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Abs t rac t .  In this paper we introduce a formal approach for the specification of 
safety-critical embedded systems. The specification formalisms Z and statecharts 
are integrated under a suitable structural model. The combined approach uses 
the advantages of the formalisms while avoiding their disadvantages. The different 
formalisms yield different, compatible views on the system: the functional view 
describing data and data-transformation, the reactive view, describing the system's 
reaction upon external stimuli, and the structural view, describing the components 
of the system and their interaction. The combination is discussed presenting parts 
of a case study: a traffic light control system. The case study is oriented at original 
planning documents. Besides its safety- and real-time-aspects, the case study is 
particularly interesting because structuring and reuse is of considerable importance 
in this example. 

1 Introduct ion 

Embedded systems are permanently increasing in size, complexity and re- 
sponsibility. Failures of the control software can have disastrous consequences 
and, due to this, safety [18] of the software is becoming more and more impor- 
tant.  In addition, embedded systems raise problems of concurrency, have to 
obey real-time requirements, and usually reside in a heterogeneous environ- 
ment. This stresses the need of an adequate software specification technique 
and a suitable development method for large-scale (safety-critical) embed- 
ded systems. The used specification formalisms need to be comprehensive, 
expressive, and precise. We are using statecharts, an extension of finite au- 
tomata ,  to describe reactive behaviors; because of its clear depiction of a 
system's reaction and states. For the data  and data-transformations we are 
using the Z specification language because of its mathematical-like notation 
and expressiveness. 

Instead of describing the whole system in one specification formalism, we 
use different formalisms to specify different aspects of the system, exploiting 
the advantages and avoiding the disadvantages of the particular formalisms; 
e.g. dynamic aspects like control flow can not be expressed very descriptive 
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in Z, while the statecharts formalism provides only limited support for the 
description of data. 

The structural view describes the components of the system and their 
relations with each other and their environment. Typically some variant of 
d a t a  flow diagrams [8] is used for this purpose. In the dynamic view the 
reaction of the system and its components to internal and external stimuli is 
specified. Such behavior can be described intuitively using state automata.  
The functional view describes data, data  invariants and data  transformations 
of the system and its components. The data transformations are controlled by 
the specification of the dynamic view. For the specification of the functional 
view, data  type specification languages are an adequate tool. 

The main emphasis of this work is the presentation of the case s tudy-- the  
specification of a traffic light system with statecharts and Z. The case study, 
the combination (called pSZ) as well as verification and validation techniques 
are investigated in detail in the ESPRESS project 1 . Methodological aspects of 
the ESPRESS project are presented in [11]. 

2 S p e c i f i c a t i o n  T e c h n i q u e  

We represent an embedded system as a collection of synchronous, communi- 
cating processes. Each process has a data  space, an interface for the communi- 
cation with other processes or the environment, and a statechart determining 
how it reacts upon external stimuli. 

The description of a process is given by the specification of so called 
process classes. A process class describes a set of processes with common 
behavior. This description (a process-class) includes the structure of the pro- 
cess, i.e. its subprocesses, their communication relations, and the processes 
the specified process is linked to via associations. The description consists in 
its interface, its local variables, its dynamic behavior, its configuration, predi- 
cates and operations over its variables, as well as behavioral constraints. This 
combination is discussed in detail in [2], the different views are depicted in 
Figure 1. 

The structure of a process is depicted in a so called configuration diagram. 
Processes communicate via shared variables and valued events. A process 
can have several interfaces called ports to read and write variables shared 
with other processes. In the configuration diagram, communication relations 
between processes are established by linking ports of different processes to- 
gether. The structure and the interfaces of a process together are forming the 
architectural view of a process. 

A process is storing, transforming, and exchanging data. This data  is 
specified in the functional description of the process, using the Z language 

1 EsPRESS is a joint project of German industry and research institutes, funded 
by the German Bundesministerium fiir Bildung, Wissenschaft und Technologie 
(BMBF). 
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Fig. 1. The different Views on a Process 

[21]. We distinguish local and shared data. The local data  is described in 
so called DATA-schemas, whereas shared data  is stored in PORT-schemas. 
Data transformation can be carried out via operations. In an Op-schema, the 
input-output relation of an operation is specified in Z. 

The behavior of a process, i.e. the actions it performs during its lifetime, 
are subject to the statecharts [12] in the dynamic view. We are using the 
STATEMATE [13] too1 to support the graphical languages used. Thus, for 
statecharts, the STATEMATE syntax and semantics [15,14] are adopted. The 
configurations are expressed with a subset of STATEMATE'S actwity-charts. 
Nevertheless, we specify the guards and actions of the statechart transitions 
in Z. The guards are predicates over a process's data  space and the actions 
are operations over the data  space. 

Especially in the early development phases, it might not be possible or 
adequate to describe the process behavior in an operational manner, i.e. by 
using statecharts. Therefore, we express behavioral requirements (particu- 
larly safety requirements) in temporal logic. Here, we are using the logic 
introduced in [5]. These temporal requirements can later be "implemented" 
by a statechart. Thus, a process can as well include an abstract specification 
of behavioral constraints and requirements as a concrete implementation. It 
becomes a natural proof obligation in the development process to show that  
the implementation fulfills the constraints and requirements. 
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The  semantics of a combined specification is a set of processes tha t  is 
ordered in a tree-like structure according to the specification's configuration 
diagrams. The processes are connected via ports, allowing them to access 
and exchange the values of their external variables. The static semantics of a 
process is determined (according to the Z semantics) by the bindings of the 
process variables, by the statechart status (i.e. the set of statecharts states 
the process currently resides in), and recursively by the static semantics of the 
process's aggregated processes. The dynamic semantics of a process is given 
by the STATEMATE semantics described in [14]. The parallel statecharts of 
the processes are executed synchronously. Changes that  occur during one step 
are visible only in the following step. We are applying the asynchronous t ime 
model of STATEMATE. We want to point out that  the semantics of the basis 
formalisms Z and statecharts are preserved in the combined specification. 
This enables us to reuse existing tools for Z and Statecharts. Note that  we 
do not aim at translating one formalism into the other, but  rather use them 
in a supplemental way. 

3 The Case Study: A Traffic Light System 

In this case study we describe a fault tolerant traffic light system (TLS). 
The task of the TLS consists of (1) steering the signal heads 2 according to 
a given program (functionality), and (2) guaranteeing a safe signal situation 
on the junction, even in case of signal head failure (safety). To reduce com- 
plexity, this specification separates the functional and the safety aspects into 
different components. The means of structuring of the used specification for- 
malism support this approach and allow a modular specification. A TLS has 
to comply to several norms and laws; for this case study the German Road 
Trajfic Law and the German norms [9,10] are relevant. The requirements for 
a particular junction are given in the planning documents, made by an engi- 
neer's office. This specification is based on authentic planning documents of 
an existing junction. 

The planning documents include the essential local informations for the 
traffic junction such as the road infrastructure, road markings, sidewalks, 
bike-ways, signing, signal heads, and detectors (see Figure 2). The street from 
north-east to south-west is the main road. The signal heads are numbered, 
the detectors (induction loops and pedestrian push buttons) are carrying 
numbers with a leading "D". The detectors are measuring the requirements 
of the road users. These requirements are influencing the control of the traffic 
light system, allowing to react in a flexible way on changing traffic volumes. 

We model the signal heads of the TLS in Z as an enumeration type. The 
signal heads have different lamps, modeled as Lamp. 

2 A set of signal heads is a green, yellow, and red lamp or, for pedestrians, green 
and red lamps. 
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Fig. 2. The Signal Layout Plan 

SignalHeads::=Shl [ Sh2 I Sh3 I . . .  i Sh31 1Sh32 
Lamp : :=red  I yellow I green 

T h e  signal heads  t h a t  control  the same  traffic flows, are g rouped  toge ther  
to signal 9roups. A signal group consists of  a set of  signal heads  tha t ,  in 
absence of failure, indicate  the  same  signal. In our traffic junc t ion  we have 
eleven signal  groups  (v denotes  vehicle, p pedest r ian ,  m the  m a i n  road,  and  
s the  side road) .  

z/2/3, v4/5/6,  ~z / s  , 9 , '~zo/zz/z2 : FSignalHeads 
G2nlrn ~p/rn ~pIs ~plrn ~n/rn ~n/s 

1 / 2 2 '  ""23124 '  v 2 5 1 2 6 '  ~ 2 7 1 2 8 '  "~29 /30 '  ~ 3 1 / 3 2  ; ~ SignaIHeads 

~p/s ---- {Sh31, Sh32} r:-~'/'~ = {Shl, Sh2, Sha) ^ ^ '- 'al/a2 �9 - ' 1 1 2 / a  " '"  
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Sp_v/m ~v/s ~v/m ~_v ~v/s 
t v1/2/3 ' "41516, ~7/s , "9/m,  

(~p/m SignalGroup "~t0/tt/t2, "~2t/22, 

3/24' "~25126' v2712S' "29130' ~31132J 

Signal groups that  must not be opened (i.e. show green) at the same 

time, are said to be in conflict, e.g. G~/~3 and G~/;/s are in conflict. This is 
expressed by the relation conflict. The conflict relation is irrefiexive and sym- 
metric. Although not in conflict, bending traffic flows may still interfere with 
non-bending. The road traffic law determines the priority relation between 
two traffic flows with a common conflict area that  might pass the junction 
at the same time. For example, pedestrians have priority over turning traffic, 

~v/rn ~p/s  has priority over vl/2/3. The priority relation is impor- e.g. we have "~31/32 
t i n t  for the safety conditions as shown in section 3.3. It has no relevance for 
the control program. 

conflict, priority : SignalGroup ~ SignalGroup 

V sl, s2 : SignalGroup * 
(sl, st) ~ conflict A (sl, s2) e conflict r (s2, sl) E conflict 

v1/2/3, "~4/5/6J E conflict A . . .  

( a [;32, a;/Z3) p ority ^ . . .  

Besides not being opened at the same time, conflicting traffic flows have 
to obey to their intergreen time. The intergreen time between two conflicting 
traffic streams specifies how long the vacating traffic stream has to be blocked 
until the starting stream can be opened. The intergreen time table (Fig. 3), 
shows the intergreen times as given in the planning documents for all pairs 
of conflicting signal groups. It shows the necessary intergreen times between 
starting (abscissa) and vacating (ordinate) traffic streams. 

The intergreen t ime table is modeled in Z as a function that  maps a pair 
of conflicting signal groups to its intergreen time. IGT(grpl,  grpu) denotes 
the t ime grpl has to be closed before grp~ may be opened. 

I I G T  : conflict--~ TIME 

3.1 Structure of  the Traffic Light Control System 

We describe our system as a hierarchical set of interacting processes. The 
top level process is called TRAFFIC~IGHT_CONTROL.  Its configuration 
shows how it is divided into four aggregated processes as well as the interfaces 
between the processes and their environment. Here, the environment consists 
of the external traffic facilities, such as the signal heads and detectors of 
the system. The processes are connected via arrows that  are labeled with 
port  names. The processes communicate via the variables declared in their 
ports. These ports are specified in the process classes of the processes. In the 
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Fig. 3. The Intergreen Time Table 

following we give a short description of the four aggregates of the top-level 
process: 

The VEHICLE.ACTUATED_CONTROL realizes the traffic control algo- 
rithm, i.e., it computes when the lamps of the signal heads are to be switched 
on or off and sends the relevant signals. The SAFEGUARD guarantees the 
safety of the traffic junction. If an unsafe signal indication occurs due to 
hardware or software failure, the safeguard has to take counter action. If, 
for example, a red light breaks, the safeguard and the suppression have to 
decide whether the resulting signal indication is still safe. If it is not, it has 
to take measures to reestablish a safe indication. If an unsafe signal indica- 
tion is detected, the suppression tries to reestablish safety in, e.g. switching 
defective signal heads whereas the safe guard shuts off the entire TLS if an 
unsafe situation is imminent to last longer than 0.3 seconds. The safe guard 
is discussed in detail in section 3.3. 

Signals that are sent by the control might interfere with measures taken 
by the SAFEGUARD while handling failures. Such signals are filtered out 
by the SIGNAL_SUPPRESSION. Moreover, the SIGNAL_SUPPRESSION 
suppresses all signals that would lead to an unsafe situation of the junc- 
tion. By that, safety can be ensured independently of the VEHICLE_ACTU- 
ATED_CONTROL. The signals of the system's detectors (induction loops 
and pedestrian push buttons) are recorded and prepared for the control by 
the DETECTOR_ACQUISITION, because these detector values serve as pa- 
rameters for the vehicle actuated control. 

There are four interfaces between the traffic control system and the exter- 
nal traffic facilities: The signals, indicated to the road users, are transmitted 
via the port ACTUAL_VALUES. They are assumed to be measurable in a 
fail-safe way and can be always requested. The nominal values for signal 
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heads are sent via the port NOMINAL_VALUES. The port  SENSOR_VAL- 
UES serves to read the signals occurring at the detectors. The entire traffic 
light system can be shut off via the port SHUT_OFF. This transfers the sys- 
tem in a fail-safe state, if an error state can not be recovered by the signal 
suppression. 

TRAFFIC_LIGHT_CONTROL 

TRAFFIC_LIGHT_CONTROL 

[ @V~ICLE_ I @SAFEGUARD I PROPOSED_VALUES J @SIGNAL ACTUATED_CONTROL 
I 

I _1__ . ;  
SHUTOFF 

3.2 T h e  C o n t r o l  P r o g r a m  

In the process class VEHICLE_ACTUATED_CONTROL, the control algo- 
r i thm is specified. It switches between different phases. A phase can be char- 
acterized by the set of signal groups that  are opened together during this 
phase. In many traffic light systems the order and duration of the phases is 
predefined (fixed-time control). Nevertheless, the control program, presented 
here, is driven by the actual traffic, measured by the induction loops and the 
pedestrian push buttons. It allows phase transitions between all phases. Note 
that  the program has two rather unusual phases: in phaseO all signal groups 
are closed and in phasel only the pedestrians have green. Obviously, groups 
that  are in the same phase must not be in conflict. 

phaseO, phase l, phase2, phase3, phase4 : IP SignalGroup 

phaseO = 0 
cp/,~ Cp/,~ Gp/s CpIm nPI,n npIs 

phasel = { "~21/22, ~23/24' 25/26' ~27/28' "29/30' ~31/32 J 

phase2 = { "-'7/8 , 
nv/m ~v/rn 

phase3 = { "~1/2/3, vT/S } 
~v/s n,v/s ! 

phase4 = { ~4/~/s, '-'1o/11/12 J 

Phase == { phaseO, phase1, phase2, phase3, phase4 } 
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I Vp  :Phase * Vgrpl ,grl~ :p  * (grpl,grp2) ~ conflict 

In the statechart a of the class VEHICLE_ACTUATED_CONTROL,  the 
control is either in one of the five phases or a phase transition is performed. 

- -  VEHICLE_ACTUATED_CONTROL 

VE~ I C LE_ACTUATED_CONTROL_S EL F 

EpuJ '~--~J T~_Po t~rl ~r_oP P 4 T �9 P4" 

[ P_l ] 1 S T A R ~  PT_OP 

J 

During a phase transition, the signal groups are switched according to 
the phase transition tables in the planning documents (Figure 4). The phase 
transition table denotes for each signal group the signaling over the t ime 
(measured in seconds). The traffic flows that  are blocked in the new phase 
are closed and the flows that  are to be opened are given green. The phase 
transition tables assure that  the intergreen times are not violated during a 
phase transition. 

In Figure 4, the phase transition table from phase 1 to phase 2 is shown. 
Initially, all pedestrian signal heads indicate green. One second after the 
beginning of the phase transition, signal group 27/28 is switched to red, 
three seconds later signal group 25/26 follows and so on. 

The internal state variables of a process class are declared in a DATA 
schema. The variables from and to are used to record the actually desired 
phase transition. The variable tp of type TIME keeps track of the progress 
of the actual phase transition, i.e. the column of the phase transition ta- 
ble. The relation Transition describes the possible phase transitions, where 
(phaseO, phasel) stands for the transition from phase 0 to phase 1. 

3 In the statechart, the transition labels are of the form [cond]/action, where cond 
is a condition specified in a Z schema or in STATEMATE syntax and action is a 
Z operation. The transition fires if the condition is true; the action is executed 
then. 
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Fig. 4. The Phase Transition from Phase 1 to Phase 2 

The  function Transition Table models the phase transition tables. It  as- 
signs to every phase transition and every signal group the moment  of signal 
change and the new signal indication. The duration of each phase transi- 
tion is expressed by the function TransitionDuration. I t  is desired tha t  all 
changes in the signal indication occur within the specified duration of the 
phase transition. 

VEHICLE_A CTUA TED_CONTROL 
DATA PhaseTransition ~- [from, to : Phase; tp : TIME] 

Transition : Phase ~-~ Phase 

V p : Phase * (p,p)  ~ Transition 

TransitionTable : (Transition • SignalGroup) ~ ( T I M E  -,+ ~ Lamp) 
TransitionDuration : Transition--~ TIME 

V u : Transition; s : SignalGroup * 
V t :  dom(TransitionTable(u, s)) * t <  TransitionDuration(u) 

TransitionDuration((phasel,phase2)) = 19 
~ ~ l m  G~lS c:vls 

V Gr : t -1 /2 /3 ,  4/s/6, "~1o/11/12J* 
Transition Table( (phase l, phase2), Gr ) = r 

Transition Table ( (phase l , phase2), G ; / ~  ) = 
{ 12 ~ {red, yellow}, 13 ~-~ {green}} 

TransitionTable((phaseO, phasel),  (TP/s ~ = { 5 ~-~ {red}} 
- - 3 1 / 3 2 /  

3.3 T h e  S a f e g u a r d  

The  safeguard guarantees the safety of the system. I t  works independently 
f rom the other parts  and shuts the TLS off if an unsafe si tuation has been 
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encountered. According to the norm DIN VDE 0832 [9], the TLS must not 
stay longer than 0.3 seconds in an unsafe situation. For the safeguard, firstly 
the requirements are specified using abstract temporal formulae. Then, these 
formulae are translated into more concrete, non-temporal predicates and a 
statechart. Here, we present three of the TLS's safety requirements. The 
signal heads sensor their own state, i.e. which bulbs are shining or not and 
make these values available to the safeguard. The safeguard reads these values 
through its port ACTUAL_VALUES.  For the safety consideration, we assume 
that  the actual values are supplied immediately (with no time delay). For the 
concrete implementation, this requirement can be weakened. If the TLS is to 
be shut off, the safeguard sets the variable OFF in the port SHUT_OFF to 
True. 

We model the actual signal stage of the junction as a function, assigning to 
each set of signal heads the set of on-lamps. Based on the signaling situation, 
the signal groups are partitioned into open (i.e. showing green, yellow, etc.), 
closed (i.e. showing red), and free (i.e. are off). Note that  normally signal 
heads of the same group should show the same signals, which might not 
be true in case of an defective signal heads. It might also happen that  the 
green and red lights of one set of signal heads are on simultaneously. In these 
situations, the partition of the signal groups is quite intricate. Moreover the 
actual assessment sometimes changes with local regulations. We therefore 
omit a precise definition here. 

SAFEGUARD 
PORT A CTUAL_ VALUES - -  

l actual : SignalHeads --r ~ Lamp 

GroupStates 
ACTUAL_VALUES 
opened, closed, free : ~ SignalGroup 

disjoint ( opened, closed, free ) 

MAX_FAIL_TIME : TIME 
SAMPLING_RATE : TIME 

PORT SHUT_OFF 
l OFF :]~ 

DATA SAFE 
safe : ~ 

Basing on the actual signal stage, the TLS has to judge whether the 
junction is in a safe situation or not. The safe guard introduces a predicate 
safe : ~, denoting whether the junction is in a safe situation in this particular 
state or not. In fact, the safety conditions presented here discriminate only 
states that  are definitely not safe. We firstly define for each safety requirement 
the auxiliary schemas Conflict_Abs, Priority.,4bs, and ObeysIGT_Abs. They 
are then used to formulate the safety requirement for the class SAFEGUARD. 
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We are using discrete interval logic to describe the safety requirements. 
A complete description of its syntax and semantics is beyond the scope of 
this paper. Here we only give a short introduction. The logic can be seen as 
a discrete variant of the Duration Calculus [7] adopted for Z. It is presented 
in [5]. Ix = 0] denotes an interval where x equals zero all the time. By 

Ix > 0] "" Ix < 0] an interval is denoted, where x is greater zero in the 
beginning and is less than zero immediately afterwards, somewhere Ix = 0] 
denotes an interval where for some sub-interval x = 0. The formula Ix = 0] <t 
describes an interval shorter than t, where x equals zero. 

SAFEGUARD 
D YNA MI C Conflict_A bs 

upStates; SAFE 

[ ~  l (grpl,grp2) �9 conflict �9 
[ -, somewhere [grpz �9 opened A grp2 �9 opened A safe = True] 

D Y N A M I C  Priority_Abs 
GroupStates; SAFE 

V grpl, grp2 : SignalGroup [ (grpl, grp2) �9 priority �9 
-~ somewhere ( [ grpl ~ opened A grp2 �9 opened] ~ 

[grpl �9 opened A grp2 �9 opened A safe = True]) 

D Y N A M I C  ObeyslGT_Abs 
ACTUAL_VALUES; GroupStates; SAFE 

V grpl, grp2:SignalGroup I (grpl, grp2) E conflict �9 
"= somewhere ( [ g r p l  E opened]" 

[ true] <tGT(g~, ,grp=) "~ [ grp2 �9 opened A safe = True]) 

The first safety requirement Conflict..Abs states that  the junction is unsafe 
if two conflicting signal groups are opened at the same time, i.e., there is 
no sub-interval in which a conflicting pair of signal groups ((grpl, grp2) E 
conflict) is opened and safe = True. 

The second safety requirement Priority_Abs states that  a prioritized sig- 
nal group must not be opened while a signal group of lower priority is open. 
A group has priority over another one, if the two groups can be open simulta- 
neously (i.e. are not in conflict), but their traffic flows interfere. This is, e.g., 
the case for bending vehicles and pedestrians. In this case the pedestrians 
have priority over the vehicles and the pedestrian flow must not be opened 
while the vehicles are already driving. 

The third safety requirement ObeyslGT_Abs denotes that  an opening sig- 
nal group must obey to the intergreen time table, i.e., all conflicting signal 
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groups have to be closed for at least their intergreen t ime before the group 
is opened. 

If  the TLS enters an unsafe situation the program has to react and 
reestablish safety within MAX_FAIL_TIME. We can now formulate the cen- 
tral  safety requirement Safety_Abs for the TLS. Note that  the actual value 
of MAX_FAIL_TIME depends on how fast the hardware can shut off the 
system, thus depends on the hardware environment the control software is 
embedded in. The SAFEGUARD has to obey to the three safety conditions 
and there must  not be any sub-interval with safe = False for more than 
MAX_FAIL_TIME ([safe = False]> MAX_FAIL_TIME ). The behavior require- 
ment  for the SAFEGUARD says that  the TLS has to obey to Safety_Abs or 
has to be shut off. Note that  Conflict_Abs, Priority_Abs, ObeyslGT_Abs, and 
Safety_Abs are auxiliary schemas whereas a box labeled P R O P E R T Y  denotes 
a direct requirement for the behavior of the class. 

SAFEGUARD 
D YNAMIC Safety_Abs 

upStates; SAFE 

~ ~ T _ A b s  A Priority_.Abs 
[ ~ somewhere [safe = False 1 >MAX_FAIL_TIME 

P R O P E R T Y  DYNAMIC 
es; SAFE 

ty_Abs V (Safety_Abs ~" [OFF = True]) 

After having specified the requirements of the safeguard we can imple- 
ment  them. The safeguard needs to store the t ime when a signal group 
was closed and which signal groups have just  been opened resp. closed. The 
function blocking_time assigns to each closed signal group the t ime it was 
closed. The set last_step_opened holds all newly opened signal groups. Anal- 
ogously, last_step_closed holds all newly closed groups. The operation UP- 
DATE_BLOCKING_TIME 4 updates these variables in SAMPLING_RATE 
intervals. 

4 Note that in this operation dom blocking.time is set of signal groups closed in 
the previous step, whereas closed holds the current value. Therefore, closed \ 
(dora blocking_time) denotes the signal groups that were recently opened and 
are dosed now. Correspondingly, opened f3 (dora blocking_time) denotes the sig- 
nal groups that were closed in the last step and are opened now. opened <1 
blocking_time restricts the domain of blocking.time to opened. Thus, the op- 
eration restricts blocking_time to the closed groups and adds the newly closed 
groups related to the current time Time. 
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SAFEGUARD 
DATA BlockingTime 

blocking_time : SignalGvoup -r TIME 
last_step_closed, last_step_opened : ~ SignalGroup 

OP UPDA TE_BLOCKING_TIME 
A BlockingTime 
GroupStates 

last_step_closed' = closed \ (dom blocking_time) 
last_step_opened' = opened N (dora blocking_time) 
blocking_time' = (closed ~ blocking_time) U (last_step_closed' • { Time }) 

Conflict_ Conc 
BlockingTime 

V grpl, grp2 : SignalGroup I (gvpx, grp~) e conflict * 
(grpl 6 (dora blocking_time) V grp2 6 (dora blocking_time)) 

Priovity_Conc 
BlockingTime 

V grpl, grp2 : SignaIGroup I (grpl, gyp2) 6 priority * 
grpl 6 last_step_opened 

(grp2 6 dora blocking_time V grp2 6 last_step_opened) 

Obeys l G T_ Conc 
Blocking Time 

V grpl, grp~ : SignalGroup I (grpi, grp2) 6 conflict * 
grpl ~ (dora blocking_time) 

(blocking_time(grp2) + IGT(grp2, grpl) < Time) 

SAFESITUATION -q Conflict_Conc A Priority_Conc A ObeyslGT_Conc 

J SAFEGUARD_SELF [ 

/ ~ SAFESITUATION] 
r.m ( en ([r~SAFE), 

$ / / s _SmTT_OFF - 

UPDATE 1 

tmlenlUPDATE) 
|SAMPLING RATE} 
i / UPDATE._BLOCKING_TIME 

[ 

With these data values we can translate the temporal requirements into 
operational predicates that can be used in the statechart. We translate Con- 
flict_Abs into Conflict_Conc, Priority_Abs into Priority_Conc, and Obeys- 
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IGT._Abs into ObeysIGT_Conc. Priority_Conc says that  for a group that  has 
just  been opened (grpl E last_step_opened) all other groups it has priority 
over ((grpl, grp2) E priority) must be either closed or also just  been opened. 

The statechart  implements the reactive behavior of the safeguard. It 
resides in the state SAFE if SAFESITUATION is true and switches to 
UNSAFE otherwise. If it stays in UNSAFE for MAX_DELAY_TIME- 
SAMPLING_RATE it shuts the system off. 5 Meanwhile, it periodical reads 
the actual values sent by the external facilities and updates blocking_time 
and last_step_opened accordingly. The statechart has to implement the be- 
havior constraint of the process, i.e. the set of observable runs it defines has 
to be a subset of the set defined by the behavior constraint. Here, we have 
to prove that  in(SAFE) ~ (safe = True), where in(SAFE) denotes that  the 
statechart  state SAFE is active. 

4 Conclusion 

In this paper we have presented a combination of formal specification tech- 
niques with a well-known structuring technique that has been successfully 
applied in software engineering. We are using Z and statecharts as basis for- 
malisms for expressing the functional and reactive behavior of embedded 
systems. Both formMisms have found broad acceptance in the research area 
as well as in industry. The presented combination exploits the advantages of 
each formalism. Note that  in this approach the semantics of the basic for- 
malisms are preserved, which is very important  for tool reuse. In contrast, in 
[22,6] the STATEMATE semantics were not preserved. 

The usage of Z as language for the description of the functional aspects has 
turned out to be superior to e.g. the STATEMATE data  description language 
[15], especially for the formulation of data  invariants and safety requirements, 
and for the rather complex data-items as the phase transition table. The dy- 
namic behavior of a process could be modeled very naturally with statecharts. 
Its graphical nature (in contrast to other process description languages and 
combinations of specification languages like [17,19,1,20,16]) provides a good 
overview over the different states and possible state transitions of a process. 
The architectural view was described by data  flow diagrams. Here, a more 
powerful notation would have been helpful, supporting genericity in order to 
reuse components as well as collections of processes. 

Supplementing Z with temporal logic and an adequate satisfaction rela- 
tion for statecharts and temporal logic is still subject to further research. 
Nevertheless, we believe that  the case study shows impressively the advan- 
tage of this approach. Within the ESPRESS project, work on the development 
of tools to support  the presented technique and method is investigated. This 
includes type-checking, execution of Z specifications, and verification and 

5 tin(E, T) is true T seconds after event B occured, en(IJNSAFE) denotes the event 
that state UNSAFE was entered. 
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validation of combined specifications. With that,  it should be possible to 
simulate and analyze the model extensively. 

With the formalization of safety requirements we were able to discover 
ambiguities and unprecise formulations in the natural language specification. 
We believe that  the precise formulation of safety requirements in an early 
development phase will turn out to be very helpful to increase the developer's 
understanding of the problem, avoiding misconceptions and design errors 
caused by ambiguous or incomplete requirements. 

The applicability of our approach has been demonstrated in a case-study 
where a traffic light system has been specified [3,4]. Even if only parts of 
the case study could be presented here (the entire specification contains over 
70 pages), we found the division of a system into different views and the 
formulation of explicit safety requirements convincing for the specification of 
safety-critical embedded systems. 
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