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Abs t r ac t .  We propose two declarative debuggers of missing answers 
with respect to C- and S-semantics. The debuggers are proved correct for 
every logic program. Moreover, they are complete and terminating with 
respect to a large class of programs, namely acceptable logic programs. 
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exploits decision procedures for C- and S-semantics introduced in [9]. 
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1 I n t r o d u c t i o n  

Declarative debugging is concerned with finding errors tha t  cause anomalies dur- 
ing the execution of a program start ing from some information on the intended 
semantics of the program. In logic programming systems, a query which is valid 
in the intended meaning of a program but that  is not in its actual semantics is 
an anomaly called missing answer. A missing answer originates from a "failure" 
in the construction of a proof tree for a valid query. The reason of such a failure 
is the presence of uncovered atoms, i.e. of a toms A in the intended interpreta- 
tion of the program, for which there is no clause instance whose head is A and 
whose body is true in the intended interpretation. In other words, there is no 
immediate  justification in the program in order to deduce A. 

The role of a declarative debugger is to find out uncovered a toms start ing from 
missing answers, which are usually detected during the testing phase, and from 
the intended semantics of the program. In this paper,  we concentrate on the 
C-semantics of Falaschi et al. [5] (or least te rm model semantics of Clark [3]) 
and on the S-semantics of Falaschi et al. [6]. 

Many debuggers in the li terature find uncovered atoms start ing from missing 
answers tha t  have a finitely ]ailed SLD-tree. As we will point out, the assumption 
tha t  missing answers have finitely failed SLD-trees is restrictive in some cases, 
and it is due to a well-known limitation of the negation as failure rule. We show 
tha t  restriction in the case of Shapiro's debugger [10] [8, Debugger S.I]. 

In this paper,  we propose two declarative debuggers of missing answers for C- and 
S-semantics  tha t  are correct for any program, and complete and terminat ing for 
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a large class of logic programs, namely acceptable programs [2]. The implemen- 
tations of the debuggers rely on decidability procedures for g- and S-semantics 
which are adapted from [9]. 

Compared with Shapiro's approach, the debugger for C-semantics relaxes the 
assumption that  the missing answers in input have finitely failed SLD-trees. In 
addition, we show that  a smaller search space is considered. 

The  debugger for S-semantics is derived by applying the insights underlying 
the construction of that  for C-semantics to the theory of S-semantics. The only 
approach on debugging of missing answers with respect to S-semantics is due 
to Comini et al. [4]. They introduce a method for finding all uncovered atoms 
starting from the intended interpretation of an acceptable program. However, 
their approach is effective if[ the intended interpretation is a finite set, whilst we 
make a weaker assumption. 

P r e l i m i n a r i e s  We use in this paper the s tandard notation of Apt [1], when not 
specified otherwise. In particular, we use queries instead of goals. We denote by L 
the underlying language a program is defined on. AtomL denotes the set of atoms 
on L, BL the Herbrand base on L. Usually, one considers L = Lp.  groundL(P) 
denotes the set of ground instances of clauses from P. LD-resolution is SLD- 
resolution together the leftmost selection rule. An atom is called pure if it is of 
the form p ( x l , . . . ,  x,~) where xl , . . .  , xn are different variables. N is the set of 
natural  numbers. For a ground term t, ll(t) = ll(tl)  + 1 if t = [t2ltl] and ll(t) = 0 
otherwise, i.e. II is the list-length function. 

2 P r o g r a m  S e m a n t i c s  a n d  M i s s i n g  A n s w e r s  

Several declarative semantics have been considered as alternatives to the stan- 
dard least Herbrand model. We focus on two of them, namely g-semantics of 
Falaschi et al. [5] (also known as the least term model of Clark [3]) and S- 
semantics of Falaschi et al. [6]. 

D e f i n i t i o n  1. For a logic program P we define 

e(P) = { A �9 AtomL [ P ~ A } 

S (P)  = { A �9 AtomL [ A is a computed instance of a pure atom }. [] 

By correctness of SLD-resolution, we observe that  S (P )  C_ C(P). To each seman- 
tics is associated a continuous immediate consequence operator. For a program 
P,  the least fixpoint of TCp, C(P), and the upward ordinal closure T c I" w coin- 
cide [5]. Similarly, the least fixpoint of T~, S (P ) ,  and the upward ordinal closure 
Tp s t w coincide [6]. 
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D e f i n i t i o n  2. For a logic program P we define the following functions from sets 
of a toms into set of atoms: 

TCp(I) = { A8 6 AtomL I 3 A ~ B1 , . . .  ,Bn 6 P, 

{ B 1 8 , . . . , B n O J C _ I  } 

Tap(I) = { A8 6 AtomL I 3 A+--B1 , . . .  ,Bn 6 P, 
t ! B 1 , . . . ,  B,z variants of a toms in I and renamed apar t  

e = mg ((B1 , . . . ,  a n  ), , . . . ,  B "  )) } [] 

An intended interpretat ion of a program w.r.t, a semantics is a set of a toms 
which, in the intentions of the programmer,  is supposed to be the actual se- 
mantics of the program. Starting points of the debugging analysis are missing 
answers. 

D e f i n i t i o n  3. We say that  a query is in a set of a toms if every a tom of the 
query is in the set. Let ~- be the C- or S-semantics, and 27 be the intended 
interpretat ion of a program P w.r.t. ~ .  A missing answer w.r.t. ~" is any query 
which is in 27 but that  is not in 5r(P). [] 

Missing answer are caused by uncovered atoms, i.e. a toms valid in the intended 
meaning of a program tha t  have no immediate justification in the program. 

D e f i n i t i o n  4. An atom A is uncovered if A 6 27 and A ig TRY(27). [] 

3 S h a p i r o ' s  D e b u g g e r  

Consider the semantics of correct instances of logic programs,  i.e. C-semantics. 
A query Q which is supposed to be a logical consequence of the program, "fails" 
if it is not. However, by saying that  a query Q "fails" it is often meant  Q finitely 
fails. This stronger assumptions is due a well-known limitation of the negation 
as failure rule, and it affects several declarative debuggers in the literature. Let 
us consider the Shapiro's debugger [10] [8, Debugger S.I] as an example. Let P 
be the program under analysis. 

miss([A ] B], Goal) 
not(call(A) ), 
miss(A, Goal). 

miss([A I B], Goal) 
call(A), 
miss(B, Goal). 

miss(A, Goal) +- 
user_pred(A), 
clause(A, B), 
valid(B), 
miss(B, Goal). 

miss(A, A) 4- 

<--- 

<-- 
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user_pred(A), 
not( 

(clause(A, B), 
valid(B)) 

). 

clause (A, [B1 . . . . .  B~]) .  /or every A +- B i , . . . ,  Bn 6 P 
augmented by P. 

Program 1 

user_pred characterizes user-defined predicates, and it is a collection of facts 
u s e r _ p r e d ( p ( X l ,  . . . ,  Xn)) for every predicate symbol p of arity n. v a l i d  is 
an oracle defining the intended meaning of P.  It may be implemented either 
by queries to the programmer or by using some specification of the program. 
Consider now the program: 

S ,  

p(X) +-q(Y), r(Y,X). 
q(a) . 
7. q(b). 7. missing 
r(a, c). 
r(b, X). 

Program 2 

Shapiro's debugger correctly works when the missing answer in input has a 
finitely failed tree. On the other hand, the query p ( X ) , s  is a missing answer, 
since p(X) is not a logical consequence of the program, but there is no finitely 
failed tree, since there is a successful derivation that  instantiates X to c. A 
call m i s s ( [ p ( X )  , s ] ,  A) to the Shapiro's debugger fails to return that  q(b)  is 
uncovered. The need for the hypothesis of finite failure lies in the use of negation 
in clauses such as: 

miss([A i B], Goal ) +-not(call(A) ), miss(A, Goal). 

where the debugger tries to prove no t  ( c a l l ( A )  ). Due to well-known limita- 
tions of the negation as failure rule, not  ( c a l l  ( t ) )  succeeds if P ~ -~3A, i.e. 
if there is a finitely-failed SLD-tree. Instead, the intended use of no t  ( c a l l  (A) 
) is to prove P ~ ~VA, i.e. that  A is not a logical consequence of P.  A form 
of completeness has been shown for Ferrand's debugger [7], [8, Debugger F.1], 
which is obtained from Program I by removing the literals no t  ( c a l l ( h )  ) and 
c a l l ( A ) .  As an example, the uncovered atom q(b)  of Program 2 is detected by 
Ferrand's debugger. However, Ferrand's approach differs from ours in the fact 
that  it considers impossible atoms instead of uncovered atoms. A is impossible 
if no instance of A is uncovered. Let us consider the following incorrect Ehppend 
version of the Append program: 

append( [] ,  Xs, Xs ).  
append( [XIXs], Ys, [XIZs] ) +- 

append( Ys, Ys, Zs ).  7. should be append(Xs, Ys, Zs). 
Program 3 
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The query Q = append( rx ] ,  Ys, [x I Ys3 ) is a missing answer, since it is in the 
intended interpretation, and it is not a logical consequence of EAppend. However, 
Shapiro's debugger is not able to find out that  Q is an uncovered atom, since Q 
has not a finitely failed tree. On the other hand, Ferrand's debugger does not 
show that  Q is uncovered, due to the fact that  there exists an instance of Q which 
is covered, namely append([XJ,  [ J ,  IX]), and then Q is not an impossible 
atom. Finally, it is worth noting that  both debuggers ask the oracle for a valid 
instance of append(Ys,  Ys, Ys). Consequently, the call miss (append( [] , [] , 
[ ] ) ,  Goal)  is made, where a p p e n d ( I ] ,  [ ] ,  [ ] )  is not a missing answer. In 
general, unnecessary questions are addressed to the oracle, in the sense that  the 
search space includes queries that  are not missing answers, and then cannot lead 
to an uncovered atom. 

4 A c c e p t a b l e  programs 

In this section, we introduce acceptable logic programs, a well-known large class 
for which we provide a decision procedure for C- and S-semantics. 

4.1 T h e  F r a m e w o r k  

First, we recall the definition of level mappings [2]. 

D e f i n i t i o n  5. A level mapping is a function I I : BL -4 N of ground atoms to 
natural numbers. For A E BL, I A I is called the level of A. [] 

We are now in the position to recall the definition of acceptable logic programs, 
introduced by Apt and Pedreschi [2]. Intuitively, the definition of acceptability 
requires that  for every clause, the level of the head of any of its ground instances 
is greater than the level of each atom in the body which might be selected further 
in a LD-derivation. 

D e f i n i t i o n  6. A program P is acceptable by [ [: BL --~ N and a Herbrand in- 
terpretation I iff I is a model of P,  and for every A +-- B1, �9 �9 �9 Bn in groundn (P) : 

f o r i e [ 1 , n ]  I ~ B 1 , . . . , B i _ I  implies IA I  > l B i [ .  

P is acceptable if it is acceptable by some [ [ and I .  [] 

Consider the following program PKEOKDER for preorder traversals of binary trees. 

(pl) 
(p2) 
(ps) 

preorder(nil, [] ). 
preorder(leaf(X), [X] ). 
preorder(tree(X, Left, Right), Ls) 

preorder(Left, As), 
preorder(Right, Bs), 
append(KXIAs], Bs, Ls). 
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append( [], Xs, Xs ). 
append( [XIXs], Ys, [XIZs] 

append( Xs, Ys, Zs ). 
) ~- 

Program 4 

PREORDER is acceptable by I I and I, where 

Ip reorde r ( t ,  ls) I = nodes(t) + 1 

lappend(xs,  ys,  zs) I : l l ( x s )  

z = { a p p e n d ( x s ,  y s ,  z s )  I l l (zs)  = l l(xs)  + l t (ys)  } U 

U { p r e o r d e r ( t ,  ls) I U(ls) = nodes(t) } 

where nodes(t) is 1 if t = l e a f ( s ) ;  it is 1 + nodes(l) + nodes(r) if t = t r e e ( s ,  
l ,  r) ;  and it is 0 otherwise. 
Suppose now that  the variable X in clause (p2) has been erroneously typed in 
lower case, and let PREORDER I be PREORDER where (p2) is replaced by: 

(p2') preorder( leaf(x) ,  [x] ). 

PREORDER I is still acceptable by the same I I and I. Note that  p r e o r d e r  ( t r e e  (E, 
l e a f  (X), l e a f  (Y)),  [E, X, Y] ) is a missing answer w.r.t. C and S-semantics. 
However, the query has no finitely failed SLD-tree. In particular, Shapiro's de- 
bugger is not able to find an uncovered atom starting from it. Other examples 
of acceptable programs are Program 2 and Program 3. 

4.2 Dec is ion  P r o c e d u r e s  

We sum up the decidability properties of acceptable programs we are interested 
in by means of the following Lemma reported from [9]. 

T h e o r e m  7. Let P be an acceptable program. 
Every LD-derivation for P and any ground query (in any language) is finite. 
Moreover, C(P) and S (P)  are decidable sets. [] 

The decision procedure for C- and S-semantics will be the crucial in the debug- 
ging approach of this paper. Interestingly, they have a natural implementation 
in the logic programming paradigm itself as Prolog meta-programs. The proce- 
dures are provided in [9] for observable decidability. Here we specialize them for 
semantics decidability. 

We assume that  the predicate f r e e z e  introduced in [12, Section 10.3] is available. 
A call to f r e e z e  ( t ,  B) replaces every variable of A with new distinct constants 
to obtain B. Unfortunately, as described by Sterling and Shapiro, f r e e z e  is not 
present in existing Prolog implementations. In fact, in [9] f r e e z e  is approximated 
by a predicate c o n s t a n t s  that  replaces every variable in Q by new distinct 
constants. The approximation works until a fixed maximum number of new 
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constants is reached, and the results are parametric to tha t  number. Here, we 
abstract away from such a parameterization and assume that  f r e e z e  and its 
dual mel t  are available. Given a term B, mel t  (B ,  A) replaces every constants 
of B introduced by freezing some term by the original variable to obtain A. For 
instance f r e e z e ( p ( X ) ,  Y) succeeds by instantiating Y to p(ax) ,  where ax is a 
fresh constant representing the frozen variable X. The following is the decision 
procedure for S-semantics. 

in_s (A) 
freeze(A, A1), 
pure(A, B), 
demo ( [hl] ,  [B] ) ,  
variants(A, B). 

demo([], []). 

demo([AIAs], [BIBs]) +- 
clause(A, Ls, Id), 
demo(Ls, Lls), 
demo(As, Bs), 
clause(B, LIs, Id). 

pure (p (XI ..... Xn), p(YI ..... yn)). 
for every predicate symbol p o/ arity n 

clause(A,  [B1, . . . ,  Bn],  k) .  f o r e v e r y C k = A + - B 1 , . . . , B n 6 P  

augmented by the definition of var iants  [12, Program 11.7]. 

Program 5 

v a r i a n t s ( A ,  A1) is an extra-logical predicate that  succeeds iff A and A1 are 
variants, pure  (h,  B) computes a pure atom for the predicate symbol of a given 
atom. c l a u s e ( A ,  [ B ] ,  k) models the clause Ck = A e- B of P.  A distinct 
identifier k is assigned to every clause of P.  Finally, as a corollary of the results 
reported in [9], given a program P,  we have that  for an atom A, in_s (A) succeeds 
iff A 6 S(P) .  Moreover, if P is acceptable then every LD-derivation of in_s (A) 
is finite. 

Next we present the procedure for C-semantics. Given a program P and an atom 
A, in_c(A)  succeeds iff A 6 C(P). Moreover, if P is acceptable then every 
LD-derivation of in_c (A) is finite. 

in_c (A) +- 
freeze(A, A1), 
ca l l  (hl) .  

augmented by P. 

Program 6 
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5 Declarat ive  Debuggers  

5 .1  C - s e m a n t i c s  

We revise the Shapiro's debugger, by integrating the decision procedure in_c 
within it. 

(O) missing_answers_c(Q, Goal) 
miss(Q, Goall), 
melt(Goall, Goal). 

(i) miss([A I B], Goal) 4-- 
n o t ( i n _ c ( A )  ) ,  
miss(A, Goal). 

~ miss([A ~ B], Goal) ~- 
in_cCA), 
miss(B, Goal). 

~i~) miss(A, Goal) 4- 
user_pred(A), 
freeze(A, A1), 
clause(Al, B), 
valid_c(B), 
miss(B, Goal). 

~v) miss(A, At) +- 
user_pred(A), 
freeze(A, A1), 
not( 

(clause(Al, B), 
valid_c(B)) 

). 

4-- 

clause(A,  [B1 . . . . .  B~]) .  foreveryA~-B1, . . . ,B~ 6 P  

augmented by Program 6. 

Program 7 

valid_c is an oracle describing the queries in the intended interpretation ~. 
Formally, called V the definition of va l id_c ,  an atom v a l i d _ c (  [B]  ) is in C(V) 
iff B is in ~. Consider now Program 2. We have the following definitions of 
user_pred and valid_c: 

user_pred (s) . 
user_pred (p (X)) . 
user_pred (q(X)) . 
user_pred(r (X, Y)). 

val id_c (s). 
valid_c (p(X)) . 
valid_c (q(a)) . 
valid_c (q(b)). 
valid_c (r (a, c ) ) . 
valid_c (r (b, X) ). 
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valid_c ( [A I B] ) 

valid_c (A), valid_c (B). 
valid_c ( [] ) �9 

A call missing_answers_c([p(X) ,s] , A) has a finite LD-tree, and computes 
the uncovered atom A = q(b). The computation progresses as follows. First p (X) 
is found to be not a logical consequence of the program. Then the clause p(X) 
+- q(Y), r(Y,X) is instantiated by Y = b in order to find a valid body. Note 
that the instance Y = a, X = c cannot be considered as X is frozen. Finally, 
q(b) is found to be an uncovered atom. 

Consider PREORDER' and the missing answer 

Q----preorder(tree(E, leaf(X), leaf(Y)), [E, X, Y]). 

A call missing_answers_c ( [Q] , A) computes A = preorder(leaf (X), [X] ), 
which is indeed the correctly typed clause (p2). 
Consider now Program 3, i.e. EAppend, and the missing answer Q = append( [X], 
Ys, IX I Ys] ). The proposed debugger shows that  Q is an uncovered atom. The 
only query to the oracle during the computation is va l id_c(append(Ys,  Ys, 
Ys)) with Ys frozen. In other words, the oracle is asked whether append(Ys, 
Ys, Ys) is valid in the intended meaning of EAppend, which is obviously false. 

The debugger is correct for every logic program. 

T h e o r e m  8 (C-Correc tness ) .  Let P be a program, and Q a missing answer 
w.r.t. C-semantics. I f  miss ing_answers_c([Q] ,  Goal) has a LD-computed in- 
stance miss ing_answers_c([Q] ,  Goal) then Goal is an uncovered atom. 

Proof. First of all, we consider a language L' obtained by adding to L sufficiently 
many new constants, which are employed by the predicate f r e e z e .  Let us show 
that  we are in the hypotheses of the Theorem considering L' instead of L, and 

~' = { A~ 6 AtomL, I A 6 AtomL A A 6 I } 

instead of I .  Since Q is a missing answer w.r.t. 27, then Q is in/7' and P ~: Q, 
i.e. Q is a missing answer w.r.t. I ' .  Moreover the definition V of val id_c is an 
oracle w.r.t. I ' .  In fact, consider any query Q in L'. Q can be written as Q'8, 
where Q' is in L and t? replaces some variables of Q' with distinct constants 
not in L. Then, we have that  Q is in 27' iff Q' is in I ,  and then, since V is an 
oracle, iff V ~ v a l i d _ c ( [ Q ' ] ) .  By the Theorem on Constants (see e.g. [11]), 
V ~ val id_c  ( [Q'] ) iff V ~ val id_c ( [Q'] ) 8, when 8 is of the considered form. 
This implies, that  Q is in I '  iff V ~ va l id_c(  [Q] ), i.e. that  V is an oracle w.r.t. 
:/7'. We now show that  any computed instance of miss ( [ Q ] ,  Goal) returns an 
uncovered atom on L'. 

The proof proceeds by induction on the number n of calls to miss in a 
refutation. 

(n = 1). Goal can be only instantiated by applying rule (iv). Then there is no 
clause instance A1 +-- B whose body is in :~', i.e. A1 r TpC (I ' ) ,  and A1 is obtained 
by freezing A, hence A1 in Z'. Then Goal is instantiated by an uncovered atom. 
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(n > 1). We show that  the hypothesis of the theorem holds for calls to miss 
in clauses (i, ii, iii). 

(i) Since n o t ( i n _ c ( A )  ) succeeds, A is not in C(P) albeit by hypothesis it 
is in I ' .  Therefore, A is a missing answer. 

(ii) Since in_c(A) succeeds, A is in C(P). Therefore, B must be a missing 
answer. 

(iii) A1 + - B  is a clause instance such that  A1 is obtained by freezing A 
and B is in 2' .  By the Theorem on Constants, A is not in C(P) implies A1 not 
in C(P). As a consequence B is not in C(P). Otherwise, by Definition 2, A1 
would be in TC(C(P)) = C(P). Therefore, the call miss  ( B ,  Goal)  satisfies the 
inductive hypothesis, i.e. B is a missing answer. 

In conclusion, the call m i s s ( Q ,  Goa l l )  in (o) instantiates Goa l l  with an 
uncovered atom Goall on L'. By melting the frozen variables of Goall, we obtain 
an atom Goal on L such that  Goal is in I (since Goall is in 2:') but  not in TpC(I) 
(otherwise Goall would be in TpC(I'), i.e. Goal is uncovered. [] 

Restricting the at tention to acceptable programs, we are in the position to show 
completeness of the debugger. 
We make the further hypothesis tha t  there are finitely many oracle's answers 
for Q, i.e that  there are finitely many LD-derivations for every call to va l id_c  
during a LD-derivation for missing_answers_c ( [Q ] ,  Goal) .  

T h e o r e m  9 ( C - C o m p l e t e n e s s ) .  Let P be an acceptable program, and Q a 
missing answer w.r.t. C-semantics such that there are finitely many oracle's an- 
swers/or Q. 
Then there exists a LD-computed instance o]mis s ing_answer s_c ( [Q] ,  Goal) .  

Proof. Reasoning as in the proof of Theorem 8, we can assume a language with 
infinitely many constants. 

We observe that  every prefix ~ of a LD-derivation for Q is finite if the variables 
of Q are never instantiated along ~. In fact, let 8 be a substitution of the variables 
of Q with new distinct constants. If there is an infinite prefix ~ of a LD-derivation 
for Q such that  the variables of Q are never instantiated along ~, then ~8 would 
be an infinite prefix of a LD-derivation for QS. This is impossible by Theorem 
7, since Q~ is ground. We denote by dv the maximum length of a prefix of a 
LD-derivation for Q that  does not instantiate any variable of Q. 

The proof proceeds by induction on dQ. 
(dQ = 1). Let A be the leftmost atom in Q. We claim that  A ~_ C(P). Other- 

wise, by strong completeness of SLD-resolution, there exists a LD-refutation for 
A that  does not instantiate any variable of A. As a consequence, dQ > 1. 

Therefore, A is a missing answer. By applying clause (i) the query miss (A, 
Goal) is resolved. We now distinguish two cases: either A is or not a variant of the 
head of a clause instance A1 +-- B such that  B is in the intended interpretation 
I .  In the latter case, by resolving mi s s (A ,  Goal) with clause (iv) we get a 
refutation, since there are finitely many oracle answers. 
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In the former case, A unifies with a clause head without instantiating its vari- 
ables, and then dA > 1 and dQ > 1. In conclusion, the former case is impossible. 

(dQ > 1). Let A be the leftmost atom in Q = D, A, E such that  A r C(P). 
By repeatedly applying clauses (i, ii) the query m i s s ( A ,  Goal) is eventually 
resolved, since for acceptable programs the calls to in_c terminate. Moreover, 
since D is in C(P) then by strong completeness of SLD-resolution, there exists a 
LD-refutation for D that  does not instantiate any variable of D, hence dQ > dA. 

Again, we distinguish two cases: either A is or not a variant of the head a 
clause instance of P such that  the body is in the intended interpretation I .  In 
the latter case, by resolving miss (A, Goal) with clause (iv) we get a refutation, 
since there are finitely many oracle answers. 

In the former case, clause (iii) is applicable and a query m i s s ( B ,  Goal)  is 
eventually resolved where A1 +- B is an instance of a clause c from P such that  
A1 is obtained by freezing A (i.e., A1 -- A# for # substituting variables with 
fresh constants) and B is in 5[. As shown in the proof of Theorem 8, B cannot 
be in C(P), otherwise A would be. Therefore, B is a missing answer. It is readily 
checked that  dA = dA1. We claim that  dA1 > dB. In fact, let ~ be the prefix of 
a LD-derivation for P and B that  does not instantiate any variable of B. We 
observe that  the LD-resolvent of A1 and c is more general than B. Therefore, 
there exists ( '  prefix of a LD-derivation for A1 longer than ~. Summarizing, 
dA1 > dB. As a consequence, B is a missing answer and dQ > dA = dA1 > dB. 
Therefore we can apply the inductive hypothesis on B to obtain the conclusion 
of the Theorem. [] 

Finally, we have termination of the debugger. 

T h e o r e m  10 ( C - T e r m i n a t i o n ) .  Let P be an acceptable program, and Q a 
query such that there are finitely many oracle's answers for Q. Then the LD-tree 
Of missing_answars_c([Q] , Goal) is finite. 

Proof. Suppose there is an infinite LD-derivation. Since calls to • and va l id_c  
terminate, then it necessarily happens that  clause (iii) is called infinitely many 
times: miss (A1,  Goal) . . . . .  m i s s (An ,  Goal) . . . . .  By reasoning as in the 
proof of Theorem 9, we have that  dA1,. . . ,  dA,,,. . ,  is an infinite decreasing chain 
of naturals. This is impossible since naturals are well-founded. [] 

5.2  S - s e m a n t i c s  

We observe that  clauses (iii, iv) of Program 7 followed directly from the defi- 
nition of uncovered atoms (Definition 4) and the definition of T c (Definition 2). 
We derive the debugger for S-semantics similarly, but  considering now Tp 8. 

(o) missing_answers_s (Q, Goal) 
miss(Q, Goal). 

(i) miss([A i B], Goal) +- 
not(in_s(A) ), 
miss (A, Goal) . 
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(~i) 

(~i~) 

~) 

miss([A I B], Goal) +- 
in_s (A) , 
miss(B, Goal). 

miss(A, Goal) +- 
user_pred(A) , 
pure(A, AI), 
clause (AI, B), 
valid_s(B, C), 
variants(A, A1), 
miss(C, Goal). 

miss(A, A) 4- 
user_pred (A) , 
pure(A, AI), 
not ( 

(clause(At, B), 
valid_s(B, _), 
variants(A, A1)) 

). 

clause(A, [B1 . . . . .  B,~]). foreveryA~--B1, . . . ,B~6P 

augmented by Program 5. 

Program 8 

v a l i d _ s  is an oracle describing the queries in the intended interpretat ion Z. 
Formally, called V the definition of va l id_s ,  an a tom v a l i d _ s  ( [ B ] ,  [(3] ) is in 
S(V)  iff B and (3 are queries whose atoms are in Z and variable disjoint, and 
(3 is a variant of B.  By [6, Theorems 7.1 and 7.7], a call v a l i d _ s ( B ,  C) has 
a computed instance v a l i d _ s ( B ,  C)8 iff for some renamed apar t  a tom B in 
$(V), # = mgu(valid_s(B, C),B) and valid_s(B, C)8 = valid~(B, C)#. 
Therefore, for an atom A the query 

pure(A, AI), clause(Al, B), valid_s(B, C), variants(A, AI) 

has a LD-refutation iff there exists a renamed apar t  clause A1 +-- B such tha t  
8 = m g u ( B , C )  for some C in Z and A1O is a variant  of A, i.e. iff A 6 Tsp(Z). 

Consider now, as an example, the following variant of Program 2. 

S, 

p(X) +-q(Y), r(Y,X). 
X q(a). X missing 
q(b). 
r(a, c). 
r(b, X). 

We have the following definition of valid_s: 

valid_s(s, s). 
valid_s(p(X), p(Y)). 
valid_s(p(c), p(c)). 
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val id_s  (q (a ) ,  q (a ) )  . 
va l id_s  (q(b) ,  q ( b ) ) .  
va l id_s  (r ( a , c ) ,  r ( a , c ) )  . 
va l id_s  (r (b,X),  r ( b , Y ) ) .  
valid_s ( [A l As], [B [ Bs] ) 

valid_s (A, B), 
valid_s (As, Bs). 

valid_s([], []). 

+- 

A call m i s s i n g _ a n s w e r s _ s ( [ p ( c )  , s ] ,  A) has a finite LD-tree, and returns the 
uncovered atom q (a ) .  The debugger is correct for every logic program. 

T h e o r e m  11 ( S - C o r r e c t n e s s ) .  Let P be a program, and Q a missing answer 
w.r.t. S-semantics. I f  miss ing_answers_s ( [Q] ,  Goal)  has a LD-computed in- 
stance missing_answers_s ( [Q] ,  Goal) then Goal is an uncovered atom. 

Proof. The proof is by induction on the number n of calls to miss in a refutation. 
(n = 1). Goal can be only instantiated by applying rule (iv), i.e. if Q is 

an atom and there is no clause A1 +--B whose body unifies with a query in 
the intended interpretation I with mgu 8 and A18 is a variant of Q, namely if 
Q r T ~ ( I ) .  

(n > 1). We show that  the hypothesis of the theorem holds for calls to miss 
in clauses (i, ii, iii). 

(i) Since not  ( in_s ( A ) )  succeeds, A is not in S ( P )  albeit by hypothesis it 
is in I .  Therefore, A is a missing answer. 

(ii) Since in_s (A) succeeds, A is in S(P) .  Therefore, B must be a missing 
answer. 

(iii) Assume that  

pure(A, hl), clause(hl, B), valid_s(B, C), variants(A, hl) 

succeeds. Then there exists a renamed apart clause A1 +-B such that 8 = 
mgu(B ,  C) for some C in I and AlP is a variant of A. Since A is not in S(P) ,  then 
C is not in in S(P) .  Otherwise, by Definition 2, A would be in Tsp(S(P)) = $ (P) .  
Summarizing, by definition of va l id_s  C is in / : ,  and we showed that  C is not 
in 8(P) .  Therefore, the call miss (C ,  Goal)  satisfies the inductive hypothesis, 
i.e. C is a missing answer. [] 

Restricting the at tention to acceptable programs, we are in the position to show 
completeness of the debugger. Also, we assume that  there are finitely many 
oracle's answers. Formally, we say that  there are finitely many oracle's answers 
for Q iff there are finitely many LD-derivations for every call to va l id_s  during 
a LD-derivation for missing_answers_s( [Q], Goal). 

T h e o r e m  12 ( S - C o m p l e t e n e s s ) .  Let P be an acceptable program, and Q a 
missing answer w.r.t. S-semantics such that there are finitely many oracle's 
answers. 
Then there exists a LD-computed instance of missing_emswers_s( [Q],  Goal) .  
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Proof. As shown in the proof of Theorem 9, every prefix ~ of a LD-derivation 
for Q is finite if the variables of Q are never instantiated along ~. We denote 
by dQ the maximum length of a prefix of a LD-derivation for Q that  does not 
instantiate any variable of Q. The proof proceeds by induction on dq. 

(dQ = 1). Let A be the leftmost atom in Q. We claim that  A r S (P) .  
Otherwise A E C(P). Then by strong completeness of SLD-resolution, there 
exists a LD-refutation for A that  does not instantiate any variable of A. As a 
consequence, dQ > 1. 

Therefore, A is a missing answer. By applying clause (i) the query miss (A, 
Goal)  is resolved. We now distinguish two cases: either A is or not a variant of 
A l p  where A1 +- B is a clause of P and # = mgu(B, C) for some C in Z. In the 
latter case, we observe that  by resolving miss (A, Goal)  with clause (iv) we get 
a refutation, since there are finitely many oracle answers. In the former case, A 
unifies with a clause head without instantiating its variables, and then dA > 1 
and dQ > 1. In conclusion, the latter case is impossible. 

(dQ > 1). Let A be the leftmost atom in Q = D, A, E such that  A r S(P). 
By repeatedly applying clauses (i, ii) the query miss (A, Goal) is eventually 
resolved, since for acceptable programs the calls to in_s terminate. Moreover, 
since S ( P )  C_ C(P),  then by strong completeness of SLD-resolution, there exists a 
LD-refutation for D that  does not instantiate any variable of D, hence dQ ~ dA. 

Again, we distinguish two cases: either A is or not a variant of AI#  where 
c : A1 +-- B is a clause of P and # = mgu(B, C) for some C in Z. In the latter 
case, we observe that  by resolving mi s s (A ,  Goal) with clause (iv) we get a 
refutation, since there are finitely many oracle answers. 

In the former case, clause (iii) is applicable and miss (C ,  Goal) is eventually 
resolved. In fact, by definition of va l id_s ,  the query pu re  ( t ,  A1), c l a u s e  (A1, 
B),  va l id_s (B ,  C),  v a r i a n t s ( t ,  A1) succeeds under the stated hypothesis. 
As shown in the proof of Theorem 8, C cannot be in S (P) ,  otherwise A would 
be in 8 ( P ) ,  and then C is a missing answer. We claim that  dA > dc. 

Let ~ be the prefix of a LD-derivation for P and C that  does not instantiate 
any variable of C. Since A and AI#  are variants, then there exists a renaming 
substitution a such that  A = Al#a.  Moreover, A +-- C # a  is an instance of c. 
Let 8 be a substitution mapping all variables of A +-- C # a  into distinct fresh 
constants. Since no variable of C is instantiated in ~, then there exists a prefix 
~ of a LD-derivation for C/tat? of the same length of ~. 

We observe that  the LD-resolvent of At? and c is more general than C#at?, 
since At? ~ C/tat? is an instance of c. Therefore, there exists a prefix ~" of a 
LD-derivation for At? longer than ~.  By substituting in ~", every fresh constant 
introduced by t? with the variable it replaced, we get a prefix of a LD-derivation 
for P and A that  does not instantiate any variable of A and whose length is 
greater than that  of ~. Summarizing, C is a missing answer and dq > dA > dc. 
Therefore we can apply the inductive hypothesis on C to obtain the conclusion 
of the Theorem. [] 

Finally, we have termination of the debugger. 
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T h e o r e m  13 ( S - T e r m i n a t i o n ) .  Let P be an acceptable program, and Q a 
query such that there are finitely many oracle's answers for Q. Then the LD-tree 
of missing_answers_s ( [Q] , Goal) is finite. [] 

Observe that  the hypothesis that  there are finitely many oracle's answers is 
rather restrictive in the case of S-semantics. Looking at Program 8, we quickly 
realize that  clauses (iii, iv) call va l id_s  (B, C) with B instantiated by the body 
of some program clause. In the case of a simple program such as Append, the 
resulting query v a l i d _ s ( [ a p p e n d ( X s ,  Ys, Z s ) ] ,  C) has infinitely many LD- 
derivations. In general, we have that  "finitely many oracle's answers" actually 
requires that  E is a finite set. However, by noting that  v a r i a n t s ( A ,  A1) must 
succeed, a weaker assumption can be made by defining an oracle va l id_s  (B, 
C, A, A1) that  stops a LD-derivation if A1 becomes more instantiated than A 
(or some sufficient condition that  implies that,  e.g. by checking that  the size of 
A1 remains lower or equal than the size of A). By such an enhanced oracle, we 
have that  the assumption of "finitely many oracle's answers" is less restrictive, 
and allows for reasoning on intended interpretations that  are infinite sets. As 
an example, starting from the missing answer append ( IX] ,  Ys, [X lYs] ) for 
Program 3, the debugger finds out that  it is an uncovered atom, when va l id_s  
is as described above. 

6 D i s c u s s i o n  

A C o m p l e t e n e s s  R e s u l t  The following result is an immediate consequence of 
Theorems 9 and 12. 

T h e o r e m  14. Let P be an acceptable program. I /  there is a missing answer 
Q w.r.t. C-semantics (resp., S-semantics) and there are finitely many oracle's 
answers ]or Q then there exists an uncovered atom. [] 

A non-constructive proof has been established by Comini et al. [4] also in the case 
that  there are not finitely many oracle's answers. Indeed, the proofs of Theorems 
9 and 12 (non-constructively) show that  result if we remove the hypothesis that  
there are finitely many oracle's answers. 

B o u n d e d  P r o g r a m s  A declarative characterization of a class larger than ac- 
ceptable programs is considered in [9], namely the class of bounded logic pro- 
grams, and a decision procedure is provided with respect to C- and S-semantics. 
Unfortunately, the overall approach presented in this paper cannot be extended 
to bounded programs. The main problem is that  Theorem 14 does not hold 
for bounded program, in general. As an example, p is a missing answer for the 
following (bounded) program, but  there is no uncovered atom. 

p +--p 
Y,p 7, missing 

Future work is aimed at extending the ideas and the results presented here to 
larger classes of logic programs, by investigating subclasses of bounded programs. 
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C on c lu s ion s  We presented two declarative debuggers of missing answers with 
respect to C- and S-semantics. They are correct for any program, and complete 
and terminat ing for a large class of logic programs. The implementat ions of 
the debuggers rely on decidability procedures for C- and S-semantics  which are 
adapted  from [9]. 

The results presented in this paper  improve on Shapiro's and Ferrand's  pro- 
posals for completeness and termination. Moreover, efficiency is improved in the 
following sense. As shown in Theorem 8, only calls miss  ( [ Q ] ,  Goal)  where Q 
is a missing answer are made. On the contrary, from the example Program 3, we 
realize tha t  Shapiro's and Ferrand's  debuggers search space include queries tha t  
are not missing answers, and then cannot lead to uncovered atoms.  

Also, we introduced a debugger for S-semantics.  The only approach to de- 
bugging of missing answers w.r.t. S-semantics is due to Comini et al. [4]. They 
present a method for finding all uncovered a toms start ing from the intended 
interpretat ion E of an acceptable program. However, the approach of Comini et 
al. is effective iff 1: is a finite set, whilst we require a weaker condition, namely 
tha t  there are finitely many oracle's answers. 
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