
Reflections on the Design
of a Specification Language

Stefan Kahrs* and Donald Sannella**

Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh EH9 3JZ

Abst rac t . We reflect on our experiences from work on the design and
semantic underpinnings of Extended ML, a specification language which
supports the specification and formal development of Standard ML pro-
grams. Our aim is to isolate problems and issues that are intrinsic to
the general enterprise of designing a specification language for use with
a given programming language. Consequently the lessons learned go far
beyond our original aim of designing a specification language for ML.

1 I n t r o d u c t i o n

There are many different approaches to the problem of producing correct soft-
ware systems in a given programming language. One line of attack involves the
use of a specification language that is tailor-made to specifying and verifying
properties of programs written in that particular programming language. This
typically involves the use of a logical language that is appropriate for writing
assertions about entities arising in programs written in that programming lan-
guage. Some examples are: Anna [LvH+87] for use with Ada; Larch [GH93]
adapted to the programming language in question via use of an appropriate
"interface language", e.g. L a r c h / C + + [Lea96]; and our favourite, Extended ML
[KST97] for use with Standard ML. Closely related is work on logics for reason-
ing about programs written in particular programming languages, e.g. Haskell
[Tho93]. Although most of the details of this enterprise are specific to the par-
ticular programming language at hand, certain problems and issues are common
to all programming languages or to a class of languages.

In this paper, we reflect on our experiences from work on the design and
semantic underpinnings of Extended ML with emphasis on some of the more
general lessons learned. The topics we cover range from the very general to the
somewhat specific: Sect. 4 on the relationship between models of programs and
models of specifications applies to any programming language; Sect. 5 on adding
logical formulae to a language with a Hindley-Milner (implicitly polymorphic)

* Now at Computing Laboratory, University of Kent, Canterbury CT2 7NF. E-mail
smk@ukc, ac .uk. This research was supported by EPSRC grant GR/K63795.

**E-mail dts@dcs.ed.ac.uk. This research was supported by EPSRC grant
GR/K63795, an EPSRC Advanced Fellowship, an SOEID/RSE Support Research
Fellowship and the EC-funded FIREworks working group.

155

type system is relevant to any programming language having such a type system;
most of Sect. 6 on indistinguishability is relevant mainly to ML and fragments of
ML. We begin with a brief description of Extended ML to provide some context
for the rest of the paper.

2 E x t e n d e d M L in b r i e f

Extended ML (EML) is a wide-spectrum language for the specification and de-
velopment of modular Standard ML (SML) programs. "Wide-spectrum" means
that it encompasses both specifications and programs, as well as hybrids between
the two. These hybrids arise as the intermediate stages of the process that turns
a formal specification into a concrete program that implements it.

EML was conceived in the mid-1980s [ST85], combining ideas from algebraic
specification and the then rapidly evolving functional programming language
ML. Once ML was standardised and given a formal semantics in 1990 [MTH90],
a project was set up to do the same with EML, resulting in its formal definition
in 1994 [KST94].

We are not going to describe the features of EML in any but the most super-
ficial detail. See [KST97] for more details and a gentle but thorough introduction
to the EML semantics. A programmer-oriented introduction is [San91].

We can roughly describe EMLas an extension of SML (minus some of its
imperative features) with the following specification features:

- placeholders for expressions, type expressions, and s t ruc ture 1 expressions;
these are used to express incomplete programs, which are useful entities
during program development

- axioms in structures; these are used to narrow down the possible choices for
replacing placeholders

- axioms in s ignatures 1 ; these demand and/or export properties of the imple-
menting structure

- first-order logic with equality as the language for axioms.

This is a gross simplification and we shall have to expand on some of this later
on. The definition of EML [KST94] is an extension of the definition of SML
[MTH90] by (among other things) a definition of the meaning of axioms and
what it means for a structure to satisfy the axioms in a signature.

3 F u n d a m e n t a l p r i n c i p l e s

Suppose we are given a programming language P and the task of designing a
specification language S suitable for the specification and development of P-
programs.

i "Structure" is ML-speak for module, "signature" for module interface.

156

Is this always possible? Which features should S contain, which primitives,
which logical connectives? Equally importantly: which features should S not
contain? To a certain extent one can answer these questions generically.

Different specification languages have different aims. Near one extreme would
be a specification language that is intended as a formal notation for documenting
programs, or as a vehicle for requirements capture, with no way to verify with
any degree of formality that a given program satisfies a given specification. Then
there is no need to make a formal connection between P and S, and indeed S
may be appropriate for a range of programming languages. Near the opposite
extreme would be specification languages like EML where a central aim is to
enable proofs about specifications, and proofs that a given program satisfies a
given specification. Here a formal connection between P and S is essential to
establish the soundness of inference rules used in proofs that connect P-programs
and S-specifications. Our concern in this paper is with specification languages
of the latter kind.

Given that aim, it is not possible to come up with a meaningfulspecification
language for P unless P has a formal semantics. Without a formal semantics
for P we are not certain what P-programs are supposed to do, making it im-
possible to establish reliably any property of any P-program or to prove interest-
ing relationships between P-programs and S-specifications. Unfortunately, this
requirement rules out most present-day programming languages.

The design of S is constrained by the properties of the semantics of P. For
example, the properties of P-programs we can express in S should not transcend
the properties we can establish from the formal semantics of P . This is closely
related to the reason why we need a formal semantics for P in the first place.

For instance, the dynamic semantics of SML [MTH90] defines the result of
evaluating an expression in a particular environment and a given state. But it
does not specify the required time and space resources for such an evaluation.
The size of the derivation of the evaluation judgement (built from instances of
the rules of the semantics) indicates the required resources in a naive evaluation
model, but this information is unreliable - - SML compilers are not forced to
stick to the evaluation model implicitly suggested by the SML semantics and
hardly any of them do so. This means that any specification language for SML
should abstain from specifying the efficiency and/or complexity of a program.

One may object: people do reason about the efficiency of SML programs,
don ' t they? But if compilers are allowed to modify the performance of a pro-
gram by optimising it (which in some cases may even slow it down) then the
observed performance becomes compiler-dependent. In other words: efficiency is
a property of the machine program the compiler chooses to realize a source pro-
gram, rather than a property of source programs themselves. When we reason
about the efficiency of programs we assume that the compiler is not clever enough
to significantly depart from the naive evaluation model given by the operational
semantics. There is no formal justification for such an assumption.

If P is a typed language, it is natural to exploit its type system both to
coordinate the required link with S and to provide the basis of a type system

157

for S. Although the utility of a type system for specifications as such is a matter
of some debate - - see e.g. [LP97] - - we can hardly avoid mentioning types
in S when asserting properties of typed programs in P. For example, when
specifying the behaviour of a function f : t --+ t ' it is often necessary to quantify
over the values of type t. Apart from this, there is also the important design
issue of making P-programmers feel "at home" when writing S-specifications.
It therefore seems desirable that the type system for S be as close as possible
to the type system for P. When, as in the case of EML, P is a subset of S, the
type system of S should be a conservative extension of the type system of P: a
P-expression e has a P-type t in S iff e has type t in P.

4 M o d e l s o f p r o g r a m s v s . m o d e l s o f s p e c i f i c a t i o n s

The semantics of the programming language P will assign models to programs
of P. For each P-program p, its model [p~ will contain some assortment of
mathematical objects modelling the components of p, including (for example)
the functions defined by p.

Any specification language S needs a semantics which defines the meaning
[[s] of each S-specification s. This is a necessary basis for specification-based
proof: proof that a given program satisfies a given specification; proof that one
specification is a refinement of another; or proof that all programs satisfying a
given specification will satisfy a given property. When we design a specification
language S for use with a programming language P, it is natural to define
the meaning of an S-specification as the class of all P-models (i.e. models of
well-formed P-programs) having the indicated components and satisfying the
requirements spelled out in the specification (see e.g. [ST97]). This enables us
to say that a P-program p satisfies an S-specification s exactly when the model
of p is in the class of models determined by s: [p] E Is].

The expressiveness of P dictates the structure of models of P-programs.
For instance, if P provides constructs for defining non-deterministic functions,
models of P-programs containing such functions will need to model them using
something more exotic than ordinary set-theoretic functions. Even if P does
not provide such constructs, provided P is sufficiently expressive (that is: unless
it is extremely inexpressive), functions in P-programs cannot be modelled by
arbitrary set-theoretic functions. For example, the untyped A-calculus requires
a domain D of values such that D ~ D --~ D; here D --~ D cannot be the
whole function space (since D ~ D --+ D implies]D] = ID --~ D[= [D[IDI
i.e. IDI = 1) so it is taken to be the space of continuous functions [Gun92].
Another source of restrictions on models of P-programs is the desire to reflect
more accurately the constraints that P imposes. For instance, no matter what P
is, no P-program will contain definitions of non-computable functions and so it
would be natural to take only computable functions in P-models. In SML, each
function is modelled as a closure which contains the expression used in defining
the function, so we get only the SML-expressible functions [MTH90]. Of course,

158

all of these are computable, but not all computable functions of a given type are
SML-expressible [Kah96].

Putting these together (the decision to interpret S-specifications using classes
of P-models and the imposition of computability and other restrictions on P-
models) leads to a possible problem, as the following example from [ST96] illus-
trates.

Example 1. Let ~,qui, be a sentence which asserts that equ iv(n ,m) = t rue iff
the Turing machines with GSdel numbers n and m compute the same partial
function (this is expressible in first-order logic with equality, since the equivalence
of TMs is arithmetical [Rog67]). Now consider the following specification:

local va] equiv : nat * nat -> boo1

axiom ~equiv
in val opt : nat-> nat

axiom forall n:nat => equiv(opt(n),n) = true

end

This specifies an optimizing function opt transforming TMs to equivalent TMs.
(Axioms could be added to require that the output of opt is at least as efficient
as its input.) If functions in P-models are required to be computable (and the
semantics of specifications is compositional with models of local s in s' end
obtained by forgetting the s-components of models of s; s') then this specification
will have no models because there is no computable function equiv satisfying
~,quiv. Yet there are computable functions opt having the required property,
for instance the identity function on nat. Thus this specification disallows P-
programs that provide exactly the required functionality. [3

The example is expressed in terms of GSdel encodings of Turing machines where
its practical utility may not be apparent, but exactly the same example could be
phrased in terms of program fragments in a real programming language and a
specification like the one above (and exhibiting exactly the same problem) could
then appear as part of the specification of an optimizing compiler or program
transformation system.

Here are three ways around this problem:

1. Treat local functions differently from "exported" functions, allowing them to
be non-computable. Programs are not required to implement local functions
in specifications anyway.

2. Relax the computability requirement on all functions.
3. Prohibit local functions in specifications.

The second solution seems simpler than the first because it is uniform. This is the
approach taken by EML, where each function is modelled as an EML-express ib le
closure - - still a closure, but where the expression in the closure is allowed to
include "logical" constructs such as universal and existential quantifiers rather
than being expressible using just the constructs of SML [KST94,KST97]. The
third solution is unattractive since it sacrifices a great deal of expressive power.

159

Relaxing conditions on models needs to be done with care. Restrictions
needed to ensure that models exist are still required (see the discussion of the un-
typed A-calculus above). And there is a "logical" limit on expressibility: provided
S extends Peano arithmetic, GSdel's fixpoint theorem can be applied to show
that if satisfaction of the closed formulae of S can be defined in S itself (e.g. as
a total function of type fo rmula -> bool) , then S is necessarily inconsistent. 2 It
appears that any a t tempt to define EML satisfaction in EML yields a function
that fails to terminate in some cases.

5 P a r a m e t r i c i t y

The kernel type system of most functional programming languages these days
is Hindley-Milner polymorphism [Mi178], i.e. shallow, implicit polymorphism.
("Shallow", means that all type quantifiers occur outermost; "implicit" means
that type abstraction and application are syntactically suppressed.) SML needs
some modifications to cope soundly with imperative features, but we can ignore
this for the moment.

The implicitness of type abstraction and type application strongly limits
the options for possible extensions of the type system, should an extension be
required to accommodate the specification logic: type inference and type checking
for System F are undecidable [We194], as is type inference for Hindley-Milner
polymorphism with the addition of proper polymorphic recursion [KTU93].

5.1 P r e r e q u i s i t e s fo r i m p l i c i t p o l y m o r p h i s m

Why do we get away with implicit polymorphism? That is, why are we satisfied
with the particular choices of type abstraction and type application selected by
the type inference algorithm?

There are two fundamental reasons why this is so:

1. There is a best possible choice - - and the type inference algorithm picks it.
2. Whatever choice is made, the outcome of evaluation is not affected.

The mentioned best possible choice is the so-called "principal" or "most general"
type. The principal type subsumes all other possible types, in a technical sense
which we can ignore here. In a certain sense, choosing the principal type is like 3
making no choice at all, leaving all options open.

The second reason is much more important.
Since type applications are implicit, the types inferred for expressions by the

type inference algorithm are to a certain degree arbitrary. Consider the inference
rule for type-checking function application:

F F el : r r F t - e 2 :~

F b e l e2 : r

2 Thanks to Martin Hofmann for this observation.
a There are a couple of involved technical reasons why this is not quite true for SML,

even after the 1997 revision [MTHM97]. For our purposes this is a side-issue.

160

When we infer the type of an application term el e2, the rule requires that
the argument type of the function et and the type of the actual parameter e2
agree - - these are the two occurrences of a in the premise of the rule. The
type inference algorithm makes sure that this is the case, but this does not
necessarily completely determine the type g, since it is possible tha t different
types have this property. We would not want these arbi trary choices to influence
the computa t ion in any way.

Other arbi trary choices arise when type variables are implicitly abstracted at
declaration level. All type variables are abstracted that can possibly be abstrac-
ted (i.e. those in the type that do not occur free in the context), and the order
of abstract ion is arbitrary. Again, these arbi trary choices should not influence
the computat ion.

There are several (related) ways of capturing this idea, e.g. Reynolds ' notion
of parametricity [Rey83] and Wadler 's theorems for free [Wad89]. Essentially,
type quantification can be manipulated in this implicit manner because types
do not interfere with computat ion in System F.

More concretely, one can view type inference as a process that inserts type
conversion functions, in addition to type abstractions and applications, whenever
necessary to generate an explicitly typed program. Parametr ic i ty requires tha t
these conversions are isomorphisms; this may not be the case - - see [Cos92] - -
but for purposes of evaluation, verification and analysis of programs it is sufficient
if they behave like isomorphisms: in other words, the function that converts back
and forth should be indistinguishable from the identity function. (An informal
understanding of indistinguishability will suffice for now. See Sect. 6.1 below for
a definition.)

From what we have already seen, it should be clear that we need isomorph-
isms Va.V/~. v ~ V/~.Va. v since we abstract type variables in an arbi trary order,
and Va. r ~- v (if a ~ FV(r)) since we only abstract type variables tha t occur.
There are more such requirements 4, but these two are sufficient to make our
points.

I t is not difficult to formulate the required isomorphisms in System F. We
will write Aa.t and t[r] to denote type abstraction and type application on te rm
level, respectively.

We can express the commuta t iv i ty isomorphism (in both directions) by

L = Az: (Va.V#.r).A'l.Ab.z[5][~t]

It is easy to check t h a t , o t is fl~-convertible 5 to the identity function, and so ~ is
an isomorphism. More problematic is the conversion between r and Va . r (with

4 Another one is Ya. (r~ x r2) ----- (Va. r~) x (Va. r2) which is needed since SML supports
simultaneous declarations.

5 To be precise, for call-by-value languages such as SML we need to restrict ~3r/-
conversion to values, as in Moggi's)~r [SW96]. Under this restriction, we
can reasonably assume that ~r/-convertible expressions are indistinguishable, even
when the language is extended.

161

~ FV(r)) . The required maps are

~1 = A z : r . A a . x ~2 = Ax: (Va.r).x[1]

where 1 is the unit type (or any other chosen type). Again, L2 o t l can easily be
seen to be fly-convertible to the identity. However, while tl o t2 is fly-convertible
to Ax : (Va.v).A/3.x[1], it is not convertible to the identity function. We therefore
require that Ax : (V a . r) . A f l . z [1] is indistinguishable from the identity function
whenever a is not free in r. In this case, the required property can be proven
in an extension of System F with "Axiom C" from [LMS93]. Turning this back
into English: if the type of a term t does not depend on the type parameter then
neither should the value of t itself be affected by it.

Extensions of the purely functional sublanguage with other features should
preserve the property that tl o t2 is indistinguishable from the identity function.
This requirement applies to various forms of language extension including an
extension with logical formulae or imperative features.

5.2 Assess ing t h e logic

Quantification over values in a typed language P is itself necessarily typed, i.e.
we quantify over values of a particular type. For example, if we specify the
r e v e r s e function for lists then we are not concerned with what it would do if
applied to numbers or functions - - the type system of P is supposed to prevent
that.

There is a problem with typed quantification which arises from the fact that
the t ru th value of a formula may depend on the type of quantification. The
simplest example is the following:

f o r a l l x:t => false

This formula is f a l s e , u n l e s s t is an empty type, in which case it is t r u e . In
EML, we view a type as empty if it has no values. There are indeed empty types
in SML and EML, e.g. d a t a t y p e t = C of t .

The example is perhaps unconvincing, first because in languages with lazy
evaluation one would normally regard I as inhabiting any type, and second be-
cause it resembles the empty-sort problem in Mgebraic specification [GM85,PW84]
which can be dealt with by banning empty sorts altogether, considering that
their usefulness for specification and programming is rather limited. However,
the problem goes deeper than that; consider the following EML formula:

f o ra l l (x , y : t) => x == y

(Here, == is EML logical equality, see Sect. 6.) Again, this formula is t r u e if t is
an empty type, but it is also t r u e if t is a singleton type, like u n i t . In general,
first order logic with equality allows one to distinguish finite types from infinite
types and also finite types of different cardinality.

The above example shows that the problem already appears for universally
quantified equations. Here is another example of the same thing, which relies on
the use of a function:

162

forall (xs : t l i s t) => r ev xs == xs

If r e v is ordinary list reversal then this formula implicitly specifies the same
property as the previous one: x==hd I'x, y] ==hal (r ev [y, x]) ==hd [y, x] ==y.

These examples show that the truth value of a logical formula can depend on
the type of quantification. Indirectly, this means that its t ruth value can depend
on the assignment of types to type variables, and therefore formulae for which
this assignment can vary may have varying truth values. Since the type of a
formula is just bool , the addition of typed quantification breaks the required
isomorphism between bool and Va.bool.

After making this observation it should not come as a surprise to observe
that implicit polymorphism has some rather uneasy interactions with formulae.
These do not occur often; in EML one has to employ the available forms of
explicit polymorphism to contrive unpleasant examples. Here is one:

t ype 'a dummy = boo l
val b: ' a dummy = foral] (x , y : ' a) => x==y

The variable b is bound to a boolean value, but is it t r u e or f a l s e ? Morally,
this should depend on the type application at each instance of b, being t r u e iff
the argument type has at most one element. But type application is implicit in
ML and in this case we cannot reconstruct what the type argument is as it is
not retained by our implicit conversion t2.

The problem is aggravated by the identification of formulae and boolean
expressions. As a consequence of this identification, formulae can appear within
arbitrary expressions, exporting the observed type dependency to values of all
types.

Of course, one can argue that in view of the evident type-dependency of the
logic one should abandon implicit polymorphism and make all type abstractions
and applications explicit. There are just two problems with this: firstly, impli-
cit polymorphism is such a successful design feature because it combines the
benefits of a strong type system (soundness) with the benefits of an untyped
language (you do not have to write types); secondly, an explicitly typed wide-
spectrum language would co-exist rather uneasily with an associated implicitly
typed programming language.

EML sidesteps the problem of type-dependency by giving type-dependent
expressions in axioms no value, and taking an arbitrary choice from among the
possible values of type-dependent expressions that are not within axioms. The
solution for axioms is satisfactory because we are concerned only with whether
axioms are satisfied or not, and when an axiom has no value it is regarded as not
being satisfied. The solution for type-dependent expressions outside axioms is
less satisfactory but it seems adequate for practical purposes since this situation
is very rarely encountered.

5.3 I m p e r a t i v e f e a t u r e s

At this point it is perhaps worth pointing out that the addition of logical features
is not the only language extension that sits uneasily with implicit polymorphism.

163

It is well known that imperative features such as references endanger the
soundness of a polymorphic type system [Dam85,Tof88,Wri95]. What is perhaps
less well-known is that the associated problems can largely be at tr ibuted to
the implicitness of the polymorphism. One of the proposals in Xavier Leroy's
thesis [Ler92] to circumvent the known soundness problems with polymorphic
references is to make type abstraction explicit. Technically, this is achieved by
having two different kinds of le t -binding, a polymorphic one and a monomorphic
one; whenever a l e t - b o u n d variable is used which originates from a polymorphic
l e t then we have an implicit type application which - - in Leroy's suggested
semantics - - forces a new evaluation of the associated expression. In other words,
Leroy only makes the type abstraction explicit; for his purposes he does not need
to know the type parameter of the type application, the fact that there is some
type application is sufficient.

The key to Leroy's idea is that type abstractions are treated as value ab-
stractions - - the evaluation of the body of the abstraction is delayed until a
parameter is provided. The problem that this circumvents is again the fact that
el o t2 is not indistinguishable from the identity function in System F extended
with references. But this time it is /~/-convertible to the identity function if
q-conversion is unrestricted, which shows that unrestricted q-conversion is un-
sound in the presence of side-effects. There is a difference between passing t and
Aa.t[c~] as a parameter: for t we generate references once, for Aa.t[a] we generate
references at each type application separately.

6 L o g i c a l e q u a l i t y a n d i n d i s t i n g u i s h a b i l i t y

The concept of equality is much underestimated in mainstream mathematics.
The general at t i tude seems to be: what could be simpler than that? Consequently,
equality is viewed as a primitive concept in set theory, in universal algebra, and
thus in algebraic specification. In type theory, equality is no longer a primitive
concept, and some type theories even have more than one notion of equality.

Considering the origins of EML in algebraic specification, it should not come
as a surprise that the EML logic contains t==u (so-called logical equality) as
one form of atomic formulae. Logical equality is defined using the notion of
indistinguishability in order to make it extensional on function types [KST97].
Some problems that arise with the use of indistinguishability are discussed in
the rest of this section.

6.1 I n d i s t i n g u i s h a b i l i t y

Two expressions exp a and exp 2 of type r are indistinguishable if and only if for
any context C[] of type u n i t with a hole of type r we have that the evaluation
of C[expl] terminates iff the evaluation of C[exp2] terminates (cf. e.g. [Ong95]).
One can always distinguish "genuinely" different values (such as 0 and 1, or t r u e
and f a l s e) in this way.

164

The choice of u n i t as the result type for the distinguishing contexts is some-
what arbitrary, except that expressions of type u n i t are only distinguished by
their termination behaviour. An obvious alternative would be boo l and distin-
guishing contexts returning t r u e and fa lse , respectively. If C[expl] = t r u e and
C[exp2] = f a l s e then there is obviously a context C' that distinguishes expl
and exp2 in the above sense. However, with this choice we would not even be
able to distinguish the totally undefined function under from any other func-
tion. This would make indistinguishability non-transitive since we would have
f==undef==g for any two functions f , g having the same type. But in a sys-
tem like the typed A-calculus where evaluation always terminates, this choice is
perfectly reasonable.

Indistinguishability is a difficult relationship. Clearly, it is not decidable, but
worse than that, it is neither semi-decidable nor co-semi-decidable. The theory
of fl-conversion (for untyped A-calculus) is not recursive either, but at least it
is r.e. and so there is a complete proof system that enables us to establish fl-
convertibility whenever it holds. With typed A-calculi (without general recursion)
we typically have that indistinguishability is co-r.e., because we can enumerate
the distinguishing contexts and evaluation always terminates, 6 but not r.e., be-
cause equality in the fully abstract model is undecidable; thus, we can at least
have a proof system to refute indistinguishability in that setting.

For a system like SML where termination is not guaranteed, we have the worst
of both worlds: indistinguishability is defined in terms of distinguishing contexts
(which we can enumerate), but even if the context C[] is given, comparing the
termination behaviour of C[expl] and C[exp2] requires a solution to the halting
problem, in general.

P r o p o s i t i o n 1. Indistinguishability for SML is neither semi-decidable nor co-
semi-decidable.

Proof. Suppose that indistinguishability were co-semi-decidable, i.e. that distin-
guishability were semi-decidable. Then we would be able to decide the halting
problem for any program t by comparing the constant c with the expression (t; c)
(which computes t, throws it away and then returns c). This solves the halting
problem for t, because we can distinguish c from (t; c) iff t fails to halt: if ~ fails
to halt then the semi-decision procedure would terminate; so we just have to run
the evaluation of t in parallel and wait to see which process terminates first.

Suppose that indistinguishability were semi-decidable. A similar argument
applies, where we compare t with a looping program. []

The above argument can easily be adapted to languages other than SML.
Proposition 1 says that whatever proof system we may come up with to sup-

port formal proofs and/or refutations of indistinguishability, it will be incomplete
in the strong sense that there will be indistinguishable expressions which the sys-
tem will fail to certify as indistinguishable as well as distinguishable expressions
which it will fail to distinguish.

6 Since evaluation always terminates, here we define indistinguishability via contexts
of type bool returning t rue or fa l se .

165

6.2 I n d i s t i n g u i s h a b i l i t y in t h e p r e s e n c e o f i m p u r e f e a t u r e s

The computational sublanguage of EML is not quite a "pure" functionM pro-
gramming language. Although references and input /ou tput were omitted, ex-
ceptions were retained in the hope that they would not upset reasoning about
programs too much. This hope turned out to be misplaced.

One aspect of ML exceptions can be expressed by so-called names. Names
can be generated using a new function, and names can be compared for equality
where separately-generated names are not equal. The type of names can be
implemented in SML in various ways: using references (e.g. via u n i t r e f and the
equality of references, or an abs type with a local counter); or just via exceptions:

abstype name = A of exn * (exn -> bool)

with fun new f = let exception X
in f (A(X,fn X=>true[z=> f a l s e))
end

[un eq(A(_,f),A(e,_)) = f e

end

As type of new we have (name->'a)->'a which exactly corresponds to the idea

that new is a variable binder, i.e. we write new (fn x=>a) for the expression a
with the new name x.

Reasoning about indistinguishability of programs containing names is no-
toriously difficult [PS93], to the point where for certain "obviously" equivalent
expressions, no syntactic method of establishing indistinguishability is known.
So, this is already bad news. What makes the situation worse is that the very
presence of names affects indistinguishability of ordinary applicative programs:

Example 2. Consider the functions g l and g2, defined as follows:

fun gl f x = (f x, f x)

fun g2 f x = let vai z=f x in (z,z) end

The functions g l and g2 are clearly indistinguishable in a purely applicative
call-by-value language. 7 However, in the presence of names we can write the
function C which distinguishes them: C g l is f a l s e while C g2 is t r u e .

fun C g = e q (g new (fn x = > x))
[]

Notice that the result of post-composing g l or g2 with either the first or second
projection is indistinguishable (even in the presence of names) from ordinary
function application. If follows that pairing is not a categorical product.

In EML we do not have names as a primitive; we have exceptions which - -
as we have seen - - are expressive enough to encode names. However, they are

7 In our examples, we nonchalantly claim the indistinguishability of particular ex-
pressions in certain sublanguages of SML without proof. One could establish these
formally by using and combining techniques from the literature, e.g. applicative
bisimulations [Abr90] and applicative equivalences [PS93].

166

more expressive than names, in the sense tha t the presence of exceptions allows
even more applicative programs to be distinguished than names do.

Example 3. Consider the functions and l and andr , defined as follows:

fun andl a b () = if a() then b() else false
fun andr a b () = if b() then a() else false

The functions andl and andr are indistinguishable in applicative contexts and

remain indistinguishable if we have names at our disposal. However, in the pres-

ence of exceptions we can write the function C which distinguishes them: C andr
is false and C andl is true.

except ion A
fun nothing() = raise A
fun ff() = false

fun C a = a n o t h i n g f f () handle _ => t r u e
[]

If we further add references and/or inpu t /ou tpu t then even more applicative
programs can be distinguished. Here is an example of two functions tha t are
indistinguishable in the presence of exceptions but distinguishable by references.

Example 4. Consider the functions r l and r2, defined as follows:

fun r t g x = (g x; g x)
fun r2 g x = g x

The functions r l and r2 are indistinguishable in the absence of references: if g
x fails to terminate or raises an exception e then so will both r l g x and r2 g
x; otherwise the resulting values could only differ in freshly generated exception
names, but then these sets of names are isomorphic. But the following function
C distinguishes them: C r l is 3 and C r2 is 2.

fun C r =
let va/ x = r e f 1

fun g y = y := !y + i
in r g x; !x
end

[]

Fans of pure functional languages might be feeling smug at this point, since
all our problems appear to be caused by just the features that are absent in pure
languages. But this reaction misses an impor tant point, since it is well-known
tha t monads can be used to model imperative features within pure functional
languages [Mog89], [PW93]. I t follows that all the problems of reasoning about
these features are already present in the applicative world.

Example 5. Consider the following definition of a "clock" monad:

167

type 'a clock = int -> 'a

fun u n i t x = fn _ => x
infix >>=
fun x >>= f = fn n => f (x n)(n+l)

This is not a monad in the categorical sense since the coherence laws do not

hold, but for our purposes this does not matter. It is simply a program fragment

which we could write if we were inclined to do so. The idea is to view the integer
parameter of c l o c k as the current time, so that each expression in the monad
world can access the current time, while function application (>>=) makes t ime
advance, because the result of application is interpreted one clock tick after the
interpretation of the argument. One can use c l o c k to simulate names as follows:

abstype name = A of i n t
with fun new f = f o A

fun eq(A n,A m) = unit (m=n)

end

Now new and eq do not return name and bool but name clock and bool clock,

respectively. We can now translate Example 2 into this setting:

fun g l ' f x = f x >>= (fn r => f x >>= (fn s => u n i t (r , s)))
fun g2 ' f x = f x >>= (fn z => u n i t (z , z))
fun C' g = (g new (fn x=>x) >>= eq) 0

The functions g1' and g2' are the monadic translations of gl and g2, respect-

ively. If the corresponding monad were the identity monad -- with unit the

identity function and >>= being reverse function application - - then they would
be identical to the original versions g l and g2. But in the clock monad, the
function C' distinguishes g l ' from g 2 ' . []

The lesson we can learn from this is the following: if indistinguishability is
such a difficult relationship in the presence of names tha t we have to resort to
denotational methods to prove it, then it is just as difficult in the absence of
names - - we still need denotational methods. The only difference is that names
pull the problem a few grades down the type hierarchy, making it omnipresent.
But if we were looking for a general method to prove indistinguishability, one
tha t operates on all types, then sticking to a pure language does not avoid the
inherent problem. Indistinguishability is difficult!

Moreover it is a rather volatile relation: any additional features s chosen by an
SML implementor for the library of his or her implementat ion may affect indis-
tinguishability. As one of our earlier examples has shown, the indistinguishability
relations of SML and EML differ because SML has references which can be used
to distinguish otherwise equivalent applicative programs while these are absent
in EML. Thus, SML programs developed in the EML formalism may only be
part ial ly correct in the sense that equivalences required in the specification which
hold in the absence of references may fail to hold in their presence.

s A particularly nasty example would be an access to "system time", as this immedi-
ately makes any program optimisation invalid.

168

7 Conclusion

The design of EML unmasked more problems and issues than we have been able
to cover above. We have concentrated on those that are of more general interest,
and that are relatively easy to explain. One class of interesting issues that are
rather difficult to explain in the space available involve SML's module language,
concerning e.g. the interpretation of module interfaces and the t reatment of
module components that are not exposed by the interface. All of the issues
discussed above pertain to SML's core language for defining the components of
modules (types, values, etc.).

Some of the problems discussed above arose from our a t tempt to combine
specification features with programming features in a single language. It is un-
clear to us whether all of the problems mentioned will arise if the specification
and programming languages are decoupled as they are in the Larch "two-tiered"
approach [GH93]. Our feeling is that the same problems, or some of them, may
well re-emerge in a different form, but we have no concrete evidence for this asser-
tion. Direct comparisons are difficult because the preliminary work on Larch/ML
in [WRZ93] was (to the best of our knowledge) never followed up.

Prior to 1990, work on EML (by the second author and Andrzej Tarlecki)
focussed on the use of ML-style modules in specification and formal development.
The features of SML's core language and the specification constructs required at
that level were viewed as one possible instantiation of this general picture [ST86].
Only when we looked at these features in excruciating detail while working on
the semantics of EML did we discover problems like those described above.
This makes us skeptical of at tempts to connect specifications and programs
on an informal level without reference to formal definitions of both languages.
Even if the aim is not formal proofs of correctness, programming languages are
complicated enough that there are bound to be hidden problems. Undertaking
the detailed analysis that is required when writing a semantics appears to be
the best way of exposing these.

Acknowledgements:
Our special thanks to Andrzej Tarlecki for long and productive collaboration

on all aspects of EML and related topics, including some of the specific issues
discussed above. Thanks to Michel Bidoit for useful comments on a draft.

References

[Abr90]

[Cos92]

[DamS5]

S. Abramsky. The lazy lambda calculus. In D. Turner, editor; Research
Topics in Functional Programming, pages 65-116. Addison-Wesley, 1990..
R. di Cosmo. Type isomorphisms in a type-assignment framework. In Proc.
19th ACM Syrup. on Principles of Programming Languages, pages 200-210,
1992.
L. Damas. Type Assignment in Programming Languages. PhD thesis, Uni-
versity of Edinburgh, 1985.

169

[GM85]

[Gun92]
[GH93]

[gah96]

[KST94]

lEST97]

[KTU93]

J. Goguen and J. Meseguer. Completeness of many-sorted equational logic.
Houston Journal of Mathematics, 38:173-198, 1985.
C. Gunter. Semantics of Programming Languages. MIT Press, 1992.
J. Guttag and J. Homing. Larch: Languages and Tools for Formal Specific-
ation. Springer, 1993.
S. Kahrs. Limits of ML-definability. In Proceedings of PLILP'96, volume
1140 of Lecture Notes in Computer Science, pages 17-31. Springer, 1996.
S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML.
Technical Report ECS-LFCS-94-300, University of Edinburgh, 1994.
S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: A
gentle introduction. Theoretical Computer Science, 173(2):445-484, 1997.
A. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence
of polymorphic recursion. A CM Transactions on Programming Languages
and Systems, 15(2):290-311, 1993.

[LP97] L. Lamport and L. Paulson. Should your specification language be typed?
Technical Report 425, University of Cambridge, Computer Lab, 1997.

[Lea96] G. Leavens. An overview of Larch/C++: Behavioral specifications for C + +
modules. In H. Kilov and W. Harvey, editors, Object-Oriented Behavorial
Specifications, pages 121-142. Kluwer Academic, 1996.

[Ler92] X. Leroy. Polymorphic typing of an algorithmic language. Rapports de
Recherche No. 1778, INRIA, 1992.

[LMS93] G. Longo, K. Milsted, and S. Soloviev. The genericity theorem and paramet-
ricity in the polymorphic A-calculus. Theoretical Computer Science, 121:323-
349, 1993.

[LvH+87] D. Luckham, F. yon Henke, B. Krieg-Brfickner, and O. Owe. Anna, a
Language for Annotating Ada Programs: Reference Manual, volume 260 of
Lecture Notes in Computer Science. Springer, 1987.

[Mi178] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

[MTHg0] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proc. Jth IEEE
Syrup. on Logic in Computer Science, pages 14-23, 1989.

lOng95] C.-H. L. Ong. Correspondence between operational and denotational se-
mantics: The full abstraction problem for PCF. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, Vol. ~,
pages 269-356. Oxford Univ. Press, 1995.

[PW84] P. Padawitz and M. Wirsing. Completeness of many-sorted equational logic
revisited. EATCS Bulletin, 24:88-94, 1984.

[PW93] S. Peyton Jones and P. Wadler. Imperative functional programming. In
Proc. $Oth Syrup. on Principles of Programming Languages, pages 71-84,
1993.

[PS93] A. Pitts and I. Stark. Observable properties of higher order functions that
dynamically create local names, or: What's new? In Proc. 18th Intl. Syrup.
on Mathematical Foundations of Computer Science, volume 711 of Lecture
Notes in Computer Science, pages 122-141. Springer, 1993.

[Rey83] J. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing '83, pages 513-523, 1983.

170

[Rog67]

[sw96]

[san91]

[ST851

[ST86]

[ST961

[ST97]

[Tho93]

[Tof88]

[Wad89]

[We194]

[WRZ93]

[Wri95]

H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.
A. Sabry and P. Wadler. A reflection on call-by-value. In Proc. Intl. Conf.
on Functional Programming, 1996.
D. Sarmella. Formal program development in Extended ML for the working
programmer. In Proc. 3rd BCS/FA CS Workshop on Refinement, Workshops
in Computing, pages 99--130. Springer, 1991.
D. Sarmella and A. Tarlecki. Program specification and development in
Standard ML. In Proc. 12th ACM Syrup. on Principles of Programming
Languages, pages 67-77, 1985.
D. Sarmella and A. Tarlecki. Extended ML: An institution-independent
framework for formal program development. In Proc. Workshop on Cat-
egory Theory and Computer Programming, volume 240 of Lecture Notes in
Computer Science, pages 364-389. Springer, 1986.
D. Sarmella and A. Tarlecki. Mind the gap! Abstract versus concrete models
of specifications. In Proc. 21st Intl. Syrup. on Mathematical Foundations
of Computer Science, volume 1113 of Lecture Notes in Computer Science,
pages 114-134. Springer, 1996.
D. Sannella and A. Tarlecki. Essential concepts of algebraic specification
and program development. Formal Aspects of Computing, 9:229-269, 1997.
S. Thompson. Formulating Haskell. In Proc. Workshop on Functional Pro-
gramming, Workshops in Computing. Springer, 1993.
M. Torte. Operational Semantics and Polymorphic Type Inference. PhD
thesis, University of Edinburgh, 1988.
P. Wadler. Theorems for free! In Proc. $th ACM Conf. on Functional Pro-
gramming Languages and Computer Architecture, pages 347-359, 1989.
J. Wells. Typability and type-checking in the second-order A-calculus are
equivalent and undecidable. In Proc. 9th IEEE Syrup. on Logic in Computer
Science, pages 176-185, 1994.
J. Wing, E. Rollins, and A. Zaremski. Thoughts on a Larch/ML and a new
application for LP. In Proc. 1st Intl. Workshop on Larch, Workshops in
Computing, pages 297-312. Springer, 1993.
A. Wright. Simple imperative polymorphism. LISP and Symbolic Computa-
tion, 8(4):343-365, 1995.

