
Specifying Safety-Critical Embedded Systems
with Statecharts and Z: A Case Study

Robert Biissow l, Robert Geisler l, and Marcus Klar 2

1 Technische Universit/it Berlin, Institut fiir Kommunikations- und
Softwaretechnik Sekr. 6-1, Franldinstr. 28/29, D-10587 Berlin.
{buessow, geislerr} @cs.tu-berlin.de

2 Fraunhofer-Institut fiir Software- und Systemtechnik ISST
Kurstr. 33, D-10117 Berlin. Marcus.Klar~isst.fhg.de

Abs t rac t . In this paper we introduce a formal approach for the specification of
safety-critical embedded systems. The specification formalisms Z and statecharts
are integrated under a suitable structural model. The combined approach uses
the advantages of the formalisms while avoiding their disadvantages. The different
formalisms yield different, compatible views on the system: the functional view
describing data and data-transformation, the reactive view, describing the system's
reaction upon external stimuli, and the structural view, describing the components
of the system and their interaction. The combination is discussed presenting parts
of a case study: a traffic light control system. The case study is oriented at original
planning documents. Besides its safety- and real-time-aspects, the case study is
particularly interesting because structuring and reuse is of considerable importance
in this example.

1 Introduct ion

Embedded systems are permanently increasing in size, complexity and re-
sponsibility. Failures of the control software can have disastrous consequences
and, due to this, safety [18] of the software is becoming more and more impor-
tant. In addition, embedded systems raise problems of concurrency, have to
obey real-time requirements, and usually reside in a heterogeneous environ-
ment. This stresses the need of an adequate software specification technique
and a suitable development method for large-scale (safety-critical) embed-
ded systems. The used specification formalisms need to be comprehensive,
expressive, and precise. We are using statecharts, an extension of finite au-
tomata , to describe reactive behaviors; because of its clear depiction of a
system's reaction and states. For the data and data-transformations we are
using the Z specification language because of its mathematical-like notation
and expressiveness.

Instead of describing the whole system in one specification formalism, we
use different formalisms to specify different aspects of the system, exploiting
the advantages and avoiding the disadvantages of the particular formalisms;
e.g. dynamic aspects like control flow can not be expressed very descriptive

72

in Z, while the statecharts formalism provides only limited support for the
description of data.

The structural view describes the components of the system and their
relations with each other and their environment. Typically some variant of
d a t a flow diagrams [8] is used for this purpose. In the dynamic view the
reaction of the system and its components to internal and external stimuli is
specified. Such behavior can be described intuitively using state automata.
The functional view describes data, data invariants and data transformations
of the system and its components. The data transformations are controlled by
the specification of the dynamic view. For the specification of the functional
view, data type specification languages are an adequate tool.

The main emphasis of this work is the presentation of the case s tudy-- the
specification of a traffic light system with statecharts and Z. The case study,
the combination (called pSZ) as well as verification and validation techniques
are investigated in detail in the ESPRESS project 1 . Methodological aspects of
the ESPRESS project are presented in [11].

2 S p e c i f i c a t i o n T e c h n i q u e

We represent an embedded system as a collection of synchronous, communi-
cating processes. Each process has a data space, an interface for the communi-
cation with other processes or the environment, and a statechart determining
how it reacts upon external stimuli.

The description of a process is given by the specification of so called
process classes. A process class describes a set of processes with common
behavior. This description (a process-class) includes the structure of the pro-
cess, i.e. its subprocesses, their communication relations, and the processes
the specified process is linked to via associations. The description consists in
its interface, its local variables, its dynamic behavior, its configuration, predi-
cates and operations over its variables, as well as behavioral constraints. This
combination is discussed in detail in [2], the different views are depicted in
Figure 1.

The structure of a process is depicted in a so called configuration diagram.
Processes communicate via shared variables and valued events. A process
can have several interfaces called ports to read and write variables shared
with other processes. In the configuration diagram, communication relations
between processes are established by linking ports of different processes to-
gether. The structure and the interfaces of a process together are forming the
architectural view of a process.

A process is storing, transforming, and exchanging data. This data is
specified in the functional description of the process, using the Z language

1 EsPRESS is a joint project of German industry and research institutes, funded
by the German Bundesministerium fiir Bildung, Wissenschaft und Technologie
(BMBF).

73

........ [~ _r'Z'Z~ PORTI i

""''-,. - --~- i ...-Y'//:
""'" ... --"'"'"

................... /

- [Ir~ D A T A - -

- ~ :~ "'-" II l~o.n,.~ | -- ~11--"~
"'"'-'"""

S a f e t y R e q u i r e r n e n t s (T L)

~ e S A F E T Y
P O R T

where [sa fe = F a l s e l > M A X _ P A I L _ T I M s

Fig. 1. The different Views on a Process

[21]. We distinguish local and shared data. The local data is described in
so called DATA-schemas, whereas shared data is stored in PORT-schemas.
Data transformation can be carried out via operations. In an Op-schema, the
input-output relation of an operation is specified in Z.

The behavior of a process, i.e. the actions it performs during its lifetime,
are subject to the statecharts [12] in the dynamic view. We are using the
STATEMATE [13] too1 to support the graphical languages used. Thus, for
statecharts, the STATEMATE syntax and semantics [15,14] are adopted. The
configurations are expressed with a subset of STATEMATE'S actwity-charts.
Nevertheless, we specify the guards and actions of the statechart transitions
in Z. The guards are predicates over a process's data space and the actions
are operations over the data space.

Especially in the early development phases, it might not be possible or
adequate to describe the process behavior in an operational manner, i.e. by
using statecharts. Therefore, we express behavioral requirements (particu-
larly safety requirements) in temporal logic. Here, we are using the logic
introduced in [5]. These temporal requirements can later be "implemented"
by a statechart. Thus, a process can as well include an abstract specification
of behavioral constraints and requirements as a concrete implementation. It
becomes a natural proof obligation in the development process to show that
the implementation fulfills the constraints and requirements.

74

The semantics of a combined specification is a set of processes tha t is
ordered in a tree-like structure according to the specification's configuration
diagrams. The processes are connected via ports, allowing them to access
and exchange the values of their external variables. The static semantics of a
process is determined (according to the Z semantics) by the bindings of the
process variables, by the statechart status (i.e. the set of statecharts states
the process currently resides in), and recursively by the static semantics of the
process's aggregated processes. The dynamic semantics of a process is given
by the STATEMATE semantics described in [14]. The parallel statecharts of
the processes are executed synchronously. Changes that occur during one step
are visible only in the following step. We are applying the asynchronous t ime
model of STATEMATE. We want to point out that the semantics of the basis
formalisms Z and statecharts are preserved in the combined specification.
This enables us to reuse existing tools for Z and Statecharts. Note that we
do not aim at translating one formalism into the other, but rather use them
in a supplemental way.

3 The Case Study: A Traffic Light System

In this case study we describe a fault tolerant traffic light system (TLS).
The task of the TLS consists of (1) steering the signal heads 2 according to
a given program (functionality), and (2) guaranteeing a safe signal situation
on the junction, even in case of signal head failure (safety). To reduce com-
plexity, this specification separates the functional and the safety aspects into
different components. The means of structuring of the used specification for-
malism support this approach and allow a modular specification. A TLS has
to comply to several norms and laws; for this case study the German Road
Trajfic Law and the German norms [9,10] are relevant. The requirements for
a particular junction are given in the planning documents, made by an engi-
neer's office. This specification is based on authentic planning documents of
an existing junction.

The planning documents include the essential local informations for the
traffic junction such as the road infrastructure, road markings, sidewalks,
bike-ways, signing, signal heads, and detectors (see Figure 2). The street from
north-east to south-west is the main road. The signal heads are numbered,
the detectors (induction loops and pedestrian push buttons) are carrying
numbers with a leading "D". The detectors are measuring the requirements
of the road users. These requirements are influencing the control of the traffic
light system, allowing to react in a flexible way on changing traffic volumes.

We model the signal heads of the TLS in Z as an enumeration type. The
signal heads have different lamps, modeled as Lamp.

2 A set of signal heads is a green, yellow, and red lamp or, for pedestrians, green
and red lamps.

75

,',, < , , ' , " ~ \ \ ,2 ~,,~2 02,.~,~.,+..~.~// , , ~

~ ~ o 2 : ; o :2, ,..- , ~.=~176

1-6 9 708 21-26 27-32
10-12

�9 �9 p ~ - ~ , ~ e ~ . : ' - ' 2 ~ - , . t , ~ '

Fig. 2. The Signal Layout Plan

SignalHeads::=Shl [Sh2 I Sh3 I . . . i Sh31 1Sh32
Lamp : :=red I yellow I green

T h e signal heads t h a t control the same traffic flows, are g rouped toge ther
to signal 9roups. A signal group consists of a set of signal heads tha t , in
absence of failure, indicate the same signal. In our traffic junc t ion we have
eleven signal groups (v denotes vehicle, p pedest r ian , m the m a i n road, and
s the side road) .

z/2/3, v4/5/6, ~z / s , 9 , '~zo/zz/z2 : FSignalHeads
G2nlrn ~p/rn ~pIs ~plrn ~n/rn ~n/s

1 / 2 2 ' ""23124 ' v 2 5 1 2 6 ' ~ 2 7 1 2 8 ' "~29 /30 ' ~ 3 1 / 3 2 ; ~ SignaIHeads

~p/s ---- {Sh31, Sh32} r:-~'/'~ = {Shl, Sh2, Sha) ^ ^ '- 'al/a2 �9 - ' 1 1 2 / a " '"

76

Sp_v/m ~v/s ~v/m ~_v ~v/s
t v1/2/3 ' "41516, ~7/s , "9/m,

(~p/m SignalGroup "~t0/tt/t2, "~2t/22,

3/24' "~25126' v2712S' "29130' ~31132J

Signal groups that must not be opened (i.e. show green) at the same

time, are said to be in conflict, e.g. G~/~3 and G~/;/s are in conflict. This is
expressed by the relation conflict. The conflict relation is irrefiexive and sym-
metric. Although not in conflict, bending traffic flows may still interfere with
non-bending. The road traffic law determines the priority relation between
two traffic flows with a common conflict area that might pass the junction
at the same time. For example, pedestrians have priority over turning traffic,

~v/rn ~p/s has priority over vl/2/3. The priority relation is impor- e.g. we have "~31/32
t i n t for the safety conditions as shown in section 3.3. It has no relevance for
the control program.

conflict, priority : SignalGroup ~ SignalGroup

V sl, s2 : SignalGroup *
(sl, st) ~ conflict A (sl, s2) e conflict r (s2, sl) E conflict

v1/2/3, "~4/5/6J E conflict A . . .

(a [;32, a;/Z3) p ority ^ . . .

Besides not being opened at the same time, conflicting traffic flows have
to obey to their intergreen time. The intergreen time between two conflicting
traffic streams specifies how long the vacating traffic stream has to be blocked
until the starting stream can be opened. The intergreen time table (Fig. 3),
shows the intergreen times as given in the planning documents for all pairs
of conflicting signal groups. It shows the necessary intergreen times between
starting (abscissa) and vacating (ordinate) traffic streams.

The intergreen t ime table is modeled in Z as a function that maps a pair
of conflicting signal groups to its intergreen time. IGT(grpl, grpu) denotes
the t ime grpl has to be closed before grp~ may be opened.

I I G T : conflict--~ TIME

3.1 Structure of the Traffic Light Control System

We describe our system as a hierarchical set of interacting processes. The
top level process is called TRAFFIC~IGHT_CONTROL. Its configuration
shows how it is divided into four aggregated processes as well as the interfaces
between the processes and their environment. Here, the environment consists
of the external traffic facilities, such as the signal heads and detectors of
the system. The processes are connected via arrows that are labeled with
port names. The processes communicate via the variables declared in their
ports. These ports are specified in the process classes of the processes. In the

77

r

.7.
t'~ ~O ,-a r "~ ZO 00 Q r

1/2/3 x 5 - 4 7 4 4 ? 8 8 6
4/5/6 7 • 4 5 - 5 5 4 8 8 7

7/8 6 • 5 8 8 7 5 5 -
9 7 5 - x 6 4 4 9

10/11/12 6 - 5 4 x 8 818 6 6 4
21/22 6 3 1 - 2 •
23/24 6 3 1 - 2 - •
25/26 8 10 9 - 8 • -
27/28 1 1 6 6 2 x -
29/30 1 1 6 6 2 x -
31/32 9 8 - 8 10 •

Fig. 3. The Intergreen Time Table

following we give a short description of the four aggregates of the top-level
process:

The VEHICLE.ACTUATED_CONTROL realizes the traffic control algo-
rithm, i.e., it computes when the lamps of the signal heads are to be switched
on or off and sends the relevant signals. The SAFEGUARD guarantees the
safety of the traffic junction. If an unsafe signal indication occurs due to
hardware or software failure, the safeguard has to take counter action. If,
for example, a red light breaks, the safeguard and the suppression have to
decide whether the resulting signal indication is still safe. If it is not, it has
to take measures to reestablish a safe indication. If an unsafe signal indica-
tion is detected, the suppression tries to reestablish safety in, e.g. switching
defective signal heads whereas the safe guard shuts off the entire TLS if an
unsafe situation is imminent to last longer than 0.3 seconds. The safe guard
is discussed in detail in section 3.3.

Signals that are sent by the control might interfere with measures taken
by the SAFEGUARD while handling failures. Such signals are filtered out
by the SIGNAL_SUPPRESSION. Moreover, the SIGNAL_SUPPRESSION
suppresses all signals that would lead to an unsafe situation of the junc-
tion. By that, safety can be ensured independently of the VEHICLE_ACTU-
ATED_CONTROL. The signals of the system's detectors (induction loops
and pedestrian push buttons) are recorded and prepared for the control by
the DETECTOR_ACQUISITION, because these detector values serve as pa-
rameters for the vehicle actuated control.

There are four interfaces between the traffic control system and the exter-
nal traffic facilities: The signals, indicated to the road users, are transmitted
via the port ACTUAL_VALUES. They are assumed to be measurable in a
fail-safe way and can be always requested. The nominal values for signal

78

heads are sent via the port NOMINAL_VALUES. The port SENSOR_VAL-
UES serves to read the signals occurring at the detectors. The entire traffic
light system can be shut off via the port SHUT_OFF. This transfers the sys-
tem in a fail-safe state, if an error state can not be recovered by the signal
suppression.

TRAFFIC_LIGHT_CONTROL

TRAFFIC_LIGHT_CONTROL

[@V~ICLE_ I @SAFEGUARD I PROPOSED_VALUES J @SIGNAL ACTUATED_CONTROL
I

I _1__ . ;
SHUTOFF

3.2 T h e C o n t r o l P r o g r a m

In the process class VEHICLE_ACTUATED_CONTROL, the control algo-
r i thm is specified. It switches between different phases. A phase can be char-
acterized by the set of signal groups that are opened together during this
phase. In many traffic light systems the order and duration of the phases is
predefined (fixed-time control). Nevertheless, the control program, presented
here, is driven by the actual traffic, measured by the induction loops and the
pedestrian push buttons. It allows phase transitions between all phases. Note
that the program has two rather unusual phases: in phaseO all signal groups
are closed and in phasel only the pedestrians have green. Obviously, groups
that are in the same phase must not be in conflict.

phaseO, phase l, phase2, phase3, phase4 : IP SignalGroup

phaseO = 0
cp/,~ Cp/,~ Gp/s CpIm nPI,n npIs

phasel = { "~21/22, ~23/24' 25/26' ~27/28' "29/30' ~31/32 J

phase2 = { "-'7/8 ,
nv/m ~v/rn

phase3 = { "~1/2/3, vT/S }
~v/s n,v/s !

phase4 = { ~4/~/s, '-'1o/11/12 J

Phase == { phaseO, phase1, phase2, phase3, phase4 }

79

I Vp :Phase * Vgrpl ,grl~ :p * (grpl,grp2) ~ conflict

In the statechart a of the class VEHICLE_ACTUATED_CONTROL, the
control is either in one of the five phases or a phase transition is performed.

- - VEHICLE_ACTUATED_CONTROL

VE~ I C LE_ACTUATED_CONTROL_S EL F

EpuJ '~--~J T~_Po t~rl ~r_oP P 4 T �9 P4"

[P_l] 1 S T A R ~ PT_OP

J

During a phase transition, the signal groups are switched according to
the phase transition tables in the planning documents (Figure 4). The phase
transition table denotes for each signal group the signaling over the t ime
(measured in seconds). The traffic flows that are blocked in the new phase
are closed and the flows that are to be opened are given green. The phase
transition tables assure that the intergreen times are not violated during a
phase transition.

In Figure 4, the phase transition table from phase 1 to phase 2 is shown.
Initially, all pedestrian signal heads indicate green. One second after the
beginning of the phase transition, signal group 27/28 is switched to red,
three seconds later signal group 25/26 follows and so on.

The internal state variables of a process class are declared in a DATA
schema. The variables from and to are used to record the actually desired
phase transition. The variable tp of type TIME keeps track of the progress
of the actual phase transition, i.e. the column of the phase transition ta-
ble. The relation Transition describes the possible phase transitions, where
(phaseO, phasel) stands for the transition from phase 0 to phase 1.

3 In the statechart, the transition labels are of the form [cond]/action, where cond
is a condition specified in a Z schema or in STATEMATE syntax and action is a
Z operation. The transition fires if the condition is true; the action is executed
then.

8 0

1-2 5 :0 :5 |

: I
: I

9 I ~ i ~ ~ ~ ! i i i ~ ~ ~1
: : : 2 : I
21a2 ~ : .
2 3 ~ ~-----t------~----t~ : '

~ ~ i ! ! ! ! ! ! i i i i i i i : i
2 7 ~ ~ i ! i i ! ! i i ~ i ! ! ! ~ i i i | I
2 9 ~ . ~ - . . ~ . . m ~ ] �9
: �9

Fig. 4. The Phase Transition from Phase 1 to Phase 2

The function Transition Table models the phase transition tables. It as-
signs to every phase transition and every signal group the moment of signal
change and the new signal indication. The duration of each phase transi-
tion is expressed by the function TransitionDuration. I t is desired tha t all
changes in the signal indication occur within the specified duration of the
phase transition.

VEHICLE_A CTUA TED_CONTROL
DATA PhaseTransition ~- [from, to : Phase; tp : TIME]

Transition : Phase ~-~ Phase

V p : Phase * (p,p) ~ Transition

TransitionTable : (Transition • SignalGroup) ~ (T I M E -,+ ~ Lamp)
TransitionDuration : Transition--~ TIME

V u : Transition; s : SignalGroup *
V t : dom(TransitionTable(u, s)) * t < TransitionDuration(u)

TransitionDuration((phasel,phase2)) = 19
~ ~ l m G~lS c:vls

V Gr : t -1 /2 /3 , 4/s/6, "~1o/11/12J*
Transition Table((phase l, phase2), Gr) = r

Transition Table ((phase l , phase2), G ; / ~) =
{ 12 ~ {red, yellow}, 13 ~-~ {green}}

TransitionTable((phaseO, phasel), (TP/s ~ = { 5 ~-~ {red}}
- - 3 1 / 3 2 /

3.3 T h e S a f e g u a r d

The safeguard guarantees the safety of the system. I t works independently
f rom the other parts and shuts the TLS off if an unsafe si tuation has been

81

encountered. According to the norm DIN VDE 0832 [9], the TLS must not
stay longer than 0.3 seconds in an unsafe situation. For the safeguard, firstly
the requirements are specified using abstract temporal formulae. Then, these
formulae are translated into more concrete, non-temporal predicates and a
statechart. Here, we present three of the TLS's safety requirements. The
signal heads sensor their own state, i.e. which bulbs are shining or not and
make these values available to the safeguard. The safeguard reads these values
through its port ACTUAL_VALUES. For the safety consideration, we assume
that the actual values are supplied immediately (with no time delay). For the
concrete implementation, this requirement can be weakened. If the TLS is to
be shut off, the safeguard sets the variable OFF in the port SHUT_OFF to
True.

We model the actual signal stage of the junction as a function, assigning to
each set of signal heads the set of on-lamps. Based on the signaling situation,
the signal groups are partitioned into open (i.e. showing green, yellow, etc.),
closed (i.e. showing red), and free (i.e. are off). Note that normally signal
heads of the same group should show the same signals, which might not
be true in case of an defective signal heads. It might also happen that the
green and red lights of one set of signal heads are on simultaneously. In these
situations, the partition of the signal groups is quite intricate. Moreover the
actual assessment sometimes changes with local regulations. We therefore
omit a precise definition here.

SAFEGUARD
PORT A CTUAL_ VALUES - -

l actual : SignalHeads --r ~ Lamp

GroupStates
ACTUAL_VALUES
opened, closed, free : ~ SignalGroup

disjoint (opened, closed, free)

MAX_FAIL_TIME : TIME
SAMPLING_RATE : TIME

PORT SHUT_OFF
l OFF :]~

DATA SAFE
safe : ~

Basing on the actual signal stage, the TLS has to judge whether the
junction is in a safe situation or not. The safe guard introduces a predicate
safe : ~, denoting whether the junction is in a safe situation in this particular
state or not. In fact, the safety conditions presented here discriminate only
states that are definitely not safe. We firstly define for each safety requirement
the auxiliary schemas Conflict_Abs, Priority.,4bs, and ObeysIGT_Abs. They
are then used to formulate the safety requirement for the class SAFEGUARD.

82

We are using discrete interval logic to describe the safety requirements.
A complete description of its syntax and semantics is beyond the scope of
this paper. Here we only give a short introduction. The logic can be seen as
a discrete variant of the Duration Calculus [7] adopted for Z. It is presented
in [5]. Ix = 0] denotes an interval where x equals zero all the time. By

Ix > 0] "" Ix < 0] an interval is denoted, where x is greater zero in the
beginning and is less than zero immediately afterwards, somewhere Ix = 0]
denotes an interval where for some sub-interval x = 0. The formula Ix = 0] <t
describes an interval shorter than t, where x equals zero.

SAFEGUARD
D YNA MI C Conflict_A bs

upStates; SAFE

[~ l (grpl,grp2) �9 conflict �9
[-, somewhere [grpz �9 opened A grp2 �9 opened A safe = True]

D Y N A M I C Priority_Abs
GroupStates; SAFE

V grpl, grp2 : SignalGroup [(grpl, grp2) �9 priority �9
-~ somewhere ([grpl ~ opened A grp2 �9 opened] ~

[grpl �9 opened A grp2 �9 opened A safe = True])

D Y N A M I C ObeyslGT_Abs
ACTUAL_VALUES; GroupStates; SAFE

V grpl, grp2:SignalGroup I (grpl, grp2) E conflict �9
"= somewhere ([g r p l E opened]"

[true] <tGT(g~, ,grp=) "~ [grp2 �9 opened A safe = True])

The first safety requirement Conflict..Abs states that the junction is unsafe
if two conflicting signal groups are opened at the same time, i.e., there is
no sub-interval in which a conflicting pair of signal groups ((grpl, grp2) E
conflict) is opened and safe = True.

The second safety requirement Priority_Abs states that a prioritized sig-
nal group must not be opened while a signal group of lower priority is open.
A group has priority over another one, if the two groups can be open simulta-
neously (i.e. are not in conflict), but their traffic flows interfere. This is, e.g.,
the case for bending vehicles and pedestrians. In this case the pedestrians
have priority over the vehicles and the pedestrian flow must not be opened
while the vehicles are already driving.

The third safety requirement ObeyslGT_Abs denotes that an opening sig-
nal group must obey to the intergreen time table, i.e., all conflicting signal

83

groups have to be closed for at least their intergreen t ime before the group
is opened.

If the TLS enters an unsafe situation the program has to react and
reestablish safety within MAX_FAIL_TIME. We can now formulate the cen-
tral safety requirement Safety_Abs for the TLS. Note that the actual value
of MAX_FAIL_TIME depends on how fast the hardware can shut off the
system, thus depends on the hardware environment the control software is
embedded in. The SAFEGUARD has to obey to the three safety conditions
and there must not be any sub-interval with safe = False for more than
MAX_FAIL_TIME ([safe = False]> MAX_FAIL_TIME). The behavior require-
ment for the SAFEGUARD says that the TLS has to obey to Safety_Abs or
has to be shut off. Note that Conflict_Abs, Priority_Abs, ObeyslGT_Abs, and
Safety_Abs are auxiliary schemas whereas a box labeled P R O P E R T Y denotes
a direct requirement for the behavior of the class.

SAFEGUARD
D YNAMIC Safety_Abs

upStates; SAFE

~ ~ T _ A b s A Priority_.Abs
[~ somewhere [safe = False 1 >MAX_FAIL_TIME

P R O P E R T Y DYNAMIC
es; SAFE

ty_Abs V (Safety_Abs ~" [OFF = True])

After having specified the requirements of the safeguard we can imple-
ment them. The safeguard needs to store the t ime when a signal group
was closed and which signal groups have just been opened resp. closed. The
function blocking_time assigns to each closed signal group the t ime it was
closed. The set last_step_opened holds all newly opened signal groups. Anal-
ogously, last_step_closed holds all newly closed groups. The operation UP-
DATE_BLOCKING_TIME 4 updates these variables in SAMPLING_RATE
intervals.

4 Note that in this operation dom blocking.time is set of signal groups closed in
the previous step, whereas closed holds the current value. Therefore, closed \
(dora blocking_time) denotes the signal groups that were recently opened and
are dosed now. Correspondingly, opened f3 (dora blocking_time) denotes the sig-
nal groups that were closed in the last step and are opened now. opened <1
blocking_time restricts the domain of blocking.time to opened. Thus, the op-
eration restricts blocking_time to the closed groups and adds the newly closed
groups related to the current time Time.

84

SAFEGUARD
DATA BlockingTime

blocking_time : SignalGvoup -r TIME
last_step_closed, last_step_opened : ~ SignalGroup

OP UPDA TE_BLOCKING_TIME
A BlockingTime
GroupStates

last_step_closed' = closed \ (dom blocking_time)
last_step_opened' = opened N (dora blocking_time)
blocking_time' = (closed ~ blocking_time) U (last_step_closed' • { Time })

Conflict_ Conc
BlockingTime

V grpl, grp2 : SignalGroup I (gvpx, grp~) e conflict *
(grpl 6 (dora blocking_time) V grp2 6 (dora blocking_time))

Priovity_Conc
BlockingTime

V grpl, grp2 : SignaIGroup I (grpl, gyp2) 6 priority *
grpl 6 last_step_opened

(grp2 6 dora blocking_time V grp2 6 last_step_opened)

Obeys l G T_ Conc
Blocking Time

V grpl, grp~ : SignalGroup I (grpi, grp2) 6 conflict *
grpl ~ (dora blocking_time)

(blocking_time(grp2) + IGT(grp2, grpl) < Time)

SAFESITUATION -q Conflict_Conc A Priority_Conc A ObeyslGT_Conc

J SAFEGUARD_SELF [

/ ~ SAFESITUATION]
r.m (en ([r~SAFE),

$ / / s _SmTT_OFF -

UPDATE 1

tmlenlUPDATE)
|SAMPLING RATE}
i / UPDATE._BLOCKING_TIME

[

With these data values we can translate the temporal requirements into
operational predicates that can be used in the statechart. We translate Con-
flict_Abs into Conflict_Conc, Priority_Abs into Priority_Conc, and Obeys-

85

IGT._Abs into ObeysIGT_Conc. Priority_Conc says that for a group that has
just been opened (grpl E last_step_opened) all other groups it has priority
over ((grpl, grp2) E priority) must be either closed or also just been opened.

The statechart implements the reactive behavior of the safeguard. It
resides in the state SAFE if SAFESITUATION is true and switches to
UNSAFE otherwise. If it stays in UNSAFE for MAX_DELAY_TIME-
SAMPLING_RATE it shuts the system off. 5 Meanwhile, it periodical reads
the actual values sent by the external facilities and updates blocking_time
and last_step_opened accordingly. The statechart has to implement the be-
havior constraint of the process, i.e. the set of observable runs it defines has
to be a subset of the set defined by the behavior constraint. Here, we have
to prove that in(SAFE) ~ (safe = True), where in(SAFE) denotes that the
statechart state SAFE is active.

4 Conclusion

In this paper we have presented a combination of formal specification tech-
niques with a well-known structuring technique that has been successfully
applied in software engineering. We are using Z and statecharts as basis for-
malisms for expressing the functional and reactive behavior of embedded
systems. Both formMisms have found broad acceptance in the research area
as well as in industry. The presented combination exploits the advantages of
each formalism. Note that in this approach the semantics of the basic for-
malisms are preserved, which is very important for tool reuse. In contrast, in
[22,6] the STATEMATE semantics were not preserved.

The usage of Z as language for the description of the functional aspects has
turned out to be superior to e.g. the STATEMATE data description language
[15], especially for the formulation of data invariants and safety requirements,
and for the rather complex data-items as the phase transition table. The dy-
namic behavior of a process could be modeled very naturally with statecharts.
Its graphical nature (in contrast to other process description languages and
combinations of specification languages like [17,19,1,20,16]) provides a good
overview over the different states and possible state transitions of a process.
The architectural view was described by data flow diagrams. Here, a more
powerful notation would have been helpful, supporting genericity in order to
reuse components as well as collections of processes.

Supplementing Z with temporal logic and an adequate satisfaction rela-
tion for statecharts and temporal logic is still subject to further research.
Nevertheless, we believe that the case study shows impressively the advan-
tage of this approach. Within the ESPRESS project, work on the development
of tools to support the presented technique and method is investigated. This
includes type-checking, execution of Z specifications, and verification and

5 tin(E, T) is true T seconds after event B occured, en(IJNSAFE) denotes the event
that state UNSAFE was entered.

86

validation of combined specifications. With that, it should be possible to
simulate and analyze the model extensively.

With the formalization of safety requirements we were able to discover
ambiguities and unprecise formulations in the natural language specification.
We believe that the precise formulation of safety requirements in an early
development phase will turn out to be very helpful to increase the developer's
understanding of the problem, avoiding misconceptions and design errors
caused by ambiguous or incomplete requirements.

The applicability of our approach has been demonstrated in a case-study
where a traffic light system has been specified [3,4]. Even if only parts of
the case study could be presented here (the entire specification contains over
70 pages), we found the division of a system into different views and the
formulation of explicit safety requirements convincing for the specification of
safety-critical embedded systems.

References

1. G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
design, semantics, implementation. Science of Computer Programming, 19:87-
152, 1992.

2. R. B/issow, H. D6rr, R. Geisler, W. Grieskamp, and M. Klar. #SZ - Ein Ausatz
zur systematischen Verbindung yon Z und Statecharts. Technical Report 96-32,
Technische Universits Berlin, Feb. 1996.

3. R. B/issow, R. Geisler, M. Klar, and S. Mann. Spezifikation einer Lichtsigual-
anlagen-Steuerung mit #$Z. Technical Report 97-13, Technische Universit~t
Berlin, 1997.

4. R. B/issow, R. Geisler, and M.Klar. Spezifikation eingebetteter Steuerungssys-
teme mit Z und Statecharts. In Tagungsband zur 5. Fachtagung Entwurf kom-
plexer Automatisierungssysteme. TU Brauuschweig, 1997.

5. R. B/issow and W. Grieskamp. Combinig Z and temporal interval logics for
the formalization of properties and behaviors of embedded systems. In R. K.
Shyamasundar and K. Ueda, editors, Advances in Computing Science - Asian
'97, volume 1345 of LNCS, pages 46-56. Springer-Verlag, 1997.

6. R. B/issow and M. Weber. A steam-boiler control specification using state-
charts and Z. In Formal Methods]or Industrial Applications: Specifying and
Programming the Steam Boiler Control, volume 1165 of LNCS. Springer, 1996.

7. Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40(5):269-276, 1991.

8. T. DeMarco. Structured analysis and system specification. Yourdon Press,
Engelwood Cliffs, NY, USA, 1978.

9. Deutsche Elektrotechnische Kommission im DIN und VDE (DKE). DIN Norm
VDE 0832 - Strassenverkehrs-Signalanlagen (SVA), 1990.

10. Forschungsgesellschaft f'fir Strassen- und Verkehrswesen. Richtlinien fiir Licht-
sigualanlagen - RiLSA, 1992.

11. W. Grieskamp, M. Heisel, and H. DSrr. Specifying safety-critical embedded
systems with statecharts and Z: An agenda for cyclic software components.
accepted for publication at ETAPS'98, 1998.

87

12. D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

13. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. Statemate: A working environment for the
development of complex reactive systems. IEEE Transactions on Software En-
gineering, 16 No. 4, Apr. 1990.

14. D. Harel and A. Naamad. The statemate semantics of statecharts. Technical
report, The Weizmarm Institute of Science, Oct. 1995.

15. D. Harel and M. PoEti. Modeling reactive systems with statecharts: The state-
mate approach, i-Logix Inc, Three Riverside Drive, Andover, MA 01810, USA,
June 1996. Part No. D-1100-43, 6/96.

16. M. Heisel and C. Siihl. Combining Z and Real-Time CSP for the develop-
ment of safety-critical systems. In Proceedings 15th International Conference
on Computer Safety, Reliability and Security. Springer, 1996.

17. C. Hoare. Communicating Sequential Processes. Prentice Hall, Eaglewood
Cliffs, N.J., 1985.

18. N. Leveson. Safeware - System Safety and Computers. Addison Wesley, 1995.
19. LOTOS - A formal description technique based on temporal ordering of obser-

vational behaviour. Information Processing Systems - Open Systems Intercon-
nection ISO DIS 8807, jul. 1987. (ISO/TC 97/SC 21 N).

20. G. Smith. A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In Proceedings of FME'97: Industrial Benefits of Formal
Methods, Graz, Austria, September 1997. Springer-Verlag.

21. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

22. M. Weber. Combining state, charts and Z for the desgin of safety-critical control
systems. In Industrial Benefits and Advances in Formal Methods, volume 1051
of LNCS, pages 307-326. Springer, 1996.

