h e o r e m  6.1 ( G o l d w a s s e r ,  S ipse r )  l f  a problem has a constant-round mter- 
actwe proof, then ~t also has a constant-round Arthur-Merhn protocol. 

T h e o r e m  6.2 ( B o p p a n a ,  H ~ s t a d ,  Zachos )  If  the complement of a problem 
11 has an Arthur-Merlin protocol with a constant number of rounds, and if  l I  is 
NP-complete, then the polynomial-tzme hierarchy collapses. 
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N o t e :  Arthur-Merlin protocols have been studied by Babai  and Moran in [1], 
but we do not need to go into further details for our proof. 

Wha t  remains to do is building a constant-round interactive proof  for the 
"Non Isomorphism of Polynomials" (Non-IP) problem. For tha t  purpose, we use 
techniques discovered by Goldwasser, Micali and Rackoff ([7]) for the analogous 
"Quadrat ic  Non-Residuosity" problem, and also used by Goldreich, Micali and 
Wigderson ([6]) for "Graph Non-isomorphism",  and by Petrank and Roth ([15]) 
for "Code Non-Equivalence". 

(Due to the lack of space, details are omitted,  but can be found in the ex- 
tended version of this paper.) 

Part II: New algorithms 'for IP 

We use the same notations as in section 2 (for u, n, q, (.4) and (B)). 
In the three next sections, we limit ourselves to the central case of two secrets 

s and t, and u = n. We call this case central because the case u = 1 is easily 
solved as most  cases u > (n + 1)(n + 2)/2. As a ma t t e r  of fact it becomes easy 
as soon as some (n + 1)(n + 2)/2 equations are independent (as a formal  sum of 
xixj coefficients), so that  the u quadratic equations form a generating set. The 
probabil i ty of being so rapidly tends to 1 as u grows. In that  case a n y  invertible 
s allow to find at least one t by Gaussian reduction and e v e r y  two generating 
sets of equations are isomorphic. We also found interesting to separate the affine 
part  of applications s and t, as the linear case seems a bit easier. However, since 
it is always possible to find the constant terms by exhaustive search in O(qn), 
any algori thm for the IP problem with linear s and t with complexi ty (.9(q ~'~) 
can obviously be transformed into a general algorithm for attine s and t with 
complexity O( q(~+ l ) n ). 

The present part  is divided into sections 7, 8 and 9 (in these three sections, 
s and t are assumed to be linear). First, we will see a simple algori thm solving 
most  cases of the I e  in n~ and using n~ n) memory.  Then we 
will explain a very different approach which uses only polynomial  memory  and 
runs in between n~ and n~ for all IP cases. Finally we will 
try to combine the ideas of these two attacks in a very powerful, 'b i r thday 
paradox ' -based at tack which to the best of our knowledge runs for every IP 
in n~ n/2) with n~ memory.  Only the last a t tack uses the fact 
tha t  equations given in iP are quadratic forms. The first two can operate on any 
function of indifferent degree. 

7 A s i m p l e  a t t a c k  in n~ u) b a s e d  on  i n v e r s i o n  

This at tack operates in n~ and uses n~ of memory  space used 
essentially to form a complete table of .4 and B functions. 

Let (.4) be a randomly chosen quadratic equations set. We studied a prob- 
ability p, of a random value b of the (.4) form to have i possible corresponding 
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entries a. We made  a lot of computer  simulations and we have found that  the 
probabil i ty  distribution of Pi for a randomly chosen set of quadrat ic  equations 
is the same as for any randomly chosen function, which can be easily shown to 

1 be Pi  = el--'7. 

It  allows to divide entries into classes, following their image 's  inversion degree. 
The elements of each class can be summed up and the corresponding values for 
.,4 and B must  correspond through the linear t ransformation s. They do not 
necessarily sum up to 0, since as Pi -+ 0 we have very small classes and for a 
random (,4) they should not sum to 0. 

I t  is easy to show tha t  if n < q we would get more than n equations and we 
could recover s by Gaussian reduction. With less than n equations we iterate 
the process as follows: 

I f  we have found one equation s(x(~ = a (~ we can increase the number  of 
classes in our part i t ion of initial values space. We use the fact that  if s (x )  = a, 

we also have s(x + x(~ = a + a(~ Therefore we classify a not only by the 
inversion degree of its image A ( a )  as before, but we will also consider the class 
of a + a (~ The number  of classes will systematical ly increase. 

This a t tack will work for any sensible non-bijective (> 2 classes) quadrat ic  
equations set. Yet we cannot solve a toy example given at the beginning of the 
article, since it is bijective. In order to solve these cases we hit upon another  
approach. 

8 T h e  "to and fro" attack 

We will describe the at tack on a toy example, showing directly how it works. 
Let q = 2 and n = 5. We consider 

I bo = ao + aoa4 + ala2 --b ala3 -F a2a3 

bl : a2 + a3 + a4 + aoal + aoa3 + a3a4 
(,,4) : b2 = a4 -F aoal -F aoa2 q- aoa4 + ala2 --b a2a4 + a3a4 

b3 = a] --b a2 --b a3 + a4 + aoa4 -b a2a3 + a2a4 
b4 = a3 + aoa2 + aoa4 --b ala2 + ala3 + ala4 + a2a3 + a2a4 --F a3a4 

and 

Y0 ~-- XO "~ X2 -{- X3 -~- ;~4 -~- X0Xl Jr X0X2 ~- X0X4 ~- ;TlX3 W X2X4 ~- X3X4 

Yl  -'~ X o X 3  "~ XOX4 "[- X l X 2  "[- XlX 3 -~- Z l X  4 -~ Z3Z4 

(B) : Y2 = Xo + x2 + x3 + XoXl + xox4 + x l x 2  + x2x3 
Y3 = x2 + x3 + x o x l  + xox4 + x2x3 + x2x4 + x3x4 
Y4 = x l  -F x3 + x4 + XoX2 + XoX3 + x l x 2  -F x l x 3  + x l x 4  

as functions F25 -+ F25. 

The main idea is to say that  if we have k equations on s: 

s(x(1)) _- a(1) 

s(z(k)) = a(k) 
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t ha t  are l inearly independent ,  we have qk _ 1 dependent  equat ions  

{ s()'-~ ~ z( ' ) )  = ~ ,.., a (i) 

- where ~ denotes some coefficients. But  since .4 is generally non-l inear  we can 
get f rom tha t  as much as (or almost)  qk _ 1 independent  equat ions  'on  the o ther  
side':  

.4 ( s ( E  ~ x( ')))  = .4 ( E  ~ a( '))  

Then  we apply t (formally),  which changes no th ing  as to linear independence of  
these equations:  

t ( A ( s ( E  ~ x ( ' ) ) ) )  - -  t ( ` 4 ( E  ~ a( ' ) ) )  

And finally, since B = t o `4 o s we have about  qk _ 1 implici t  equat ions  on t: 

~ = t ( . 4 ( E  ~ 

We can do tha t  the other  direction, s tar t  f rom equat ions on t and get s in a very 
similar  way, but  it is less convenient  since we need to compu te  `4-1 or B -1 and  
sum up all possible solutions. In our example  it was easy, since it is bijective. 

The  whole me thod  is called "to and fro" as it proceeds toing and froing f rom 
one side to another  and ends when we get n independent  equat ions  on s and 
another  n on t. 

If  q ~ 2 we have qk _ 1 > >  k and the a t tack complexi ty  is about  n~ 
and n~ at mos t  to find initial 1 or 2 equations.  

If  q = 2 it is n~ in mos t  cases (no exceptions are known) since we 
can s tar t  with 2 equations.  

Let us see how it works on our  example:  
We s tar t  with the two following equations:  

s(1) = 1 
= 7 

Our  equat ion  set (`4) comes f rom b = a 3 in the F2- ,  n = 5 field, and it has n2 '~ 
au tomorph i sms  of  the form: 

s a ~ - O ,  t 3 E { 0 , 1 ,  . , n - l }  
OlX 1 -~-2t~ X 

with 
t : X ~ O ~ - 1 - 2 ~  ' " " 

Therefore there are at least n2 n solutions s and t (in fact we have found there 
are no more).  Thus  the probabi l i ty  of  our  2 equat ions being right is ,2"  

22n - -  ~ 
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and the whole a t tack  complexi ty  is only n~ Moreover, for n = 5 one 
gets 2-~ ~ 0.15 and we admi t  to have been lucky choosing two s tar t ing  equat ions  
right. Then  we get 3 dependent  equations:  

s (1 )  = 1 
~(~) = 7 
s (3 )  = 6 

as - in F 3 2  - 1 + 2 ---- 3 and 1 + 7 = 6. 

Then  we use the table to ' t ransfer '  equat ions on the other  side: 

t (1)  = 5 
t (4 )  = 16 
t (23 )  = 24 

For example  with s(2) = 7, we get .A(7) = 4 and /3(2)  = 16 and all tha t  implies 
tha t  t(4) = 16. 

Now we combine  them again to 

/ 
get 23 - 1 ---- 7 dependent  equations:  

t(1) = 5 
t(4) = 16 
t (5 )  = 2a 
t ( l S )  = 13 
t(19) = 8 
t ( ~ 2 )  = 29 
t(23) = 24 

And using .,4 -~ and B -1 we get 7 equat ions on s: 

s(1) = 1 
s (2 )  = 7 
s(3) = 6 
s(4) = 17 
s (8 )  = 18 
s(20)---- 14 
~(30)  = 27 

6 f rom those 7 equat ion are actual ly  independent ,  and yet  it is enough to recover 
s by Gauss ian  reduction.  Similarly we get t and verify the correctness of  our 
solution. 

- 1 1 1 0 1 '  

0 1 0 1 1  

(ao,al,a2, a3, a4)= 0 1 0 0 1  (Xo,Xl,X2, X3, X4) 

0 0 0 0 1  

0 0 1 1 1  
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(Yo, Yl, Y2, Y3, Y4) : 

- 1 1 0 0 0 "  

0 1 0 1 1  

1 0 0 0 1  

0 0 0 1 1  

0 1 1 1 1  

(bo, bl, b2, b3, b4) 

9 C o m b i n e d  p o w e r  a t t a c k  

In order to further improve our attacks we found out that  it would be nice to 
have a function which we call "boosting function" with the following properties: 
on an entry x we compute in polynomial time x ~ = F(x)  such that  F is preserved 
by the isomorphism of polynomials: 

If  s(x) = a, FB(x) = x' and FA(a) = a', then s(x') = a'. 

However: 

T h e o r e m  9.1 There is no non-trw,al boosting function whzch works for all the 
quadratzc equations sets. 

P r o o f :  The "to and fro" attacks will almost always, apart from improbable 
cases, allow to recover in a unique, deterministic way, the entire s and t starting 
from 2 equations on s. Yet, a non-trivial boosting function would allow, with 
some non-zero probability, to do the same starting with only one equation. 

Now, in the very precise equations set derived from b = a 3 it is not possible. 
From the structure of b = a 3 automorphisms shown in the last chapter we can 
easily see that there are at least n possible solutions s and t satisfying any given 
equation on s. 

Therefore we must look for less powerful functions and in some way relax its 
axioms. We have found few ways of doing so: 

1. We may consider more general functions, dealing with different sets of infor- 
mation on entries and results of a function. 

2. Moreover we may use different boosting functions depending on the partic- 
ularities of .4. 

3. We ask the condition of x ~ = F(x)  being preserved by the isomorphism to 
be true only with a certain noticeable probability. 

4. We can have a function F probabilistic. 
5. It is enough to suppose that x ~ = F(x)  is preserved no more by all, but by 

at least by one  possible isomorphism that satisfies the initial data. 

The last two additions are important,  since they are those which do demolish 
our proof of non-existence of boosting function. 

We call a boosting function or "weak boosting function" a function which 
satisfies 1.-5., and the previous definition is referred to as a "strong boosting 
function". 
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T h e  c o m b i n e d  p o w e r  a t t a c k  This attack is designed to solve al l  the IP cases, 
u -- n and with linear s and t transformations, with the complexity n~ n/2 
and using n~ "/2 of space. 

We do not know any example of quadratic equations for which all the three 
variations of the attack would fail altogether. The starting point consists in 
picking at random (log n)~ '~/2 entries z (0 and (log n)~ n/2 entries c(0 (the 
same entries can be used). Thus by the well known 'bir thday principle' there 
are at least (log u) ~ collisions such that  s(z (0) = c (j). Then the "boosting 
functions" can be used to generalize the "to and fro" attack (details are available 
in the extended version of this paper). 

10 Suggest ions of IP variations 

This section is given in appendix 2. 

11 Conclusion 

In this paper, we have shown that  the MP and IP problems are not only related 
to the problem of finding the secret key of esoteric cryptographic algorithms, 
but also to very general problems such as Graph Isomorphism and Fast Matrix 
Multiplication. From their definitions, MP and IP look very similar but, as we 
have seen in this paper, Deciding MP is NP-complete whereas Deciding IP is 
not NP-complete (assuming the usual hypothesis about Arthur-Merlin games). 

If O(n 2) is the length of the secrets to be found, then our new algorithms 
for I e  ("with two secrets") have a complexity in O(q n) or O(q '~/2) when s and t 
are linear (so at most O(q~ '~) when s and t are affine). This is not polynomial, 
but this is clearly much better than the complexity O(q(n2)) of the previous 
algorithms. For example, for the toy example given in [12], we have found the 
secret key with only about 7 computations (!), instead of 2 25 for previously 
known algorithms (or 25o for exhaustive search on the two secret matrices s and 
t). This means that  the schemes based on IP problems with two secrets (such as 
some the schemes described in [14]) should have larger values of the parameters 
than expected for security. However, there are a lot of possible variations for 
IP and the choice of the variations and the choice of the parameters can still 
be done in order to have both efficient asymmetric schemes and no practical 
attacks. 

A c k n o w l e d g e m e n t s :  We want to thank Jean-Pierre Seifert for pointing out 
references [10] and [15] to us, and also Henri Gilbert and Frederic Cherbonnier 
for useful comments. 
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A p p e n d i x  1 

I P  w i t h  o n e  s e c r e t  is  a t  l e a s t  a s  d i f f i c u l t  a s  G r a p h  

I s o m o r p h i s m  

First  l inks b e t w e e n  the  two p r o b l e m s  

We first generalize the construction of section 3 about IP with one secret. Let 
(I) and (II) be two n-vertices graphs, and let (,4) and (B) the following systems: 

(,4) and (/~) 
= = 

i--1 i=1  

where all the 7ij and #ij coefficients all lie in {0, 1} and satisfy: 

"yij = 1 r The i and j vertices of graph (I) are linked together 

#ij = 1 ~:~ The i and j vertices of graph (Ii) are linked together. 

It is easy to see that  each graph isomorphism between (I) and (I[) corresponds to 
a morphism of polynomials between (.A) and (/~). This morphism of polynomials 
is a very special one, since it can be defined by xi = a~(i), where ~ is some 
permutat ion of {1, ..., n}. 

Reciprocally, can any isomorphism of polynomials between (.4) and (13) be 
characterized by x, = a~(,) for some permutat ion ~ of {1, ..., n} ? Of course not, 
and explicit examples can be built to be convinced. Nevertheless, we can con- 
sider the following argument: there exist q'~('~+~) possible affine transformations 
between the a~ and the xi, among which q'~(q'~ - 1)(q n _q)(qn _ q2)...(q, _qn-1) 
are bijective. The probability that  such a transformation leaves Yl invariant is 
a priori < ~ 1  (because there are ~ monomials x, xj (i _< j), and a 

constant term). The same property is a priori true for Y2. Moreover, since 

q~(qn 1)(q~_q)(q~_q~). . . (q~_q~-l)  < ( q ~ + l )  2, 

we can think that  - "most of the time" - there are very few solutions for the 
IP problem between (.4) and (/3) that  do not correspond to a solution of Graph 
Isomorphism. Of course, it is a rough evaluation. Nevertheless, it suggests that  
if a method is found to solve the IP problem with one secret, then we should be 
able to use this method to also solve the graph isomorphism problem. We will 
now study how to obtain a real proof of this property. 
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T h e  r e a l  p r o o f  

We first prove a general property about  permutat ions:  

T h e o r e m  11.1 Any permutation cr of {1, ..., n} can be written m a unique way 
as follows: 

O" ~ T i n , n  0 T z a _ l , n _  1 0 . . .  0 T i l , 1  ~ 

where ik E {1, ..., k} for all k, 1 < k < n, and where v~,3 zs the permutatzon that 
exchanges i and j (by conventzon, ri,i =Id). 

The proof is easy by induction on n (details are available f rom the authors).  

We now see how to use this theorem to "translate" the fact that  the trans- 
format ion s involved in the NP-problem corresponding to a Graph  Isomorphism 
instance is characterized by xi = a~(i) for some permuta t ion  ~ E S~. According 
to theorem 4.1, such a permuta t ion  can be writ ten as the product  of (at most)  
n permuta t ions  vi,j. 

To simplify, let us first give a "translation" of the fact tha t  an affine trans- 
format ion s : a ~-~ x is characterized either by s =Id,  or by xi = a~(i) (for all i), 
with ~ = Tij for two given indices i and j .  It  is equivalent to saying tha t  s is an 
isomorphism of polynomials  between the two following systems: 

Yo = (X  - a i ) (X  - %) k k 
( . 4 )  = ak (1 < r i , j )  n, 

Y n + l  = X 

and 

{ y ~  ( l < k < n , k r  (B) Yk = Xk 
Yn+l : A 

By using this argument  several times, it is possible to obtain a "translation" of 
a Graph  Isomorphism problem into an IP problem: s corresponds to an isomor- 
phism of the graphs (Le. in particular is of the form xi = a~( 0 for some ~ E S . )  
iff it is an isomorphism of polynomials between two systems of equations ( that  

can be explicitely written). Each of these two systems contains 2'~3-3"~-~+4 2 
(~+1)(~-2~+2) variables. equations over 

C o n c l u s i o n :  By solving IP with one secret on a set of O(n 3) quadrat ic  equa- 
tions we can solve any Graph Isomorphism problem with n vertices. Therefore, 
IP is at least as hard as GI. 

R e m a r k :  We do not pretend that  this construction gives a new and more 
efficient way to solve the Graph Isomorphism problem. In fact, al though no 
polynomial  algori thm is known for the Graph Isomorphism problem, in practice 
very efficient algorithms are known: for example it is feasible to find an isomor- 
phism for graphs even for "hard" instances of 1000 vertices graphs in less than 
10 minutes on a personal computer  (see [5] p. 22). So the main  interest in this 
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construction is to show that  the IP problem with one secret is probably not solv- 
able with a probabilistic algorithm of polynomial complexity. (Because GI was 
carefully studied and many people think that  GI is not solvable in polynomial 
complexity). 

Appendix 2 

Suggestions of IP variations 

I P  w i t h  o n e  s e c r e t  

As we have seen above, some improved algorithms exist for IP with two secrets. 
Therefore, when IP is used for authentication or signature as explained in [14], 
it might be suggested to use IP with one secret instead of IP with two secrets in 
order to have a more efficient scheme. It may look surprising that  1P with one 
secret might be a more difficult problem (with practical values of the parameters) 
than IP with two secrets. However, this is not so surprising: in IP with two 
secrets, we have about 2n 2 unknown coefficients of K (the secret values of the 

n 3 
s and t matrices) and about -~- quadratic equations on these unknown values 
(when we formally identify the two sets of equations (`4) and (•)), i.e. much more 
equations than unknowns. However, in IP with one secret, the parameters can be 
chosen in order that  the number of equations (given by a formal identification) 
will be about approximately equal to the number of unknowns. This occurs for 
instance when (.4) and (B) are two sets of two quadratic equations. As a result, 
despite the fact that  there is only one affine change of variables, such a problem 
might be more difficult than the [P with two secrets. 

S u b g r o u p s  o f  G L n ( K )  

Another possible idea would be to choose the secret transformations s and t 
of IP with two secrets in a subgroup G of GL,~(K). (GL,~(K) is the set of all 
linear bijective transformations from K"  to Kn).  This way, n may be chosen 
rather large (in order to make the problem difficult) and the length of the asym- 
metric signature (when the problem is used as explained in [14] for asymmetric 
signatures) might still be of reasonable size. For instance, G might be the or- 
thogonal group of some quadratic form q (i.e. the set of all g E GLn(K) such 
that  Vx E / f n ,  q(g(x)) = q(x)), or G might be the group of all matrices of the 

form B , where A and B are two ~ • ~ matrices. It is not clear whether 

choosing s and t in such a subgroup G makes it easier to solve the IP problem 
or not. 

R e m a r k :  A similar idea is used in the DSS or in Schnorr's algorithm, where - 
in order to have shorter length for the signatures - a subgroup is chosen for the 
exponents used in these schemes. However, here, the schemes are very different. 


