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Abst rac t .  We reflect on our experiences from work on the design and 
semantic underpinnings of Extended ML, a specification language which 
supports the specification and formal development of Standard ML pro- 
grams. Our aim is to isolate problems and issues that are intrinsic to 
the general enterprise of designing a specification language for use with 
a given programming language. Consequently the lessons learned go far 
beyond our original aim of designing a specification language for ML. 

1 I n t r o d u c t i o n  

There are many different approaches to the problem of producing correct soft- 
ware systems in a given programming language. One line of attack involves the 
use of a specification language that  is tailor-made to specifying and verifying 
properties of programs written in that  particular programming language. This 
typically involves the use of a logical language that  is appropriate for writing 
assertions about entities arising in programs written in that  programming lan- 
guage. Some examples are: Anna [LvH+87] for use with Ada; Larch [GH93] 
adapted to the programming language in question via use of an appropriate 
"interface language", e.g. L a r c h / C + +  [Lea96]; and our favourite, Extended ML 
[KST97] for use with Standard ML. Closely related is work on logics for reason- 
ing about programs written in particular programming languages, e.g. Haskell 
[Tho93]. Although most of the details of this enterprise are specific to the par- 
ticular programming language at hand, certain problems and issues are common 
to all programming languages or to a class of languages. 

In this paper, we reflect on our experiences from work on the design and 
semantic underpinnings of Extended ML with emphasis on some of the more 
general lessons learned. The topics we cover range from the very general to the 
somewhat specific: Sect. 4 on the relationship between models of programs and 
models of specifications applies to any programming language; Sect. 5 on adding 
logical formulae to a language with a Hindley-Milner (implicitly polymorphic) 
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type system is relevant to any programming language having such a type system; 
most of Sect. 6 on indistinguishability is relevant mainly to ML and fragments of 
ML. We begin with a brief description of Extended ML to provide some context 
for the rest of the paper. 

2 E x t e n d e d  M L  in  b r i e f  

Extended ML (EML) is a wide-spectrum language for the specification and de- 
velopment of modular Standard ML (SML) programs. "Wide-spectrum" means 
that it encompasses both specifications and programs, as well as hybrids between 
the two. These hybrids arise as the intermediate stages of the process that turns 
a formal specification into a concrete program that implements it. 

EML was conceived in the mid-1980s [ST85], combining ideas from algebraic 
specification and the then rapidly evolving functional programming language 
ML. Once ML was standardised and given a formal semantics in 1990 [MTH90], 
a project was set up to do the same with EML, resulting in its formal definition 
in 1994 [KST94]. 

We are not going to describe the features of EML in any but the most super- 
ficial detail. See [KST97] for more details and a gentle but thorough introduction 
to the EML semantics. A programmer-oriented introduction is [San91]. 

We can roughly describe EMLas an extension of SML (minus some of its 
imperative features) with the following specification features: 

- placeholders for expressions, type expressions, and s t ruc ture  1 expressions; 
these are used to express incomplete programs, which are useful entities 
during program development 

- axioms in structures; these are used to narrow down the possible choices for 
replacing placeholders 

- axioms in s ignatures  1 ; these demand and/or export properties of the imple- 
menting structure 

- first-order logic with equality as the language for axioms. 

This is a gross simplification and we shall have to expand on some of this later 
on. The definition of EML [KST94] is an extension of the definition of SML 
[MTH90] by (among other things) a definition of the meaning of axioms and 
what it means for a structure to satisfy the axioms in a signature. 

3 F u n d a m e n t a l  p r i n c i p l e s  

Suppose we are given a programming language P and the task of designing a 
specification language S suitable for the specification and development of P- 
programs. 

i "Structure" is ML-speak for module, "signature" for module interface. 
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Is this always possible? Which features should S contain, which primitives, 
which logical connectives? Equally importantly: which features should S not 
contain? To a certain extent one can answer these questions generically. 

Different specification languages have different aims. Near one extreme would 
be a specification language that  is intended as a formal notation for documenting 
programs, or as a vehicle for requirements capture, with no way to verify with 
any degree of formality that  a given program satisfies a given specification. Then 
there is no need to make a formal connection between P and S, and indeed S 
may be appropriate for a range of programming languages. Near the opposite 
extreme would be specification languages like EML where a central aim is to 
enable proofs about specifications, and proofs that  a given program satisfies a 
given specification. Here a formal connection between P and S is essential to 
establish the soundness of inference rules used in proofs that  connect P-programs 
and S-specifications. Our concern in this paper is with specification languages 
of the latter kind. 

Given that  aim, it is not possible to come up with a meaningfulspecification 
language for P unless P has a formal semantics. Without  a formal semantics 
for P we are not certain what P-programs are supposed to do, making it im- 
possible to establish reliably any property of any P-program or to prove interest- 
ing relationships between P-programs and S-specifications. Unfortunately, this 
requirement rules out most present-day programming languages. 

The design of S is constrained by the properties of the semantics of P.  For 
example, the properties of P-programs we can express in S should not transcend 
the properties we can establish from the formal semantics of P .  This is closely 
related to the reason why we need a formal semantics for P in the first place. 

For instance, the dynamic semantics of SML [MTH90] defines the result of 
evaluating an expression in a particular environment and a given state. But it 
does not specify the required time and space resources for such an evaluation. 
The size of the derivation of the evaluation judgement (built from instances of 
the rules of the semantics) indicates the required resources in a naive evaluation 
model, but this information is unreliable - -  SML compilers are not forced to 
stick to the evaluation model implicitly suggested by the SML semantics and 
hardly any of them do so. This means that  any specification language for SML 
should abstain from specifying the efficiency and/or  complexity of a program. 

One may object: people do reason about the efficiency of SML programs, 
don ' t  they? But if compilers are allowed to modify the performance of a pro- 
gram by optimising it (which in some cases may even slow it down) then the 
observed performance becomes compiler-dependent. In other words: efficiency is 
a property of the machine program the compiler chooses to realize a source pro- 
gram, rather than a property of source programs themselves. When we reason 
about  the efficiency of programs we assume that  the compiler is not clever enough 
to significantly depart from the naive evaluation model given by the operational 
semantics. There is no formal justification for such an assumption. 

If P is a typed language, it is natural to exploit its type system both to 
coordinate the required link with S and to provide the basis of a type system 
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for S. Although the utility of a type system for specifications as such is a matter  
of some debate - -  see e.g. [LP97] - -  we can hardly avoid mentioning types 
in S when asserting properties of typed programs in P. For example, when 
specifying the behaviour of a function f : t --+ t '  it is often necessary to quantify 
over the values of type t. Apart from this, there is also the important design 
issue of making P-programmers feel "at home" when writing S-specifications. 
It therefore seems desirable that  the type system for S be as close as possible 
to the type system for P. When, as in the case of EML, P is a subset of S, the 
type system of S should be a conservative extension of the type system of P: a 
P-expression e has a P-type t in S iff e has type t in P. 

4 M o d e l s  o f  p r o g r a m s  v s .  m o d e l s  o f  s p e c i f i c a t i o n s  

The semantics of the programming language P will assign models to programs 
of P.  For each P-program p, its model [p~ will contain some assortment of 
mathematical  objects modelling the components of p, including (for example) 
the functions defined by p. 

Any specification language S needs a semantics which defines the meaning 
[[s] of each S-specification s. This is a necessary basis for specification-based 
proof: proof that  a given program satisfies a given specification; proof that  one 
specification is a refinement of another; or proof that  all programs satisfying a 
given specification will satisfy a given property. When we design a specification 
language S for use with a programming language P, it is natural to define 
the meaning of an S-specification as the class of all P-models (i.e. models of 
well-formed P-programs) having the indicated components and satisfying the 
requirements spelled out in the specification (see e.g. [ST97]). This enables us 
to say that  a P-program p satisfies an S-specification s exactly when the model 
of p is in the class of models determined by s: [p] E Is]. 

The expressiveness of P dictates the structure of models of P-programs. 
For instance, if P provides constructs for defining non-deterministic functions, 
models of P-programs containing such functions will need to model them using 
something more exotic than ordinary set-theoretic functions. Even if P does 
not provide such constructs, provided P is sufficiently expressive (that is: unless 
it is extremely inexpressive), functions in P-programs cannot be modelled by 
arbitrary set-theoretic functions. For example, the untyped A-calculus requires 
a domain D of values such that  D ~ D --~ D; here D --~ D cannot be the 
whole function space (since D ~ D --+ D implies ]D] = ID --~ D[ = [D[IDI 
i.e. IDI  = 1) so  it is taken to be the space of continuous functions [Gun92]. 
Another source of restrictions on models of P-programs is the desire to reflect 
more accurately the constraints that  P imposes. For instance, no matter  what P 
is, no P-program will contain definitions of non-computable functions and so it 
would be natural to take only computable functions in P-models. In SML, each 
function is modelled as a closure which contains the expression used in defining 
the function, so we get only the SML-expressible functions [MTH90]. Of course, 
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all of these are computable, but not all computable functions of a given type are 
SML-expressible [Kah96]. 

Putting these together (the decision to interpret S-specifications using classes 
of P-models and the imposition of computability and other restrictions on P- 
models) leads to a possible problem, as the following example from [ST96] illus- 
trates. 

Example  1. Let ~,qui, be a sentence which asserts that equ iv(n ,m)  = t rue  iff 
the Turing machines with GSdel numbers n and m compute the same partial 
function (this is expressible in first-order logic with equality, since the equivalence 
of TMs is arithmetical [Rog67]). Now consider the following specification: 

local va] equiv : nat * nat -> boo1 

axiom ~equiv 
in val opt : nat-> nat 

axiom forall n:nat => equiv(opt(n),n) = true 

end 

This specifies an optimizing function opt transforming TMs to equivalent TMs. 
(Axioms could be added to require that the output of opt is at least as efficient 
as its input.) If functions in P-models are required to be computable (and the 
semantics of specifications is compositional with models of local s in s' end 
obtained by forgetting the s-components of models of s; s') then this specification 
will have no models because there is no computable function equiv satisfying 
~,quiv. Yet there are computable functions opt having the required property, 
for instance the identity function on nat.  Thus this specification disallows P- 
programs that provide exactly the required functionality. [3 

The example is expressed in terms of GSdel encodings of Turing machines where 
its practical utility may not be apparent, but exactly the same example could be 
phrased in terms of program fragments in a real programming language and a 
specification like the one above (and exhibiting exactly the same problem) could 
then appear as part of the specification of an optimizing compiler or program 
transformation system. 

Here are three ways around this problem: 

1. Treat local functions differently from "exported" functions, allowing them to 
be non-computable. Programs are not required to implement local functions 
in specifications anyway. 

2. Relax the computability requirement on all functions. 
3. Prohibit local functions in specifications. 

The second solution seems simpler than the first because it is uniform. This is the 
approach taken by EML, where each function is modelled as an EML-express ib le  
closure - -  still a closure, but where the expression in the closure is allowed to 
include "logical" constructs such as universal and existential quantifiers rather 
than being expressible using just the constructs of SML [KST94,KST97]. The 
third solution is unattractive since it sacrifices a great deal of expressive power. 
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Relaxing conditions on models needs to be done with care. Restrictions 
needed to ensure that  models exist are still required (see the discussion of the un- 
typed A-calculus above). And there is a "logical" limit on expressibility: provided 
S extends Peano arithmetic, GSdel's fixpoint theorem can be applied to show 
that  if satisfaction of the closed formulae of S can be defined in S itself (e.g. as 
a total function of type fo rmula  -> bool) ,  then S is necessarily inconsistent. 2 It 
appears that  any a t tempt  to define EML satisfaction in EML yields a function 
that  fails to terminate in some cases. 

5 P a r a m e t r i c i t y  

The kernel type system of most functional programming languages these days 
is Hindley-Milner polymorphism [Mi178], i.e. shallow, implicit polymorphism. 
("Shallow", means that  all type quantifiers occur outermost; "implicit" means 
that  type abstraction and application are syntactically suppressed.) SML needs 
some modifications to cope soundly with imperative features, but we can ignore 
this for the moment.  

The implicitness of type abstraction and type application strongly limits 
the options for possible extensions of the type system, should an extension be 
required to accommodate the specification logic: type inference and type checking 
for System F are undecidable [We194], as is type inference for Hindley-Milner 
polymorphism with the addition of proper polymorphic recursion [KTU93]. 

5.1 P r e r e q u i s i t e s  fo r  i m p l i c i t  p o l y m o r p h i s m  

Why do we get away with implicit polymorphism? That  is, why are we satisfied 
with the particular choices of type abstraction and type application selected by 
the type inference algorithm? 

There are two fundamental reasons why this is so: 

1. There is a best possible choice - -  and the type inference algorithm picks it. 
2. Whatever choice is made, the outcome of evaluation is not affected. 

The mentioned best possible choice is the so-called "principal" or "most general" 
type. The principal type subsumes all other possible types, in a technical sense 
which we can ignore here. In a certain sense, choosing the principal type is like 3 
making no choice at all, leaving all options open. 

The second reason is much more important.  
Since type applications are implicit, the types inferred for expressions by the 

type inference algorithm are to a certain degree arbitrary. Consider the inference 
rule for type-checking function application: 

F F el : r r F t - e 2  :~  

F b e l  e2 : r 

2 Thanks to Martin Hofmann for this observation. 
a There are a couple of involved technical reasons why this is not quite true for SML, 

even after the 1997 revision [MTHM97]. For our purposes this is a side-issue. 
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When we infer the type of an application term el e2, the rule requires that  
the argument  type of the function et and the type of the actual parameter  e2 
agree - -  these are the two occurrences of a in the premise of the rule. The 
type inference algorithm makes sure that  this is the case, but this does not 
necessarily completely determine the type g, since it is possible tha t  different 
types have this property. We would not want these arbi trary choices to influence 
the computa t ion  in any way. 

Other arbi trary choices arise when type variables are implicitly abstracted at 
declaration level. All type variables are abstracted that  can possibly be abstrac- 
ted (i.e. those in the type that  do not occur free in the context), and the order 
of abstract ion is arbitrary. Again, these arbi trary choices should not influence 
the computat ion.  

There are several (related) ways of capturing this idea, e.g. Reynolds '  notion 
of parametricity [Rey83] and Wadler 's  theorems for free [Wad89]. Essentially, 
type quantification can be manipulated in this implicit manner  because types 
do not interfere with computat ion in System F. 

More concretely, one can view type inference as a process that  inserts type 
conversion functions, in addition to type abstractions and applications, whenever 
necessary to generate an explicitly typed program. Parametr ic i ty  requires tha t  
these conversions are isomorphisms; this may  not be the case - -  see [Cos92] - -  
but  for purposes of evaluation, verification and analysis of programs it is sufficient 
if they behave like isomorphisms: in other words, the function that  converts back 
and forth should be indistinguishable from the identity function. (An informal 
understanding of indistinguishability will suffice for now. See Sect. 6.1 below for 
a definition.) 

From what we have already seen, it should be clear that  we need isomorph- 
isms Va.V/~. v ~ V/~.Va. v since we abstract  type variables in an arbi trary order, 
and Va. r ~- v (if a ~ FV(r ) )  since we only abstract  type variables tha t  occur. 
There are more such requirements 4, but these two are sufficient to make our 
points. 

I t  is not difficult to formulate the required isomorphisms in System F. We 
will write Aa.t and t[r] to denote type abstraction and type application on te rm 
level, respectively. 

We can express the commuta t iv i ty  isomorphism (in both directions) by 

L = Az:  (Va.V#.r).A'l.Ab.z[5][~t] 

It  is easy to check t h a t ,  o t is fl~-convertible 5 to the identity function, and so ~ is 
an isomorphism. More problematic is the conversion between r and Va . r  (with 

4 Another one is Ya. (r~ x r2) ----- (Va. r~) x (Va. r2) which is needed since SML supports 
simultaneous declarations. 

5 To be precise, for call-by-value languages such as SML we need to restrict ~3r/- 
conversion to values, as in Moggi's )~r [SW96]. Under this restriction, we 
can reasonably assume that ~r/-convertible expressions are indistinguishable, even 
when the language is extended. 
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~ FV(r) ) .  The required maps are 

~1 = A z  : r . A a . x  ~2 = Ax: (Va.r).x[1] 

where 1 is the unit type (or any other chosen type). Again, L2 o t l  can easily be 
seen to be fly-convertible to the identity. However, while tl o t2 is fly-convertible 
to Ax : (Va.v).A/3.x[1], it is not convertible to the identity function. We therefore 
require that  Ax : ( V a . r ) . A f l . z [ 1 ]  is indistinguishable from the identity function 
whenever a is not free in r.  In this case, the required property can be proven 
in an extension of System F with "Axiom C" from [LMS93]. Turning this back 
into English: if the type of a term t does not depend on the type parameter then 
neither should the value of t itself be affected by it. 

Extensions of the purely functional sublanguage with other features should 
preserve the property that  tl o t2 is indistinguishable from the identity function. 
This requirement applies to various forms of language extension including an 
extension with logical formulae or imperative features. 

5.2 Assess ing  t h e  logic  

Quantification over values in a typed language P is itself necessarily typed, i.e. 
we quantify over values of a particular type. For example, if we specify the 
r e v e r s e  function for lists then we are not concerned with what it would do if 
applied to numbers or functions - -  the type system of P is supposed to prevent 
that.  

There is a problem with typed quantification which arises from the fact that  
the t ru th  value of a formula may depend on the type of quantification. The 
simplest example is the following: 

f o r a l l  x:t => false 

This formula is f a l s e ,  u n l e s s  t is an empty type, in which case it is t r u e .  In 
EML, we view a type as empty if it has no values. There are indeed empty types 
in SML and EML, e.g. d a t a t y p e  t = C of  t .  

The example is perhaps unconvincing, first because in languages with lazy 
evaluation one would normally regard I as inhabiting any type, and second be- 
cause it resembles the empty-sort problem in Mgebraic specification [GM85,PW84] 
which can be dealt with by banning empty sorts altogether, considering that  
their usefulness for specification and programming is rather limited. However, 
the problem goes deeper than that; consider the following EML formula: 

f o ra l l  ( x , y : t )  => x == y 

(Here, == is EML logical equality, see Sect. 6.) Again, this formula is t r u e  if t is 
an empty type, but  it is also t r u e  if t is a singleton type, like u n i t .  In general, 
first order logic with equality allows one to distinguish finite types from infinite 
types and also finite types of different cardinality. 

The above example shows that  the problem already appears for universally 
quantified equations. Here is another example of the same thing, which relies on 
the use of a function: 
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forall (xs :  t l i s t )  => r ev  xs == xs 

If r e v  is ordinary list reversal then this formula implicitly specifies the same 
property as the previous one: x==hd I'x, y] ==hal ( r ev  [y, x] ) ==hd [y, x] ==y. 

These examples show that the truth value of a logical formula can depend on 
the type of quantification. Indirectly, this means that  its t ruth value can depend 
on the assignment of types to type variables, and therefore formulae for which 
this assignment can vary may have varying truth values. Since the type of a 
formula is just bool ,  the addition of typed quantification breaks the required 
isomorphism between bool  and Va.bool.  

After making this observation it should not come as a surprise to observe 
that  implicit polymorphism has some rather uneasy interactions with formulae. 
These do not occur often; in EML one has to employ the available forms of 
explicit polymorphism to contrive unpleasant examples. Here is one: 

t ype  'a  dummy = boo l  
val b: ' a  dummy = foral] ( x , y :  ' a )  => x==y 

The variable b is bound to a boolean value, but is it t r u e  or f a l s e ?  Morally, 
this should depend on the type application at each instance of b, being t r u e  iff 
the argument type has at most one element. But type application is implicit in 
ML and in this case we cannot reconstruct what the type argument is as it is 
not retained by our implicit conversion t2. 

The problem is aggravated by the identification of formulae and boolean 
expressions. As a consequence of this identification, formulae can appear within 
arbitrary expressions, exporting the observed type dependency to values of all 
types. 

Of course, one can argue that  in view of the evident type-dependency of the 
logic one should abandon implicit polymorphism and make all type abstractions 
and applications explicit. There are just two problems with this: firstly, impli- 
cit polymorphism is such a successful design feature because it combines the 
benefits of a strong type system (soundness) with the benefits of an untyped 
language (you do not have to write types); secondly, an explicitly typed wide- 
spectrum language would co-exist rather uneasily with an associated implicitly 
typed programming language. 

EML sidesteps the problem of type-dependency by giving type-dependent 
expressions in axioms no value, and taking an arbitrary choice from among the 
possible values of type-dependent expressions that  are not within axioms. The 
solution for axioms is satisfactory because we are concerned only with whether 
axioms are satisfied or not, and when an axiom has no value it is regarded as not 
being satisfied. The solution for type-dependent expressions outside axioms is 
less satisfactory but  it seems adequate for practical purposes since this situation 
is very rarely encountered. 

5.3 I m p e r a t i v e  f e a t u r e s  

At this point it is perhaps worth pointing out that  the addition of logical features 
is not the only language extension that  sits uneasily with implicit polymorphism. 



163 

It is well known that imperative features such as references endanger the 
soundness of a polymorphic type system [Dam85,Tof88,Wri95]. What  is perhaps 
less well-known is that  the associated problems can largely be at tr ibuted to 
the implicitness of the polymorphism. One of the proposals in Xavier Leroy's 
thesis [Ler92] to circumvent the known soundness problems with polymorphic 
references is to make type abstraction explicit. Technically, this is achieved by 
having two different kinds of le t -binding,  a polymorphic one and a monomorphic 
one; whenever a l e t - b o u n d  variable is used which originates from a polymorphic 
l e t  then we have an implicit type application which - -  in Leroy's suggested 
semantics - -  forces a new evaluation of the associated expression. In other words, 
Leroy only makes the type abstraction explicit; for his purposes he does not need 
to know the type parameter of the type application, the fact that  there is some 
type application is sufficient. 

The  key to Leroy's idea is that type abstractions are treated as value ab- 
stractions - -  the evaluation of the body of the abstraction is delayed until a 
parameter  is provided. The problem that  this circumvents is again the fact that  
el o t2 is not indistinguishable from the identity function in System F extended 
with references. But this time it is /~/-convertible to the identity function if 
q-conversion is unrestricted, which shows that  unrestricted q-conversion is un- 
sound in the presence of side-effects. There is a difference between passing t and 
Aa.t[c~] as a parameter: for t we generate references once, for Aa.t[a] we generate 
references at each type application separately. 

6 L o g i c a l  e q u a l i t y  a n d  i n d i s t i n g u i s h a b i l i t y  

The concept of equality is much underestimated in mainstream mathematics.  
The general at t i tude seems to be: what could be simpler than that? Consequently, 
equality is viewed as a primitive concept in set theory, in universal algebra, and 
thus in algebraic specification. In type theory, equality is no longer a primitive 
concept, and some type theories even have more than one notion of equality. 

Considering the origins of EML in algebraic specification, it should not come 
as a surprise that  the EML logic contains t==u (so-called logical equality) as 
one form of atomic formulae. Logical equality is defined using the notion of 
indistinguishability in order to make it extensional on function types [KST97]. 
Some problems that  arise with the use of indistinguishability are discussed in 
the rest of this section. 

6.1 I n d i s t i n g u i s h a b i l i t y  

Two expressions exp a and exp 2 of type r are indistinguishable if and only if for 
any context C[ ] of type u n i t  with a hole of type r we have that  the evaluation 
of C[expl] terminates iff the evaluation of C[exp2 ] terminates (cf. e.g. [Ong95]). 
One can always distinguish "genuinely" different values (such as 0 and 1, or t r u e  
and f a l s e )  in this way. 
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The choice of u n i t  as the result type for the distinguishing contexts is some- 
what arbitrary, except that  expressions of type u n i t  are only distinguished by 
their termination behaviour. An obvious alternative would be boo l  and distin- 
guishing contexts returning t r u e  and fa lse ,  respectively. If C[expl ] = t r u e  and 
C[exp2 ] = f a l s e  then there is obviously a context C'  that  distinguishes expl 
and exp2 in the above sense. However, with this choice we would not even be 
able to distinguish the totally undefined function under  from any other func- 
tion. This would make indistinguishability non-transitive since we would have 
f==undef==g for any two functions f ,  g having the same type. But in a sys- 
tem like the typed A-calculus where evaluation always terminates, this choice is 
perfectly reasonable. 

Indistinguishability is a difficult relationship. Clearly, it is not decidable, but  
worse than that,  it is neither semi-decidable nor co-semi-decidable. The theory 
of fl-conversion (for untyped A-calculus) is not recursive either, but  at least it 
is r.e. and so there is a complete proof system that  enables us to establish fl- 
convertibility whenever it holds. With typed A-calculi (without general recursion) 
we typically have that  indistinguishability is co-r.e., because we can enumerate 
the distinguishing contexts and evaluation always terminates, 6 but not r.e., be- 
cause equality in the fully abstract model is undecidable; thus, we can at least 
have a proof system to refute indistinguishability in that  setting. 

For a system like SML where termination is not guaranteed, we have the worst 
of both worlds: indistinguishability is defined in terms of distinguishing contexts 
(which we can enumerate), but even if the context C[ ] is given, comparing the 
termination behaviour of C[expl] and C[exp2 ] requires a solution to the halting 
problem, in general. 

P r o p o s i t i o n  1. Indistinguishability for SML is neither semi-decidable nor co- 
semi-decidable. 

Proof. Suppose that  indistinguishability were co-semi-decidable, i.e. that  distin- 
guishability were semi-decidable. Then we would be able to decide the halting 
problem for any program t by comparing the constant c with the expression (t; c) 
(which computes t, throws it away and then returns c). This solves the halting 
problem for t, because we can distinguish c from (t; c) iff t fails to halt: if ~ fails 
to halt then the semi-decision procedure would terminate; so we just have to run 
the evaluation of t in parallel and wait to see which process terminates first. 

Suppose that  indistinguishability were semi-decidable. A similar argument 
applies, where we compare t with a looping program. [] 

The above argument can easily be adapted to languages other than SML. 
Proposition 1 says that  whatever proof system we may come up with to sup- 

port  formal proofs and/or  refutations of indistinguishability, it will be incomplete 
in the strong sense that  there will be indistinguishable expressions which the sys- 
tem will fail to certify as indistinguishable as well as distinguishable expressions 
which it will fail to distinguish. 

6 Since evaluation always terminates, here we define indistinguishability via contexts 
of type bool returning t rue  or fa l se .  
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6.2 I n d i s t i n g u i s h a b i l i t y  in  t h e  p r e s e n c e  o f  i m p u r e  f e a t u r e s  

The computational  sublanguage of EML is not quite a "pure" functionM pro- 
gramming language. Although references and input /ou tput  were omitted, ex- 
ceptions were retained in the hope that  they would not upset reasoning about 
programs too much. This hope turned out to be misplaced. 

One aspect of ML exceptions can be expressed by so-called names. Names 
can be generated using a new function, and names can be compared for equality 
where separately-generated names are not equal. The type of names can be 
implemented in SML in various ways: using references (e.g. via u n i t  r e f  and the 
equality of references, or an abs type  with a local counter); or just via exceptions: 

abstype name = A of exn * (exn -> bool) 

with fun new f = let exception X 
in f (A(X,fn  X=>true[ z=> f a l s e ) )  
end 

[un eq(A(_,f),A(e,_)) = f e 

end 

As type of new we have (name->'a)->'a which exactly corresponds to the idea 

that  new is a variable binder, i.e. we write new ( fn  x=>a) for the expression a 
with the new name x. 

Reasoning about indistinguishability of programs containing names is no- 
toriously difficult [PS93], to the point where for certain "obviously" equivalent 
expressions, no syntactic method of establishing indistinguishability is known. 
So, this is already bad news. What  makes the situation worse is that  the very 
presence of names affects indistinguishability of ordinary applicative programs: 

Example 2. Consider the functions g l  and g2, defined as follows: 

fun gl f x = (f x, f x) 

fun g2 f x = let vai z=f x in (z,z) end 

The functions g l  and g2 are clearly indistinguishable in a purely applicative 
call-by-value language. 7 However, in the presence of names we can write the 
function C which distinguishes them: C g l  is f a l s e  while C g2 is t r u e .  

fun C g = e q ( g  new (fn x = > x ) )  
[] 

Notice that  the result of post-composing g l  or g2 with either the first or second 
projection is indistinguishable (even in the presence of names) from ordinary 
function application. If follows that  pairing is not a categorical product. 

In EML we do not have names as a primitive; we have exceptions which - -  
as we have seen - -  are expressive enough to encode names. However, they are 

7 In our examples, we nonchalantly claim the indistinguishability of particular ex- 
pressions in certain sublanguages of SML without proof. One could establish these 
formally by using and combining techniques from the literature, e.g. applicative 
bisimulations [Abr90] and applicative equivalences [PS93]. 
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more expressive than  names, in the sense tha t  the presence of exceptions allows 
even more applicative programs to be distinguished than names do. 

Example  3. Consider the functions and l  and andr ,  defined as follows: 

fun andl a b () = if a() then b() else false 
fun andr a b () = if b() then a() else false 

The functions andl and andr are indistinguishable in applicative contexts and 

remain indistinguishable if we have names at our disposal. However, in the pres- 

ence of exceptions we can write the function C which distinguishes them: C andr  
is false and C andl is true. 

except ion  A 
fun nothing() = raise A 
fun ff() = false 

fun C a = a n o t h i n g  f f  () handle  _ => t r u e  
[] 

If  we further add references and/or  inpu t /ou tpu t  then even more applicative 
programs can be distinguished. Here is an example of two functions tha t  are 
indistinguishable in the presence of exceptions but distinguishable by references. 

Example  4. Consider the functions r l  and r2, defined as follows: 

fun r t g  x = (g x; g x) 
fun  r2  g x = g x 

The  functions r l  and r2  are indistinguishable in the absence of references: if g 
x fails to terminate  or raises an exception e then so will both  r l  g x and r2  g 
x; otherwise the resulting values could only differ in freshly generated exception 
names, but then these sets of names are isomorphic. But the following function 
C distinguishes them: C r l  is 3 and C r2  is 2. 

fun C r = 
let va/ x = r e f  1 

fun g y = y := !y + i 
in r g x; !x 
end 

[] 

Fans of pure functional languages might  be feeling smug at  this point,  since 
all our problems appear  to be caused by just  the features that  are absent in pure 
languages. But this reaction misses an impor tant  point, since it is well-known 
tha t  monads  can be used to model imperative features within pure functional 
languages [Mog89], [PW93]. I t  follows that  all the problems of reasoning about  
these features are already present in the applicative world. 

Example  5. Consider the following definition of a "clock" monad: 
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type 'a clock = int -> 'a 

fun u n i t  x = fn _ => x 
infix >>= 
fun x >>= f = fn n => f (x n)(n+l) 

This is not a monad in the categorical sense since the coherence laws do not 

hold, but for our purposes this does not matter. It is simply a program fragment 

which we could write if we were inclined to do so. The idea is to view the integer 
parameter  of c l o c k  as the current time, so that  each expression in the monad  
world can access the current time, while function application (>>=) makes t ime 
advance, because the result of application is interpreted one clock tick after the 
interpretation of the argument.  One can use c l o c k  to simulate names as follows: 

abstype name = A of  i n t  
with fun new f = f o A 

fun eq(A n,A m) = unit (m=n) 

end 

Now new and eq do not return name and bool but name clock and bool clock, 

respectively. We can now translate Example  2 into this setting: 

fun g l '  f x = f x >>= (fn r => f x >>= (fn s => u n i t  ( r , s ) ) )  
fun g2 '  f x = f x >>= (fn z => u n i t  ( z , z ) )  
fun C' g = (g new (fn x=>x) >>= eq) 0 

The functions g1' and g2' are the monadic translations of gl and g2, respect- 

ively. If the corresponding monad were the identity monad -- with unit the 

identity function and >>= being reverse function application - -  then they would 
be identical to the original versions g l  and g2. But  in the clock monad,  the 
function C' distinguishes g l  ' from g 2 ' .  [] 

The lesson we can learn from this is the following: if indistinguishability is 
such a difficult relationship in the presence of names tha t  we have to resort to 
denotational  methods to prove it, then it is just  as difficult in the absence of 
names - -  we still need denotational methods. The  only difference is that  names 
pull the problem a few grades down the type hierarchy, making it omnipresent.  
But if we were looking for a general method to prove indistinguishability, one 
tha t  operates on all types, then sticking to a pure language does not avoid the 
inherent problem. Indistinguishability is difficult! 

Moreover it is a rather volatile relation: any additional features s chosen by an 
SML implementor  for the library of his or her implementat ion may affect indis- 
tinguishability. As one of our earlier examples has shown, the indistinguishability 
relations of SML and EML differ because SML has references which can be used 
to distinguish otherwise equivalent applicative programs while these are absent 
in EML. Thus, SML programs developed in the EML formalism may  only be 
part ial ly correct in the sense that  equivalences required in the specification which 
hold in the absence of references may fail to hold in their presence. 

s A particularly nasty example would be an access to "system time", as this immedi- 
ately makes any program optimisation invalid. 



168 

7 Conclusion 

The design of EML unmasked more problems and issues than we have been able 
to cover above. We have concentrated on those that  are of more general interest, 
and that  are relatively easy to explain. One class of interesting issues that  are 
rather difficult to explain in the space available involve SML's module language, 
concerning e.g. the interpretation of module interfaces and the t reatment  of 
module components that  are not exposed by the interface. All of the issues 
discussed above pertain to SML's core language for defining the components of 
modules (types, values, etc.). 

Some of the problems discussed above arose from our a t tempt  to combine 
specification features with programming features in a single language. It is un- 
clear to us whether all of the problems mentioned will arise if the specification 
and programming languages are decoupled as they are in the Larch "two-tiered" 
approach [GH93]. Our feeling is that the same problems, or some of them, may 
well re-emerge in a different form, but we have no concrete evidence for this asser- 
tion. Direct comparisons are difficult because the preliminary work on Larch/ML 
in [WRZ93] was (to the best of our knowledge) never followed up. 

Prior to 1990, work on EML (by the second author and Andrzej Tarlecki) 
focussed on the use of ML-style modules in specification and formal development. 
The features of SML's core language and the specification constructs required at 
that  level were viewed as one possible instantiation of this general picture [ST86]. 
Only when we looked at these features in excruciating detail while working on 
the semantics of EML did we discover problems like those described above. 
This makes us skeptical of at tempts to connect specifications and programs 
on an informal level without reference to formal definitions of both languages. 
Even if the aim is not formal proofs of correctness, programming languages are 
complicated enough that  there are bound to be hidden problems. Undertaking 
the detailed analysis that  is required when writing a semantics appears to be 
the best way of exposing these. 
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