
Algebra Transformation Systems
and their Composition

Mar t in Gro f l e -Rhode *

Dipartimento di Informatica, Universit~ degli Studi di Pisa,
Corso Italia, 40, I - 56125 Pisa, Italia, email: mgr~di.unipi.it

Abs t rac t . Algebra transformation systems are introduced as formal
models of components of open distributed systems. They are given by
a transition graph modelling the control flow and partial algebras and
method expressions modelling the data states and their transformations.
According to this two--level structure they cover both labelled transi-
tion systems and rule based specification approaches, corresponding to
information, computation and engineering viewpoint models. Different
composition operations for algebra transformation systems are investi-
gated. Limits and colimits model parallel and sequential composition of
components, signature morphisms yield appropriate syntactical support
for such compositions. The most important compositionality properties
known from algebraic specification, like colimits of signatures and amal-
gamation of models, also hold for the framework of algebra transforma-
tion systems.

1 I n t r o d u c t i o n

Algebra transformation systems are introduced as formal models of compo-
nents in open distributed systems in order to support multiple viewpoint mod-
elling. The background for their development has been the reference model
for open distributed systems RM-ODP, introduced as ISO-standard / I T U -
recommendation [ODP]. One of the main features of RM-ODP is the introduc-
tion of five designated viewpoints as structuring means for design and specifica-
tion of distributed systems. Viewpoints allow the separation of different aspects
of a system, such that specifications can be restricted to the parts that are
relevant for some specific use. The five viewpoints defined in RM-O D P are en-
terprise, information, computation, engineering, and technology viewpoint. With
the approach of algebra transformation systems especially the information, com-
putation, and engineering viewpoints are supported. Tha t means the information
model, the computational model, and the infrastructure needed to realize the
services of the system in a distributed environment could be modelled formally
as algebra transformation systems.

* This work has been partially supported by the EEC TMR network GETGRATS
(General Theory of Graph Transformation Systems), contract number ERB-FMRX-
CT960061.

108

As specification languages for these viewpoints RM-ODP recommends, be-
yond others, Z for the information viewpoint and LOTOS for computation and
engineering viewpoints. In Z static, invariant, and dynamic schemata for the
specification of designated states, state invariants, and state transformations re-
spectively can be given, corresponding to the requirements of an information
viewpoint specification language. LOTOS supports the specification of the in-
teraction of computation objects at interfaces, corresponding to computational
and engineering viewpoint resp.

The purpose of the algebra transformation system approach is to deliver a
formal semantical approach that covers both specification approaches explicated
by Z and LOTOS. That means, the rule based approach with internally struc-
tured states and their transformation underlying Z, as well as the approach via
the temporal ordering of observable actions underlying LOTOS shall be inte-
grated. One of the main advantages of such an integration is the possibility to
embed both kinds of models into one framework to compare them and check
their consistency.

An algebra transformation system is given by two levels. The first one, called
the transition graph, models the reactive behaviour of the system, that is, its
temporal ordering of actions. Associated with each control state of this level
is a data state on the second level that models the information available in
this state. The transitions of control states are accordingly labelled with sets of
melhod expressions on the second level, that indicate which methods have been
applied for this data state transformation and how they have been applied.

The second main purpose of this paper is to introduce composition operations
for algebra transformation systems, that allow to model different kinds of com-
positions of components. According to their two-level structure these composi-
tion operations are inherited from composition operations for labelled transition
systems on the one hand, and abstract data types on the other hand. Parallel
composition of labelled transition systems for instance is modelled by limits,
such as products (see [WN95]), whereas composition of abstract data types is
given by colimits (see e.g. [BG77,EMS5]). This duality is reflected for algebra
transformation systems in the definition of the corresponding morphisms, where
the two levels are mapped in opposite order. In this way the right composi-
tion operations are put together for the two levels. Beyond parallel composition,
with appropriate synchronization mechanisms, sequential composition is inves-
tigated. This is particularly important for the definition of control structures for
rule based specifications, which are usually encoded into the states. However,
an explicit modelling of the control flow as in algebra transformation systems,
independently of the information represented in the data states, is much more
appropriate and supports clear and manageable specifications much better. Se-
quential composition is given by colimits of the transition graphs (i.e. the control
structure) with identities on the data states; passing the control flow from one
component to another should not change the underlying data state.

The paper is organized as follows. In the next section the category of algebra
transformation systems is introduced. Then composition in the sense discussed

109

above is introduced, i.e. limits and colimits are defined. In section 4 signature
morphisms are defined and their support for composition operations is discussed.
For all definitions and constructions small examples are given to show how they
work and how they can be used for applications. Further examples can be found
in [Gro97], where also a methodology for the presentation of transformation
systems is discussed. Finally in section 5 a short summary and a comparison
with other approaches are given, and further questions are discussed. Full proofs
of the propositions and theorems of sections 2 and 3 of this paper can be found
in [Gro97].

2 T h e C a t e g o r y o f T r a n s f o r m a t i o n S y s t e m s

As discussed above an algebra transformation system is given by two levels, the
transition graph modelling the control flow, and the data states and method
expressions representing the information available in the states and transitions.
The data states of an algebra transformation system are given by partial algebras
to a common partial equational specification. A signature for partial algebras is
a usual algebraic signature SIG = (S, OP), given by a set S of sort names and a
family O P = (OPw,s)wes . , s e s of operation symbols indexed by their arities. As
usual an operation symbol op E OP,~,s is denoted op : w --+ s. The semantical
difference to total algebras is that an operation symbol op : w ~ s is interpreted
as a partial funct ion op A : As1 • " " • A ~ o ~ As (i f w = s l . . . s n) , given
by a domain of definition dom(op A) C_ As , • . ." • As~ and a total mapping
dom(op A) ~ As. Homomorphisms of partial SPEC-a lgebras are given by fami-
lies of total functions that preserve the domains of definition of the operations,
and operation application. An equation t = t ' is satisfied by a partial algebra A
if both terms t and t' can be evaluated (are defined) in A, and yield the same
value. Satisfaction of a conditional equation r = r ' =~ t = t ' is defined as usual:
whenever the premise r = r ' is satisfied, then also the conclusion t = t ' must be
satisfied. The interpretation of equations also yields the definedness predicate
for terms t, denoted t l , given by t~ i ff t = t. A signature S IG with a set CE of
conditional equations is called a partial equational specification SPEC. The cat-
egory of partial SPEC-a lgebras and homomorphisms is denoted P A I g (S P E C) ,
its class of objects IPAO(SPEC)I . (For further details see [Rei87,CGW95].)

Partial algebras have been chosen for two reasons. Firstly they comprise first
order structures, since predicates can be modelled by partial functions to a sin-
gleton set. Of course they are more general than first order structures because
of the partial functions. Secondly, partiality allows to model the difference be-
tween declaration and instantiation (resp. initialization) of syntactic entities in
a natural way, because terms to a signature need not be interpreted in all par-
tial algebras to this signature. Especially in the context of dynamically changing
states this feature is very appropriate.

Method names are added to the data state specification, like operation sym-
bols, as names with arities that determine the number and type of the parameters
they require. However, methods do not have an output sort, they do only change

110

the state. Data outputs have to be modelled by data type functions whose value
can be determined by the actual state, according to the conditional equations in
the data type specification.

Definition 1 (Transformation Signature). A transformation signature T S =
(SPEC, M) is given by a partial equational specification SPEC = (S, OP, CE)
and a method signature M = (Mw)~oes.. A method name m �9 Mw is denoted
m : w for short.

Transitions are labelled by sets of method expressions that contain the names
of the methods that have been applied, and corresponding lists of parameters
from the actual state.

Defini t ion 2 (M e t h o d Expression). Given a transformation signature T~U =
(SPEC, M) the set MET~ of method expressions is defined by

MET~ --- UAEIPAIg(SPEC) I METe(A) ,

where the components METe(A), A �9 IPAIg(SPEC)I, are defined by

METe(A) = {m(a) lrn �9 Mw,a �9 Aw} .

As prerequisite for the definition of transformation systems let me shortly fix
the formal structure of sets of method expressions. The powersets :P(METE(A))
with inclusions as morphisms are categories. These are indexed by the functor

7~(MET ~(_)) : PAIg(SPEC) --, Cat.

It is defined on a SPEC-homomorphism h : A --* B as the direct image, i.e.

7~(METE(h))(K) -- {m(h(a)) lm(a) �9 K} C METe(B)

for all K C_ METE(A). Obviously 7~(METE(h)) and 7~(METE(_)) are func-
tors. This indexing induces, via the appropriate Grothendieck construction, the
flat category denoted "P(METE), whose objects are pairs (A, K), with A �9
IPAlg(SPEC)] and g C METE(A), and whose morphisms are pairs (h, C) :
(A, K) --* (B, n), where h : A --* B is a SPEC-homomorphism such that
P(METE(h))(K) C__ L. Overloading notation a bit both the functor 7~(METE(h))
and the morphism (h, C) will be denoted by h in the sequel.

Beyond the data states (= partial SPEC-algebras) and the method expres-
sions an algebra transformation system comprises the control flow. It is modelled
by a directed graph of control states and transitions, and it may have loops and
multiple edges. This graph is formally given by sets of states and transitions,
and functions src and tar that assign source and target states to the transitions.
The data states and sets of method expressions are then formally modelled as
labels of control states and transitions.

Def ini t ion 3 (Trans fo rmat ion System). Let T2Y = (SPEC, M) be a trans-
formation signature. A T~-transformation system ,4 = (TG.4, lab.4) is given by
a transition graph

111

TG.4 = (S , 7-, src, tar) with src, tar : 7- --* S ,

and a pair of functions

lab~ = (labs : S --, IPAIg(SPEC)I , labT : 7- --* 7 ~ (M Z r ~)) ,

such tha t

lab~-(l) C_ M E T E (l a b s (s r c (l)))

for all l E 7-, i.e. the parameters are always taken from the actual source state.

l

T T
I I
T Y

S {re(a),...} "" T

The two labelling functions support the methodological separation between con-
trol flow and da ta t ransformation level. The first one is completely independent
f rom the t ransformation signature, which will be used later on in the definition
of the forgetful functor. Note that a transition may be labelled by the empty set,
which allows to model da ta state t ransformations induced by the environment.

A transition l E 7- with src(l) = s and tar(l) = t will be denoted l : s ---* t.
Moreover both l E 7- and the triple l : s ---* t will be called transition. Corre-
spondingly 7- is called the transit ion relation. The labels of states and transitions
will also be indicated by capital letters, i.e. labs(s) = S and labT(l) = L for
states s E 8 and transitions l E 7-. The condition that parameters are always
taken from the actual s tate in the definition above thus reads: L C_ M E T v (S)
for all l : s ~ t E 7-.

Example 4- Consider as running example the following signature of a program
tha t increments the value of a program variable by a given positive natural
number.

A specification n a t of the natural numbers is extended by a sort prog_var
of program variables and a partial function ! that assigns - - in each s tate - -
the actual values to the program variables. Furthermore a variable name p is
introduced and a method inc to increment the value of a variable by a given
amount .

p r o g ---- n a t Jr
s o r t s prog_var
o p n s !: prog_var -* nat

p: -* prog_var
m e t h s inc: prog_var, nat

A p r o g - t r a n s f o r m a t i o n system that models the expected behaviour is defined
as follows. Let p r o g - d a t a be the partial equational specification given by p r o g

112

without the method name inc, and Xn for some n E IN be the partial p r o g -
da ta -a lgebra defined by

X.l .a , = IN, (X,,)prog_~ar = {x} , p X . = x , ! x . (x) = n,

i.e. Xn is the state in which X has the value n. Then a p rog- t rans format ion
system X = (T G x , labx) can be defined by

control states Sx = IN
data states labs(n) = Xn
transitions 7-x = {(k : n --* n + k) I k > O}
method expressions lab~-(k : n --* n + k) = { i n c (X , k)}

This model contains as labelled paths all sequences of method applications.

k k'
n �9 n + k * n + k + k I � 9
T T T
I I I
Y Y V

�9 X ". Xn {i,c(x,k)}'" ,~+k {i,r X,+k+k, "

In order to model a control flow that stops after each single step the control
flow information has to be refined. E.g. the control states are extended by marks
start and stop, and each transition leads from a s tar t -s ta te to a corresponding
slop-state.

control states
data states
transitions
method expressions

S = IN x {start, stop}
labs(n, start) = labs(n, stop) = X .
7- = {k: (n, start) --* (n + k, stop) I k > O}
labT(k : (n, start) ---, (n + k, stop)) = {inc(X, k)}

(n, start) k ~. (n + k, stop) (n + k, start) k ' . (n + k + k', stop)
T A. A T
1 x i I

Xn .." Xn+k ?. Xn+k+k, {i,c(x,k)} (i,c(x,~')}

In both examples the method inc induces a function, that assigns to each data
state Xn and all parameters X and k in Xn a successor state Xn+k. In general
methods need neither be total nor deterministic, that is, they correspond to
relations rather than functions.

As mentioned in the introduction morphisms of transformation systems are
defined in such a way that appropriate composition operations are supported.
Composition of data states is modelled by colimits in the category of partial
algebras. This models the superposition of data states w.r.t, some shared parts.
(Thus also the communication on the data state level is given by sharing.) A
coproduct of two partial SPEC-algebras A and B for example can roughly be
described as follows. The carrier sets of A + B are the unions of the (renamed)
carriers of A and B, where the term generated elements are identified and the
non generated parts are united disjointly. The operations of A -t- B are given by

113

the corresponding unions of the operations of A and B, provided they coincide
on the intersections of their domains in A + B, and their union still satisfies the
axioms. (Otherwise the carriers may collapse.) Thus coproduct is disjoint union
with sharing of term generated parts.

On the other level, parallel composition of transition graphs, like parallel com-
position of labelled transitions systems, is given by limits. Products correspond
to pure parallel composition, pullbacks correspond to parallel composition with
synchronization between the parts, induced by actions that both components
must perform during the same step. Since parallel composition of components
should be supported for the case that both components act on different parts
of a data state, possibly overlapping in basic types or the part they synchronize
upon, limits of the transition graph part should be combined with colimits on
the data state part. Tha t means, the two levels of a morphism of transformation
systems must have opposite direction. 1

Definition 5 (T r a n s f o r m a t i o n S y s t e m M o r p h i s m) . Let .A = (TG.a, lab.a)
and .A ~ = (TG.a,, lab.a,) be T~- t rans fo rmat ion systems. A TE-morphism h =
(hTG, (h,)s~S) : ,4 ---* ,4' is given by a graph homomorphism

h TG : TG.a ---* TG.a,,

and a family of SPEC-homomorphisms

(h, : S' ~ S) , e s (with s' = hTG(S)) ,

such that

hs(L') C_ L (with l' = hTG(l))

for all l : s --* t E T .

l
s ~ t

s' ~ t'
I, ~ |,

S L' T

Proposition 6. TE-transformation systems and morphisms form a category,
called T S (T E) , for each transformation signature TE.

1 An analogy for these opposite directions can be seen in the duality of algebraic
specification of data types and coalgebralc specification of dynamic systems. Initial
algebras are the designated, typical and generated models of an algebraic specifica-
tion, final coalgebras play the corresponding role for dynamic systems.

114

3 C o m p o s i t i o n b y L i m i t s a n d C o l i m i t s

A limit A of a diagram of transformation systems `4i and morphisms h : A i --* .AJ
is constructed as follows. First the limit T G ~ of the transition graphs T G ~
and graph morphisms hwa : T G ~ , --* TG.4~ is constructed. Thus a transition
1 : s --* t in .4 is given by a family of transitions I i : s i --* t i in .4i with
hTa(l i : s i --* t i) = / J : sJ --+ tJ for all h : .4i ._..4j in the diagram. For any state
s in TG.4 the data state S is then given by the colimit of all data states S i of
the control states s i = r~G(s) and the data state homomorphisms h,~ : S j ~ S i
with h T v (S i) = s j . The label L of a transition l : s --* t in T G A is obtained in
the same way as a colimit in 7) (M E T e) .

t j T j

S I S i

Since both the categories of graphs and partial algebras have limits and colimits,
the dual construction yields colimits of algebra transformation systems. Thus we
obtain

T h e o r e m 7. T S (T E) is complete and cocomplete.

Example 8 (Parallel Composit ion). As an example for the parallel composition
of transformation systems via limits consider the following extension of the trans-
formation signature p r o g and the prog- t ransformat ion system X in example
4. First the signature is extended to a transformation signature p , q - p r o g by
a second program variable q: ~ prog_var. Then two p , q - p r o g - t r a n s f o r m a t i o n
models Y and Z are constructed similarly to the p r o g - m o d e l X . Each has
access to one of the two program variables and increments it using the method
inc. The corresponding data states]In and Zrn for n, m E IN are given by

Y . l . . t = Z m l . . t = IN, (Y.)pro _ or = { r } , (zm)p.og_ o = { z } ,

pY" = Y , qY" is undefined, j r , (y) = n,

pZ.~ is undefined, qZ~ = Z, [Z=(Z) = m .

The transition graphs of y and Z are defined like the one of X, extended by idle
transitions 0 : n --~ n labelled by the empty set. This allows to model independent
transformations in the product constructed below. The other labels are defined
accordingly.

115

Y Z
control states IN IN
data states n ~ Y. m ~ gm
transitions {(k: n - ~ . + k) I k > o} { (t : m - , m + z) It > o}

rnethodexp.'s k~-+{~ inc(Y'k)} ifk=0ifk>0 l~._,{{inc(Z,l)}o ifl=0ifl>0

According to the general construction of limits discussed above the product
y x Z is given by the products of the transition graphs of 3) and Z, for each
control state the coproduct of the component data states, and for each transition
the union of the sets of method expressions labelling the component transitions.
Explicitly this means 3) x Z is given by

8 y x z = I N x IN

labyxz(n ,m) = Yn + Zr.

7-yxz = {(k,/): (n,m) ~ (n + k , m + l)) I k , l> O)

Zaby• t) : (n, m) -* (n + k, m + 0)) =

{inc(Y, k), the(Z,/)} if k > O, 1 > 0
{inc(Y, k)} if k > O, I = 0

= {ine(Z,/)} if k = O,l > 0
0 i f k = O , l = O

where the partial prog-data-a lgebras Y. + Zm are given by

yn + Z~l.~ = ~ , (Y,~ + Zm)prog_var = { X , Y } ,
pY~+Z.~ = y, qy.+z.~ = Z,

!Y .+Z.(y) = n, !Y '+Z'(z) = ra,
i.e. Yn + Zm is the state in which Y has the value n and Z has the value m .

Y.+k + Z.~

, ' ~ ' ~ { ,~(x ,k) , , .~ (Y, ,)} -~
Y. + Z,~ ~.- Y.+k + Zm+~

Yn + Z,,+t

U
0

116

Example g (Sequential Composit ion). In this example colimits are used for the
sequential composition of transformation systems. A mutable list of data items
with list cursor on a given set of data shM1 be modelled, and a method to delete
the n ' th element of this list. This de le t e -me thod is put together by a m o v e -
method that moves the cursor to the right place and an e r a s e - m e t h o d that
erases the actual element of the list.

The list is defined in each state by a partial function next:data --* data, the
list cursor by a pointer to natural numbers. The position n of the element that
shall be deleted is given to the system as parameter of the move and delete
methods.

l i s t = n a t + d a t a +
o p n s next: data --* data

cursor: --* nat
m e t h s erase:

move, delete: nat

The data states are represented by two lists corresponding to the parts of the
list before the cursor and the remainder. These lists 1, r G A* shall satisfy the
side condition that their concatenation lr has no repetitions in order to define
a partial function next. Each such pair (l, r) G A* • A* then defines a partial
l i s t - d a t a algebra S(I, r) by

S(l , r)Inat = IN, S(l , r)data = A,

nextS(Z'r)(ai) = ai+l if lr = a t . . . a m

cursor s(z'r) = length(l) q- 1 .

Now three l is t - t ransformat ion systems are defined on top of these data
states, one for each method. The same signature can be used for all three, be-
cause not all method names need to occur in a model.

Move : The pairs of lists (l, r) are used as control states for the move method,
together with a natural number n that records the target position. If the target
is reached this is represented by the tag st(n); the position is stable.

,~,nove = A* • A* • (IN U {s t (n)]n G IN})

labs(l , r, 7) = S(l , r)

7 -m~ is defined by

(t, xr ' , n) --* (lx, r ' , n) ifr length(l) + 1 < n < length(lxr')
(t , r , n) ~ (~,tr, n) i~ n < length(l)
(l, r, n) -* (l, r, st(n)) i~ length(1) + 1 = n

All these transitions are labelled { m o v e (n) } , i.e. the index n in the abstract state
representation is the parameter of the method until it reaches its target.

117

Erase : Since the erasion of the actual list element requires exactly one step
the marks start and stop are used again in the state representation.

S erase = A* x A* x {start, stop}

labs (1, r, s) = S(l , r)

The transition relation is given by the transitions

(1, xr ' , start) --~ (l, r', stop)

all labelled {erase}.
Delete : Now move and erase are put together to implement the delete

method. For that purpose define the connecting l is t - t ransformation model C
that contains all pairs of control states of move and erase that are to be con-
nected, and no transitions. Note that the data states of connected control states
are identical.

Sc = {((/, r, s t(n)) , (l, r, start)) I1, r e A * , n E IN}

lab((l, r, st(n)), (l, r, start)) = S(l, r)
% = 0

The transformation system morphisms from g to the move and erase models are
given by the projections of Sc to S m~ and S ~ra'~ resp., and the identity data
state homomorphisms. Due to the pushout construction of graphs the pushout
of this diagram of transformation systems identifies all pairs of control states
(l, r, s t (n)) , (l, r, start). That means, when move has reached its target, erase
starts, and performs one step in which it erases the actual (= n ' th) list element.

4 Composition by Signature Morphisms

The two program models in example 8 that update different variables could be
defined w.r.t, a common signature, because partial algebras make it possible to
leave parts of the signature uninterpreted. In general a signature can always be
chosen large enough to be suitable for a given set of partial algebras in this way.
The same holds for method names, because they need not necessarily occur in
any transition label set. Thus formally local signatures and signature morphisms
would not be necessary. However, restricting the signatures to the parts that are
actually accessed yields a much better overall structure of the specification. It
documents independence of methods and supports local modelling. Moreover
signature morphisms can be used to rename components and put them together
in different ways. Instead of equality of names, that might always be considered
as accidental, categorical composition techniques always require morphisms to
make explicit the connections between the components. All items from different
components that are not explicitly related are considered as being different.

Definition 10 (Transformation Signature M o r p h i s m) . Let T E = (S P E C ,
M) and T E ' = (SPEC' , M ') be transformation signatures. A transformation
signature morphism tr = (crspEc , tiM) : T ~ ---* T E ~ is given by a specification

118

morphism t SPBC : S P E C ---* S P E C ' and a family of functions t M = (tiM.w :
Mw -"* M~spsc(w))~oes*, where S is the set of sorts of S P E C .

Transformation signatures and transformation signature morphisms.define
the category TransS ig .

Since signatures and signature morphisms for algebra transformation systems
formally coincide with signatures and signature morphisms for partial algebras
we immediately obtain the following constructions, that are the basis for the
subsequent compositionality results.

P r o p o s i t i o n I I . The category T r a n s S i g is cocomplete.

The forgetful functor of transformation systems induced by a transformation
signature morphism leaves the transition graphs unchanged. (Recall that the
transition graphs are independent of the transformation signatures.) The data
states are replaced by their restrictions according to the forgetful functor of par-
tial algebras, and the sets of method expressions are replaced by the (renamed)
subsets of method names corresponding to the smaller set of method names.

Def in i t ion 12 (Forgetful Functor) . Given a transformation signature mor-
phism a = (t s p ~ c , t M) : T Z --* T S ' the forgetful func tor V~ : TS(TZ') --*
TS(TS) is defined as follows.

1. Let ,4' = (TG.4, , lab.a,) E TS(TS') .
Then V~(A') =: ,4 = (TG~t, lab~t) E TS(TS) is defined by

- TG.4 = TG~,
- l a b s (,) =

where Vasp~c : PAIg (SPEC ') --* P A I g (S P E C) is the forgetful
functor induced by t s p s c : S P E C -* S P E C ' ,

- labT-(l: s --* t) = {m(a) e M E T 2 l a M (m) (a) e labT,(l : s ---* t)}
2. Let h I h I A' B I = (TO, (h'~,) , ,es~,): ---* in TS(T,U').

Then Va(h') =: h = (h r e , (h ,) ,es ,~) : Va(A') --* Va(B') is defined by
- hTa = hITa
- h , : labv.(t3,)(hTG(S)) ---* labv.(A,)(s) =

= Vaspsc(h , : labB,(h~TG(S)) --* labA,(s))

It is easily checked that Va is well defined.

Def in i t i on 13 (Model Funetor) . The model functor Mod : TransSig --*
Cat ~ is defined by M o d (T E) = TS(T,U) and M o d (t) = Va.

Since the forgetful functor for algebra transformation systems is given by
the identity on transition graphs and algebraic forgetful functors on data states,
the amalgamation property, known from algebraic specification, carries over to
algebra transformation systems. That means, given a pushout of transformation
signatures its model category is the pullback of the model categories of the
components.

119

T h e o r e m 1 4 (A m a l g a m a t i o n) . Mod preserves pushouts.

This property guarantees the existence and uniqueness of amalgamated sum
of algebra transformation systems and morphisms. If a l : TEo --* TZ1 and or2 :
TZ0 ~ TZ2 are transformation signature morphisms and ~1 : TZ:I --* T~3 and
#2 : T~2 ~ T~3 is their pushout, then for each pair of transformation systems
A1 E TS(TE1) and A2 E TS(TE2) with V~(A1) = Va2(A2) there is a TE3-
transformation system A3 = A1 +,40 A2 E TS(TSY3), where `40 = Va, (`4z), such
that V~ (,43) = ,41 and V~2(A3) = A2 �9 Moreover ,43 is uniquely determined
by this property. The same amalgamation property holds for morphisms. The
model .43 = .4z +,40 .42 is called the amalgamated sum of .41 and .42.

Let's finally combine the signature morphisms for the data transformation
level with morphisms of transition graphs in order to obtain the appropriate
composition operations for both levels together. For that purpose the appropriate
Grothendieck category has to be taken. (Cf. the construction of sets of method
expressions above.) In this case it is given by

objects (T,U,.4), with'.4 E ITS(TZ)[
morphisms m = (~r, h) : (TE, ,4) --+ (T~ ' , A')

with a : T ~ ' --* T E in TransS ig
and h : V~(`4) --+ .4' in TS(TZ ')

Note how the opposite direction of transition graph morphisms and data state
morphisms is reflected in the direction of the algebraic specification morphisms.

Pullbacks in this category are given by pullbacks of transition graphs, and
for each control state s the amalgamated data state S = $2 +so $1, where the
si = ri(s), i = 0, 1, 2, are the projections of s in the components. The method
expressions are the corresponding amalgamations (= unions of renamed sets of
method expression).

Example 15. With signature morphisms and the Grothendieck morphisms, the
construction of the parallel composition 3] x Z in example 8 can be reformulated
in such a way, that the independence of the two inerementation processes is
documented already on the syntactical level. That means, the models Y and Z
can be reconstructed as models to a signature that contains only one program
variable - - the variable the model has access to - - and their product can be
reconstructed as a corresponding pullback.

According to the definition of Grothendieck morphisms first an appropriate
pushout diagram of transformation signatures has to be given:

p r o g _ 0 > p r o g

p r o g > p , q - p r o g

Here p r o g is defined as in example 4, introducing the only program variable
and the incrementation method, prog_0 is p rog without the program variable
p, and the morphisms are inclusions. Then the transformation signature p , q -
p r o g of example 8, together with the inclusion morphisms, is a pushout of this

120

diagram. There are two copies of the program variable, because it is not shared
in prog_0.

Now let 2d ~ be given by the prog-transformation system X' defined in ex-
ample 4, extended by idle transitions as in example 8. Obviously X ~ coincides
with the restrictions to prog of y and Z. The image V (X ~) under the forgetful
functor V induced by the inclusion prog_0 --* prog is the same as X "~, except
that in the data states V (X n) the program variable X is no longer designated
by the constant p.

In order to obtain the product of the transition graph of X t with itself as a
pullback, it must be connected by graph morphisms to the terminal graph, that
consists of one node and one edge.

Finally the sharing of the data states must be expressed by appropriate amal-
gamations. The natural numbers shall be shared, whereas the sets of program
variables and the label sets of method expressions shall be united disjointly.
All this is obtained by the prog_0-transformation system 11 , given by the one
node-one edge-transition graph, data state IN with empty set of program vari-
ables, and empty set of method expressions for the transition. Then there is
a Grothendieck morphism X "~ ---* II given by the transition signature inclusion
prog_0 ---* prog , the unique morphism of transition graphs T G x , --* TG1 ,
data state injections (IN, 0) ~ Y (X n) for all n E IN, and inclusions of sets of
method expressions 0 --* { inc(X, k)}.

Since TG~ is a terminal graph the pullback of T G x , ~ T G , with itself
is the product T G x , • TGx , . Data states are the amalgamations XnX~m :=
X,~ +(~ ,o)Xm , that contain two copies of X, i.e. p x . x " = X and q X . X " = X ~ ,

�9 / I with values T x . x " (X) = n and ! x . x ~ (X) = m respectively. The sets of method
expressions are given by the disjoint unions of the corresponding sets of method
expressions of the components. Thus the pullback of X ~ --* 11 with itself is the
desired parallel composition of X ~ with a copy of itself, that manipulates the
copy q of p .

5 C o n c l u s i o n

In this paper I have introduced the two layered structures of algebra transforma-
tion systems, their morphisms and their composition by limits, colimits, and sig-
nature morphisms. This framework belongs to the algebras-as-states approach
to the specification of dynamic systems, whose foremost representative are the
abstract state machines, formerly called evolving algebras (see [Gur94]). A for-
malisation of evolving algebras has been presented in [DG94], where however
algebraic specifications are considered as algebraic programs, and consistency
conditions become part of the definition of the semantics. A very general ab-
stract mathematical model within this approach, D-oids, has been presented
in [AZ95]. It introduces a model theory for dynamic systems, parameterized
by the underlying static framework for vMues and state algebras. Specification
means, i.e. sentences and satisfaction for D-oids are introduced in [Zuc96]. There,
however, methods are total functions, which is problematic for the modelling of

121

non-deterministic systems, and identities are modelled by a tracking map, which
might be in conflict with the data signature. However, there are no composi-
tion operations for D-oids, and the technique developed here cannot be applied
directly, because signatures are used in a very different way. The idea to use
signature morphisms to compose specifications of concurrent systems has been
adapted from [FM92]. There temporal logic theories are introduced as specifica-
tion units and specification morphisms as interconnections. Due to the temporal
logic approach one temporal structure for all models had to be fixed, in this case
discrete linear time, as opposed to the arbitrary transition graphs of algebra
transformation systems.

Labelled transition systems can be embedded into the framework of algebra
transformation systems, taking the transition system as transition graph, empty
data states (over the empty signature), and the labels as method expressions.
Models of Z-specifications and graph transformation systems can be embedded
as the other extreme case, where the control states do not contain additional
information. I.e. the transition graph is the graph of all reachable data states
(= data models in Z, supposed they are (first order) partial algebras, graphs in
graph transformation systems). In Z the signature of the data states is given
explicitly, signatures for graphs would introduce sorts for nodes and edges, and
functions src and tar for sources and targets of edges. More elaborated graph
structures can be defined accordingly.

Partial algebras have been chosen as specification framework for the data
states for the reasons discussed above. However, it is easy to see that the ap-
proach is (rather) institution independent concerning the data state models. The
only requirement used in this paper has been that data state models have carrier
sets from which the parameters can be chosen, i.e. the model theory is concrete
(see [BT96]), and that the model categories have limits and colimits. In this way
institution independent transformation systems can be defined.

What is left open in this paper are the development of a syntax to represent or
specify the transition graphs, and axioms for the description of transformation
systems, i.e. the logical part of the institution. First results concerning such
axioms are presented in [Gro96], where the descriptive and the constructive
meanings of replacement rules for (a class of) partial algebras are investigated.
The constructive interpretation of a rule describes how a successor state can
be constructed from a given state and parameters, its descriptive meaning is a
pre/post condition for a method.

The first point is left open because process languages can be used to present
the transition graphs, or regular expressions for instance. A more detailed in-
vestigation however would have to take into account also the possible mutual
relationships between control states and data states. There should be means
for instance to state that a method can (cannot) be applied if the data state
satisfies a certain condition, like being stable for instance. (A state is stable if
all admissible method applications yield isomorphic states.) Furthermore a dia-
gram language should be developed that allows to specify diagrams of connected
components. Ideally such a language should also support dynamic evolution of

122

diagrams, i.e. creation, deletion, and reconfiguration of components. Some ideas
concerning static diagram languages have been presented in [Fia97].

References

[AZ95]

[BG77]

[BT96]

[CGW95]

[DG94]

[EM85]

[FM92]

[Fia97]

[GB92]

[Gro96]

[Gro97]

[Gur94]

[ODP]

[Rei87]

[WN95]

[Zuc96]

E. Astesiano and E. Zucca. D-oids: A model for dynamic data types.
Math. Struct. in Comp. Sci., 5(2):257-282, 1995.
R. M. Burstall and J. A. Goguen. Putting theories together to make spec-
ifications. In Proc. lnt. Conf. Artificial Intelligence, 1977.
M. Bidoit and A. Tadecki. Behavioural satisfaction and equivalence in
concrete model categories. In Proc. CAAP'96, Springer LNCS 1059. 1996.
I. Clafen, M. Gro6e-Rhode, and U. Wolter. Categorical concepts for param-
eterized partial specifications. Math. Struct. in Comp. Science, 5(2):153-
188, 1995.
P. Dauchy and M.C. Gaudel. Algebraic specifications with implicit states.
Tech. Report, Univ. Paris Sud, 1994.
H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, volume 6 of EATCS Monographs on Theoretical
Computer Science. Springer, Berlin, 1985.
J. Fiadeiro and T. Maibaum. Temporal theories as modularlsation units for
concurrent system specifications. Formal Aspects of Computing, 4(3):239-
272, 1992.
J.L. Fiadeixo. Algebraic semantics of coordination. Talk given at the 12th
Workshop on Algebraic Development Techniques, Tarquinia, Italy, 1997.
J. A. Goguen and It. M. Burstall. Institutions: Abstract Model Theory
for Specification and Programming. Journals of the ACM, 39(1):95-146,
January 1992.
M. Grofle-Rhode. First steps towards an institution of algebra replacement
systems. Technical Report 96-44, Technische Universitgt Berlin, 1996. Also
available under http://tfs.cs.tu-berlin.de/~ mgr.
M. Grof~e-Rhode. Sequential and parallel algebra transformation sys-
tems and their composition. Technical Report 97-07, Universith di Roma
La Sapienza, Dip. Scienze dell'Informazione, 1997. Also available under
http://tfs.cs.tu-berFm.de/" mgr.
Y. Gurevich. Evolving algebra 1993. In E. BSrger, editor, Specification and
Validation Methods. Oxford University Press, 1994.
ISO/IEC International Standard 10746, ITU-T Recommendation X.901-
X.904: Reference model of open distributed processing - Parts 1-4.
H. Reichel. Initial Computability, Algebraic Specifications, and Partial Al-
gebras. Oxford University Press, Oxford, 1987.
G. Winskel and M. Nielson. Models for concurrency. In Handbook of Logic
in Computer Science. Oxford University Press, 1995.
E. Zucca. From static to dynamic abstract data-types. In W.Penczek and
A. Szalas, editors, Mathematical Foundations of Computer Science 1996,
volume 1113 of Lecture Notes in Computer Science, pages 579-590. Springer
Verlag, 1996.

