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A b s t r a c t .  We present the core-/:. fragment o f / ~  and its program logic. We 
illustrate the adequacy of E~ as a recta-language for jointly defining opera- 
tional semantics and program logics of languages with concurrent and logic 
features, considering the case of a specification logic for concurrent objects ad- 
dressing mobile features like creation of objects and channels in a simple way. 
Specifications are executable by a translation that assigns to every specifica- 
tion a model in the form of a core-s program. We also illustrate the usefulness 
of this framework in reasoning about systems and their components. 

1 I n t r o d u c t i o n  

The "proof-search as computation" paradigm has inspired the design of several 
programming and specification languages [6]. In [1] we presented s a simple 
language that  supports the reduction and state-oriented style of specification of 
mobile process calculi without compromising the relational style of specification 
typical of logic programming. In particular, we have shown that  both the 7r- 
calculus [10] and a version of the logic of hereditary Harrop formulas [7] can be 
adequately encoded into /:~. On the other hand, s can itself be encoded in 
classical linear logic, in such a way that  successful computations correspond to 
proofs [3]. As illustrated in [2],/:~ suits itself well as a gpecification language of 
the operational semantics of programming languages with concurrent and logic 
features; we also proposed/:~ as a meta-language for the compositional definition 
of operational semantics and program verification logics of languages of such a 
kind. Herein, we pursue this general directions, picking the case of declarative 
object-oriented specification of concurrent systems. 
MOTIVATION. Several embeddings of object-oriented constructs into variants of 
r-calculus have been presented in the li terature [12, 16, 14]. However [11], the 
7r-calculus, while supporting the basic features of concurrency, mobility, abstrac- 
tion and creation of processes and names, is a low level calculus, so the question 
arises about what kind of idioms are more suitable to model and reason about  
object systems and their components. In this setting, most of the current ap- 
proaches focus On operational semantics or types, and the object languages have 
a definite operational character. In this paper, we develop a contribution in this 
general theme, stressing the instrumental use of the E~ framework in the spirit 
stated above. More specifically, we consider the case of a declarative specification 
language and program logic for concurrent objects that  provides a unified sce- 
nario for specifying and reasoning about systems. This is achieved in the context 
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of a well-defined operational semantics that renders specifications executable and 
makes essential use of the reductive and deductive features of/:~. 

OVERVIEW. First, we define core-/:~, a small yet expressive fragment of / :~ ,  
and its program logic #s The logic #/:~ is based on a many-sorted first-order 
version of the #-calculus enriched with connectives enabling the implicit expres- 
sion of component location and a hiding quantifier. For instance, a property 

| r holds of a system with two components that satisfy respectively ~o and 
r and Z , ~  holds of a system that satisfies ~ in a context where a name n is 
private. Then, we present a specification logic for concurrent objects that ac- 
tually reduces to an idiom of #/:~. From the viewpoint of logical specification, 
our proposal extends existing ones (for instance, [15]) by addressing mobile fea- 
tures like dynamically changing number of components and creation of private 
channels in an intrinsic way, while supporting both local and global reasoning 
by relying on the monoidal structure induced by | Moreover, specifications are 
executable by means of a syntax-directed encoding that assigns to each speci- 
fication a model in the form of a core-s program. This translation relies on a 
combination of techniques from process calculi and proof-theoretic approaches 
to logic programming. We also illustrate the usefulness of this framework in 
reasoning about systems and their components by giving some examples. 

OBJECT MODEL. We consider a standard asynchronous model of concurrent 
objects as closed entities that exhibit computational behaviour by performing 
mutually exclusive actions over a private state. Actions are triggered by serving 
request messages from the environment, but are only allowed to ocurr under 
certain enabling conditions. Actions can change the object's internal state, cause 
the sending of action requests to other objects or even the creation of new objects 
or channels, and display internal non-determinism. Thus, any specification of the 
behaviour of an object must define conditions under which actions can occur, 
and also what are their effects. 

SPECIFICATION LANGUAGE. Since [13], many authors adopted subsets of some 
temporal logic (TL) as a specification language for concurrent systems. But un- 
restricted use of TL often leads to unimplementable specifications, and typical 
approaches pick some restricted class of formulas as dynamic axioms. For in- 
stance in [4], one finds safety formulas like ~ A A* ~ Xr and liveness formulas 
like qo ~ FA* - where A* denotes the occurrence of action A, and X and F are re- 
spectively the next and eventually operators of (linear) TL. Concerning liveness 
properties, in our asynchronous model we will not be able to assert such a strong 
assertion, but just something like the weaker ~o ~ XmA* where mA* asserts the 
existence of a pending request for action A. Then, whether mA* implies FA* 
depends on fairness assumptions and on the actual enabling conditions of action 
A. In summary, we adopt the (branching time) logic inherited from #s and 
consider specifications of object classes that enumerate instance attributes, and 
include dynamic axioms of the form ~ ~ ([A]) r and static axioms defining the 
meaning of non-logical symbols. 

STRUCTURE OF THE PAPER. In Sections 2-3 we introduce core-s and its pro- 
gram logic. In Section 4, we introduce the object specification language and 
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present its interpretat ion in / :~  in Section 5. After discussing some properties of 
this interpretat ion in Section 6, we present in Section 7 an example of reasoning 
about  a system. 

2 T h e  c o r e - s  L a n g u a g e  

Here we introduce core-s a small yet expressive fragment of s  [1, 2]. 
SYNTAX. Given a set V of variables, the set TO;)  of untyped terms over Y is 
defined inductively as follows: variables are terms, if x is a variable and t l , - -  �9 , tn 
are terms then x ( t l , . . .  , t,~) is also a t e rm t (s.t. head(t)  = x). In general, we 
will use x , y , z , i , j  for variables, a, b, c, t, u, v for terms, ~ for a list of distinct 
variables and t for a sequence ( t l , . . .  , t~) or a multiset ~]t l , . . .  , t , ~  of terms, 
depending on context. Sometimes, we will write x.t for x( t )  and call names to 
variables. Untyped agents of core-/:r  are defined by 

Inaction 0 denotes the well-terminated process. An atom a can be seen either 
as an elementary message to be sent asynchronously or as a da ta  element in the 
shared state, p[q stands for the parallel composition of p and q; we sometimes 
write rh for roll �9 . .  link when the m are atoms. Restriction ux induces generation 
of private names; uxp binds x in p. To explain the behaviour of the input prefix 
fc ~ ~[g]p we star t  by considering the particular case where the test  g is 0, which 
we abbreviate  by ~ ~, ~[]p. The agent ~ ~, ~NP waits for a message b (a multiset of 
terms) and then behaves like a(p) ,  if there is a substitution cr with domain ~ such 
tha t  a(5) - b. In general, in addition to receiving the message, ~ ~ ~[g]p must  
also perform successfully the test  v,(g). Roughly, a test g succeeds if there is an 
atomically encapsulated computat ion sequence start ing with g and reaching a 
success s tate  (defined below). The replicable agent !~ ~[g]p  behaves just like i t 's  
non-replicable version, except tha t  it does not consume itself upon reduction. In 
input prefix agents, the input variables ~ must  have free occurrences in either 
or g, al though not in the head of some a. Note however tha t  in non-replicable 
input prefix, 5 may be empty, this corresponds to the testing agent of [1]. In 
both  forms, ~ may be empty, in which case the prefix ~c, may be ommited.  For 
agents, we will use normally p, q, r, g. 
TYPING. Here we introduce a simple type system for core-s Assume given a 
set {2 of primit ive sorts, containing at least o, and a set A of primitive basic 
types containing say nat, bool. Basic types fi and types ~- are given by 

: : =  : : =  n 

A type tha t  is not basic is called a sort. The definition of types  and sorts is 
stratified in such a way that  no te rm of basic type 6 can contain a subterm of 
some sort. The motivation for this stratification is to limit scope extrusion to 
terms of sort kind. Signatures are partial  maps  from variables to types. We use 
Z,  ~ ,  F for signatures, and assume that  x r r when writing Z ,  x :~-. Terms and 
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Y, ,X:~ '~-p  
I- UX : Tp 

Z ~ - h : ( T ~ , . ' ' , T k ) ~  Z l - t i : T i  
~" h( t~ , . . .  , tk) : ~3 

~ - h ( t ~ , . . . , t k ) : o  ~ - p  ~ - q  

t- hit~,. . . , tk) ~ ~- PIq 

Z , & : ~ - g  Z ,  2 : ~ - p  Z , ~ c : ~ t - a i : o  

Fig.  1. Typing of terms and agents. 

agents are typed by the rules in Figure 1. We will refer by T~ (S) the set of terms 
t such that  Z ~- t : T is valid. Note that  binding occurrences of variables in vx 
and &~, are now explicitly assigned a type. In the rule for restriction, T must be 
a sort and, in the rules for input prefix agents, any variable x not occurring free 
in 5 must be assigned a basic type. If ~ t- p is valid, we will say that  S ; p  is a 
well-typed agent, bringing explicit the typing context. For well-typed agents we 
will use P, Q, R, and write :P for the set of all well-typed agents. 
REDUCTION. The operational semantics of s is defined by a relation of reduc- 
tion between agents. Following [8], we first define a structural congruence relation 

that  abstracts away from irrelevant notational distinctions. = is the smallest 
congruence relation over agents containing a-conversion and closed under equa- 
tions (i) Piq ~- qiP, (ii) (piq)I r ~- ql(plr), (iii) pI 0 ~ p, (iv) vx(piq ) ~- vxplq i fx  is 
not free in q, (v) ~xO --- O, (vi) !r ~-!ri!r and (vii) !rlSc ~ 5[air ~-!rI~ ~ 5[qi!r]r if 
are not free in p and !r stands for some replicable input prefix agent. Reduction 
is the least relation P -+ Q between well-typed agents P and Q such that  

~;Z]X : 7"p -+ ~;VX : Tq if ~',X : T;p ~ ~ , X  : ~-;q 

Z; ~ ~ [g]Plq --+ Z; a(p)I q if Z; a(g) -5, V/ 

Z;(nI x :  ~5[g]Piq  -~ E;aiP)iq } if Z ; a i g )  -~ ~/Arh -- 0(5 ) 
a[g]plq : e a[g]plq 

Here a assigns to each x : r a term t E Tr(Z) and x / (a  success state) is any agent 
of the form ~; v~ : ~(!p), where !p is a composition of a (possibly null) number of 
replicating agents. As usual, we will refer by -~ the transitive-reflexive closure 
of ~ .  Subject reduction holds: if P E P and P --+ Q then also Q E P. 
LABELLED TRANSITION SYSTEM. To capture the compositional behaviour of 
agents, an "open" version of the reduction relation must be defined that  cap- 
tures not only the behaviour of agents in isolation but also the behaviour they 
can exhibit with adequate cooperation of the environment. As usual, this is for- 
malised by means of an action-labelled transition system (LTS), where actions 
may be output (? a), input iS a) or silent (T). Several possibilities arise at 
this point, we must require at least soundness, that  is, agreement of _L~ with 
reduction. Additionally, we can also impose a notion of relevance for P,  more 
precisely, that  whenever P ~ Q there is P '  E P such that  P'  ~ Q', P IP '  E 7) 
and PIP '  -~ QIQ', and likewise when P ~-~ Q. 
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. l"a S;  a--~ .,U; 0 if head(a) CDef 

S; !p ~ .,U; !p 

S , x  :"r;p ~ S~,x : T;q if X r a 
z~; UX : Tp -'~ SI; UX : Tq 

Is] 

S; a 4.!~:~.~b[]p 2~; p(p) if p(b) -- a A head(a) �9 Def 

E, Y: 7; !qla(g) 24 ~/ 

z;  5:: a[g]p s, 9: o(p) 

~,,x : r;p ~ Et;q 
if x �9 a A x ~_ head(a) 

~; ux : Tp "r(x_~)a X~; q 

Z; p i"(~)~ Z,  5: : f ;  p' ~;  q r174 ~ ,  F, 5: : f ;  q' 

S;plq ~ ~ , F ; v s :  : ~(P'lq') 

S;p-Sr S ' ;p  ' S;p~-~ ,V,,F;p ' S ;q  t-~ s , O ; q  ' 

S';Plq -5, S';P'Iq S;p[q t ~ r  ~ ,F,O;p ' lq '  

Fig.  2. LTS specification for core-/: ,  

ACTIONS. Z-actions are objects of the forms $(5: : ~)5!p (output action) or 
$(5: : ~)5!p (input action) where 5: : ~ is a possibly empty signature, each ai is an 
atom and each !p a replication such that  Z,  5: : ~ t- all " "  la,~lIpll"" liPm is valid. 
To grasp the meaning of the binding signature, just consider it a generalisation 
of r-calculus bound input and bound output actions, in our notation, x(y) would 
be rendered by r and x(y) by $(y)x(y). When all components 5:, 5 and 
!p of an action are void, both r and $ will be noted T (the silent action). To 
highlight the typing context we may write r ;  a for Z-actions a. The set of all 
actions will be noted Act, and individual actions by a, b, c. We will also define 
head((x : T)5!h.p) as the set of heads of all 5 and all h. Actions a and b of the 
same polarity compose into another action a | b; composition of (5: : ~)Slp with 
(# : ~)SIq is defined as (5: : "~, # : ~)55!pq. Intuitively, a | b is the concurrent 
execution of a and b; | is commutative, associative and has T for unit. 
LTS SPECIFICATION. In Figure 2, we present a LTS specification for core-s 
Most rules have the form one expects. Substitution a assigns each x : T a term 
in Tr(57,# : ~), and p a term in Tr(Z) .  When we are interested in computations 
starting from agents F; p with F a given global signature, we let Def C r and 
define two transitions for an agent Z; a, to distinguish the case where a is to 
be substituted in place by it 's definition (when head(a) E De]), from the case 
where a is to be sent to the environment. This specification defines a sound and 
relevant transition relation -~ for all of IP, and should be taken as the reference 
transition relation. Note however that  when developing applications of core-/ : ,  
(for instance, when studying certain restricted idioms as in this paper) we might 
be interested just in some subset of P.  Since -St might not be relevant for that  
subset, additional provisos may be placed occasionally in some of the rules above, 
in order to obtain relevance for the fragment under consideration. 
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~V~;P ~I,v P(t)  
S;  p ~I,v t - t 
S; p ~I,, mo 
S;p ~I,. ~ A r  
S; p ~I,. Vx : ~-~ 
S ; p  ~I,v (S) (p 
Z ; p  ~I,v X 
S;p ~i,. pX.~ 

S ; p  ~I , .  [a] 
S; b'X : Tp ~I,v Sx~O 

S;  0 ~I,v 1 

if t �9 I t ( P )  

if not S ; p  ~I,v qo 
if S;p ~I,.  ~o and S;p  ~I,v r 
if Z ; p  ~I,~ qo{~/t} for all t �9 T~(S) 
if 3 (S ;a )  �9 S3(Z' ;q)  �9 79(S;p-St S';q and S';q ~I,~ qo) 
if S ; p  E v(X) 
if VS C_ 79(clos(S) ~ S ;p  �9 S) where 

clos(S) is V(F; q) �9 79(/"; q ~I,vtx~s] ~o ~ (F; q) �9 S) 
if p - ah/  
if S,X:T;p~i,vqo 
if p ~ ql r and S;  q ~ I , .  qo and S;  r ~I,v 

Fig.  3. Satisfaction of p s  formulas. 

3 A program logic for core-/:,r 

The program logic p/:~ is basically a many sorted first-order version of the 
propositional p-calculus (see [5]) extended with operators for handling private 
names and spatial distribution. Formulas of p / : .  are 

,z ::= P(~) I t  -- ~ I--,~ I ~ A ~  I W : ",,Z I (S)~IX I p X . ~  I S~:,-~ I ~ , |  I It] I 1 

The formulas expressing conjunction (qo A r properties P(t) ,  equality (t - u), 
possibility ((S)~) ,  universal quantification (Vx : T~), negation (-%0) and least 
fixed point (pX.tp) are to be understood in the usual way. In a fixed point 
formula pX.qo, any occurrence of X must be under an even number of negations 
and under no | The remaining forms are particular to pZ:~ and deserve further 
comments. Exqo asserts a property of a state embedded into a context where the 
name x is private. The formula qo|162 holds in every state that  can be partitioned 
into a component satisfying qo and a component satisfying r 1 is the unit for 
| Finally, [t] is true of those states that  essentially contain just the message t. 
Formulas are expected to be well-typed w.r.t, a signature Z; for ps formulas 
~, we assume a corresponding judgement form S F- ~ defined as expected. If 
such a judgement is valid, qo will be called a S-formula. 
SEMANTICS. Truth of formulas of ps is taken with respect to a structure that  
consists in a labelled transition system for core-/:. 1 together with a map I as- 
signing to each signature E an interpretation I s .  Such interpretations assign to 
each predicate symbol of type (T1,... , ~-~)O a subset of T~ 1 (S) x . . .  x T~ (Z). 
I is required to be monotonic, that  is S C_ S t implies that,  for every predicate 

1 In general, the reference LTS; sometimes a suitable restriction may be required, cf. 
previous remarks on relevance. 
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symbol P, I f ( P )  C_ I~,(P). In Figure 3 we present the relation - ~ I , v  - of 
satisfaction between E-terms and well-typed E-formulas of #s The definition 
is parametric on the interpretation map I and also on a valuation v. This valua- 
tion assigns sets of well-typed terms to propositional variables X, and is needed 
to interpret the fixed point operator. When interpreting formulas without free 
propositional variables, the valuation is irrelevant and could be omitted. 

Some specific comments about this definition are in order. First, core-s 
terms are taken modulo structural congruence ~. In the clause for iS)~o, S is 
a set of s actions. To follow usual notations we will write (.) ~o for (S) ~o when 
S is the set of all actions. In the clause of #X4o, the property clos(S) holds of 
prefixed points of the mapping that sends sets of terms satisfying a property r 
to the set of terms satisfying the property ~o{z/r The syntactic restriction on 
the occurrences of X in #X4o causes this mapping to be monotonic, therefore 
the clause for #X.~o defines the least fixed point as the intersection of all prefixed 
points, cf. Knaster-Tarsky theorem. Other logical connectives (say, V, 3, O) are 
defined in the usual way according to standard tarskian semantics. The following 
usual abbreviations will also be used: IS]q0 for --(S)-,qo (necessity), vX.~o for 
-,#X.~qo{X/-x} (greatest fixed point), _1_ for # X . X  (false) and T for -,_l_ (true). 
We will also write {~} for E ~  when no x occurs free in ~, and introduce the 
following derived operators: ([S]) q0 standing for (S) T A [S]qo, inv[s]qO standing 
for vX.qoA[S]X (~ holds along any S-path) and ev[s]qo standing for #X.~oV(S) X 
(~o will eventually hold along some S-path) and evs[s]~ for #X.~ V((S) T A [S]X) 
(qo will eventually hold along any S-path); inv[.]~o will be abbreviated by inv~o 
and likewise for ev~o and evs. 

The use of an explicit signature is essential in the definition of satisfaction. 
For instance, note that Z~-7 =:~ VyZx(~x - y) is true in any interpretation. This 
formula asserts intuitively that if a state has some private name, then this name 
is distinct from every term in the current environment. The scoping behaviour 
of private names induces the need to consider the brackets (~o} even when the 
private names do not ocurr in ~. For instance, a :  o; vb: o b[]a ~ {(.) (ta) -7} but 

o; . b :  o V: (') (*o) -7. 

4 A s p e c i f i c a t i o n  l a n g u a g e  fo r  c o n c u r r e n t  o b j e c t s  

The specification language we present here is an idiom of the program logic of 
Section 3. Essentially, we consider specifications of classes of objects that indicate 
besides the instance state variables, for each possible action A a set of dynamic 
axioms of the form ~o ~ ([A]) r where ~ (the pre-state formula) is a proposition 
over the object's state and r (the pos-state formula) is a proposition defining 
the new state of the object and other side effects induced by the execution of 
A. Possible side effects are the posting of action requests i.m (for other objects) 
and of creation requests ui : c(5) (for a new object i of class c(5)). Besides 
this components, a specification also comprises a post-state formula defining the 
initial state of objects of the class and a static theory (called so because it does 
not involve any dynamic modalities) defining the meaning of the non-logical 
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constants (predicate symbols) occurring elsewhere in the specification. At this 
stage, the reader may want to give a look at the sample specification in Fig. 4. 

We assume given a set of basic types and a set of basic sorts (containing, at 
least o and act). The type (act)o will be abbreviated by obj. A system specification 
is triple (Z,  C, S) where E is a signature, the set of class names C is a subset 
of E,  and S is a mapping assigning to each c E C a class specification Sc of 
type E(c) ---- To. A parametric E-class specification of type (T1,... ,T~)O is then 
a five-tuple (A, / : ,Z,  ~ ,  7-) such that (1) A a n d / :  and ~ are pairwise disjoint 
signatures, (2) A is of the form al : ~'1,... ,a,~ : Tn (3) Z is a post-state formula, 
T~ is a finite set of dynamic axioms and T is a finite sets of static axioms. 
Post-state formulas and dynamic and static axioms will be defined shortly. 
PARAMETERS. Signature A lists the parameters of the class specification. If A is 
empty, the specification is non-parametric and therefore fully determined. Given 
a E-class specification (.4,/:,  Z, T~, T)  of type (~'1, �9 �9 �9 , Tn)O and terms ti E T~, (~)  
we obtain some non-parametric concrete instance (O,Z{~/~), n{a/~}, T{a/~}). 
LOCAL SYMBOLS. S igna ture / :  splits in two components: /:attrs, containing the 
declarations of the class instance's attributes and /:preds, which assigns to each 
predicate symbol defined by the local static theory T a predicate type (~)o. 
DYNAMIC THEORY. Dynamic axioms have the form V~ : "~(SA~0 ~ ([A])r where 
the action A is a term of type act, S is a state formula, 7~ is a static formula, r 
is a post-state formula and ~ are some variables with free occurrences at least in 
S, 7~ or A - those that  occur just in qo and r should have basic type. A formula 
of the form S A ~ will be called a pre-state formula. These kinds of formulas are 
defined by 

(state formulas) S ::= T [ a = t [ S A S 
(static formulas) ~ ::= P( t )  I T I 7 ~ A ~ I qo V 
(post-state formulas) r ::= S ] p i :  c( t ) r  I i.m | r 

where a E /:attrs, P E /:preds and c E C .  In the definition of post-state formulas, 
i is assumed of type obj and m is assumed of type act. 
INITIAL. I is a post-state formula specifying the object 's state at birth time. 
STATIC THEORY. 7- is a set of static axioms of the form V~ : ~(~o ~ P( t ) )  where 
qo is a static formula. 
COMMENTS. All formulas in the class specification are well-typed w.r.t, the sig- 
nature Z`4/:, self: obj, except that  self cannot occur in T.  To avoid useless incon- 
sistencies, no more than a single occurrence of a particular at tr ibute symbol is 
allowed in pre- and post-state formulas, and the state formulas in the antecedent 
of dynamic axiom should be pairwise exclusive. 
SEMANTICS. Semantics of class specifications is given by translation into a #/:~ 
formulas. To perform this, we must understand formulas in a specification as 
asserting properties of a prototypical object of the given class and bring this 
arbi t rary object explicit. More precisely, if i is a variable of type obj and ~ a 
formula in a class specification, the formula i.~ asserts the property 7~ relativized 
to the object i. This relativization is essential also to enable global reasoning 
about  systems composed of multiple interacting objects. Now, i.~ is obtained 
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from ~ as follows: replace self by i, rename predicate symbols P as c .P 2 is the 
class name, replace actions A in dynamic axioms by $ i (A)  and replace equations 
a = t by i .a = t. Moreover, understand ui : c(t)r as Ei:obj([c(i,t)] @ r and 
j . m  as [j(m)]. Every expression of the form i.a = t must also be translated 
to some formula of # / : . .  This translation depends on the actual representation 
of objects as agents of core-/:.. Several possibilities arise in this point, we just 
require invariant validity of the following principles 

P1 Vt : T(i .a -- t ~ [.](3y : Ti.a ---- y) ) (Persistence of Attributes) 
P2  Vt : T~v : T,( i .a  = t A i.a = v ~ v -- t) (Attribute values are functional) 
P3 --(3z : T(i.a = z) | 3 z :  T(i.a = Z) | T) (Unicity) 

SPECIFICATION FORMULAS AND MODELS. Let Z ~ be obtained from Z by chang- 
ing the types assigned to class names in C from (~)o to (obj, ~)o and s be ob- 
tained f rom/ :  by renaming each predicate symbol in ~ p r e d s  from P to c.P. Then, 
every Z-class specification C = (A,/: ,  Z, ~ ,  T) yields the Z~ 

C * ( i , ~ ) = S ~ (  A i . a t = v t ) A (  A i . D j ) A (  A c.Pk) 
al Es Dj  ET~ P~ E T  

This formula expresses the full content of the specification and can be used to 
define a notion of model for a system specification. 

Def in i t i on  1 A model for a system specification ~P = (E,C, S)  is an interpre- 
tation map I and an assignment of a E~  !de to each c E C such that 

for  all c e C Pc ~ I  (!dc) (i .Z A inv(S*(i ,~) | T}) 

v, ol'Co i : obj; c(i, ~) for some ~, and satisfaction is taken w.r.t. where Pc ~ .-, J*~preds, 

some sound restriction of the reference L T S  relevant to (QIPc ~ Q for c ~ C}. 

5 From Specifications to Agents 

In this section, we show how models for class specifications can be systematically 
constructed in a rather simple way. Basically, an object "located at" name i will 
be represented by an agent of the form us :  a(s( i ,  ~)[uc.p(R(n)is [T(c.T))) where 
R(7~)i8 and T(c.T) are encodings of respectively the dynamic and static theory, 
and s(i, ~) is a "record" of the attribute values. We first introduce a canonic form 
for dynamic axioms in which all of the object's attributes occur both in pre- and 
post -state formulas. The motivation is that  this simplifies the description of the 
translation and renders explicit the intended frame condition. 
CANONIC FORM. Let Vx(S1Aqo ~ ([a]) r be a dynamic axiom where $2 is the 
maximal state formula embedded into the post-state formula r Then, its canonic 
form is VYC~k(S1 A S~ A qo ~ ([a]) r where S~ is al = yl A- . .  A ak = Yk 

2 When ~ is a static axiom, we also write c.~ for i.~o 
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for those attributes ai not occurring in S1 and S~ is bl -- vl A..  �9 h bl = vz where 
bi = vi is the (unique) equation in S A S~ for an at t r ibute bi not occurring in $2. 

From now on, we fix a Z-class specification S = (A, Z:,Z, T~, T)  associated to 
c : (T1, �9 �9 �9 , T~)O in some system specification (Z, C, S), and consider its associated 
specification formula S* (i, 5~) for some i of type obj. W.l.o.g. we will take the 
canonic form of every axiom in/~.  
STATIC FORMULAS AND AXIOMS. Are encoded by the mapping T ( - )  

T<T) ~. 0 
T(~i  A (p~) ~ [T((pi)]T(cp2) 
T(~l  V ~2) ~-> [~,n: o(nl!n[T(~l)]O[!n[T(~2)])]O 
T<P(t) )  ~ c .P(t)  
T(V~: "?(~o =~ c.P(t))) H. !~: "? ~, P(t')[T(,.p>]0 

This translation assigns to the theory 7" a well-typed core-l:~ F- term Tic.'/- ] 
defined as T(c.dz) I " "  IT(c.d-) where el, are the formulas in 7". We have 

P r o p o s i t i o n  1 Let S be a signature, 7" be a static theory and i .~  a goal formula 
over ~=. Then ~=; 7" F ~o is provable in classical logic iJ~ ~;  T<T) IT<ida) -~ x/. 

STATE AND POST-STATE FORMULAS. We consider now the encoding of post-state 
formulas; state formulas are but a special case of these. We first sequentialise in 
an arbitrary way al,  a2 , . . .  , am the at tr ibute names defined in L:attrs and define 
the type as  as (obj, o, ~ ( a l ) , " "  , f~(am))o. Let PC->: be the translation map 

P(al = tl A . - .  A am = tm>~ ~+ s(i, t l , . . .  , tin) 

P<uj: 0(~)r ~ Uj:obj(C(j, t')lP<r 
P(j.a | r  ~ j (a) iP(r  

, /  . 

P<-)s IS parametric on two variables i and s, respectively of type obj and ac .  This 
encoding represents the state of an object as a term s(i, g;), where i is the object 
name and g are the current values of it's attributes. We now can interpret in #Z:. 
a t t r ibute valuation formulas i.ak =- t (where ak is the k-th at tr ibute in sequence 
defined above ) by the formula 3~ : r x l , . . .  ,Xk~,t,  Xk+2,. . .  ,xm-1)] 
where the ~ are the appropriate types and t occurs in the k-th argument position 
of s. We will see shortly that  this interpretation fully satisfies principles P1-3. 

P r o p o s i t i o n  2 Let ~o be a post-state formula in a class specification and S ~- 
i .~.  Then ~;  us :  a s ( P ( r  h/) ~I  i . r  is valid for every I. 

DYNAMIC AXIOMS. Of the form r = g& : ~(S A ~ ~ <[a]> r  are translated by 
the map R<-)~ given by R(r = !~ :  ~ ~, P(S>~ : i(a)[T(i.~)]P<r 
CLASSES AND SYSTEMS. A ~-class specification G is encoded into the Zo agent 

C(,S') =! i :  obj, 6~: ~=~ ~, c(i, 5)~Obs(i ,  5~) 

where Obs(i ,  5) - ~ s :  as(P(2:>~ I 'c-p:  Z:pred~(R(n}i, IT(c.7"))) is the represen- 
tat ion of an object i of class C in a state satisfying 27. In general, an agent of 
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the form vs : as(s(i,~)l~c, p : s [T(c.7"))) will represent an object 
"located at" i. Finally, a system ~ = (S ,  C, S) is encoded into the S ~ agent 
S<~) = IcecC(Sc) and we will take Def = C when defining the open operational 
semantic of a system of objects using the LTS of Section 2. Some remarks are 
needed before stating and proving the correctness of above defined encoding. 
COMPUTATIONS AND CONFIGURATIONS. A computation in system ~ = (S ,  C, S) 
is a reduction sequence I ~ $1 ~ $2 . - .  with I of the form S~ S(~)IP and 
I ~ [c(i, ~)] for some class c 6 C. Every Si must have the form S'; S(!P)[v~ : 
~(Obl[.. .  [Obnlml[... link) where the Obj are objects and the mj are either 
creation requests or messages i(a). Since the agent S(!P) encoding ~P is fixed 
once for all, we can abstract of its presence and consider just  agents like E' ;  v~ : 
~(Obl[.. .  [Obn[ml[... [mk), assuming that  for transitions ~ c  the action !d.C 
is always the encoding of some class specification in S(kV). Moreover, any compo- 
nent of a system also has this particular structure, so we can focus our concern 
just on well-typed agents of this form, to be called configurations. The following 
characterises the kind of actions configurations can perform with and without 
cooperation of the environment in a system reduction. 

P r o p o s i t i o n  3 Let C be a configuration of a system kv. If C --~ C' is a transition 
occurring inside the derivation of a reduction between system configurations, then 
c is of the forms T,~i.m, $i.m or J~p for some definition p = C(S>. 

Hence, for instance when proving a (safety) property like I ~ invqo from I ~ 
and qo ~ [.]qo we can soundly restrict the universe of actions. Now, note that  if 

S ;  p t~4~ Q and Z; p ~:b Q, then there is no configuration r such that  Z; r $J4 ~ r '  
and S; plr is also configuration, because an object i cannot be located both in 
p and r. Hence, the reference LTS can be refined to approximate relevance, by 
adding to rule [s] the proviso: "if not ( a - ~  i(a) and q $J4 b for some b)". The 
transition relation obtained thus is easily seen to be a subset of the reference 
transition relation and can be proven (still) sound w.r.t, the fragment of system 
configurations. Therefore, in the sequel, we will always refer to this restricted 
transition relation. We can now state correctness of the translation. 

L e m m a  1 Let S = ( .A, / : , / ,7~ ,T)  be a E-class specification of a class c. Let I 
be any interpretation such that I s ( c . P )  = { ( t l , . . . ,  t , )  [ Z;  e .T t- c.P({)}. Then 

F, i :  obj; Obs(i,~) ~I  i.Z/k inv{S* (i, ~3) | T} 

where F is of the form Z~176 ' for any Z'. 

An immediate consequence of Lemma 1 is that  the translation just presented 
provides a model for system specifications. 

T h e o r e m  1 Let @ = (Z ,C ,S )  be a system specification. Then 

Zol.co obj;c(i,~) ~ I  (C(Sc>)(i.ZA inv{S*(i ,~)  | T}) ~'~preds, i : 

for every c 6 C and ~ of the appropriate types, I assigns to each signature S 
the interpretation I~. (c.P) = { ( V l , . . . ,  Vkv) I ~; c.T P c.P(O)} and satisfaction 
is taken w.r.t, the relevant LTS for system configurations. 
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6 Some General Properties of Systems 

In this section, we state several properties found useful to reason about  systems 
and that  can be proven valid in any configuration. We start  by stating correctness 
of the interpretation of at tr ibute valuations w.r.t, principles P1-3. 

Proposition 4 For every configuration P of a system ~ = (~,  C, S),  and every 
C class c 6 C such that a 6 s we have P ~ P1 A P2 A P3. 

We now introduce the following properties R1 and R2 that  are true of all of 7 ~. 
E l .  PRIVACY. ~ : T ~  ~ Vy:T~:~(~A-~x - y). If a state has some private name, 
then this name is distinct from every term in the current environment. 
R2. TELESCOPING. ~'~:~(ev[s]99/k inv[U]_l_) ~ evZ~:~o where S is the set of 
actions without free occurrences of v 6 ~ and U is the set of actions extruding 
some v. Thus, we can move a restriction "forward" in a computat ion if the 
internal context does not extrude any of the restricted names. 

The remaining properties are specific to object system configurations. We 
assume that  i, j are generic object names. 
R3. LOCALITY. (~i ~ j )  A i.~ | 7- =~ [j.m](i.~ | T) for every pre-state formula 
~. Attr ibute values of an object can only be changed by the object 's own actions. 
R4. GROUPING. (-~i -- j)  A (i.~ | T) A (j .r  | T)  ~ (i.~ | j . r  | T)  allows the 
concatenation of assertions about disjoint components of a configuration. 
Rh.  MERGING. (i.~P | T) /k (i .r  | T) ~ ((i.~ A i .r  | T) allows the merging of 
assertions about the same component of a configuration. 
R6. RELEVANCE I. (~. i.a) T ~ [~ i.m]_l_ expresses that  if some object is located 
in the system then no messages directed to it could be sent to the environment. 
R7. RELEVANCE II. Sc(i ,~ ) | ~o ~ S*(i,a) | (~ A [$ i.m]_l_) Messages directed 
to an object i cannot be received by the internal context surrounding i. 
R8. SUPPORT. VX : ~((i.a> T ~ i.~) given that  V~ : ~(i.~ ~ ([i.a]> i .r  is the 
single dynamic axiom for the action a in S c (i, 5). 
R9. ACT. ([a] | i nv (T  | ( c y s t )  A (~ ~ ($ a) r  ~ ev[s]{r | T} where S is 
any action set containing 7. Together with a fairness assumption, this ensures 
that  every request for a message that  is never forever disabled will be attended. 
E l 0 .  CREATION. For each class c of type (T1,... ,T,~)O, the principle c(i ,5) | 
[/.ml] |  | [i.?nk] | 7-) ~ ev[s ] (ZASc* (i, a) | [/-~1] |  | [i.Tnk] | "[- where S 
can be anything not excluding Sd with d is C(Sc) for some c 6 C. Every request 
for a new object is fulfilled. We now bring explicit a fairness assumption. 

D e f i n i t i o n  2 A computation 191 -?4 P2 ~ "'" is fair if whenever P~ ~- ~ : 
~(b[Q) and Q ~ inv  evs  (J,b} T then for some n > i, Pn -~ tel : ~(b[Q'), 

Q' ~ Q", P~+I ~- v9  : ~ Q" and P~ :+ P~+I. 

In a fair computation, a message request for an action that  is only sometimes 
disabled will necessarily result in its execution. The important  remark to make is 
that  the weak eventualities asserted in the creation and synchronisation axioms 
above express in fact strong eventualities, if we restrict our concern just to fair 
computations. For instance, we can prove that  if P ~ I  ([a] | inv(T | (evs~) A 



SerO is 
attrs 
req  : li 
ch  : obj 
initial 
v n  : N ( r e q  = n i l  A eh = n)  
dynamic 
Vr, a :  obj ch = r ~ ([open(a)]) 

v t  : T h r ( r ,  s ) a . a n s ( t )  
Vs : li r : obj, l : li ch = r A req = s 

([done(r,  l)]) req = l �9 s 
v l :  lti a:  obi req = l ~ ([d~mp(a)]) 

req -=- n i l  | a.sl(1) 
end 

N 0  is 
end 
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Thr (s:obj,r:obj) is 
attrs  
up  : bool 
sl : Ii 
initial  
up---- T A sl = n i l  
dynamic  
Vl : li, x : i u p - -  TA sl = l 

([ins(x)]) st = x �9 l 
Vlu : li, x : i up  = T A sl = l 

A r e m ( l ,  x ,  u)  
([del(~)]) sZ = 

Vl : li u p =  T A s l  = l  
([qu@ up = V | s .done(r ,  0 

stat ic  
Vx : i , l  : li r e m ( x , x  �9 1,1) 
V x y  : i, lr  : li r e i n ( x ,  y �9 l, x �9 r) 

r e i n ( x ,  l, r) 
end 

Fig .  4. A sample specification 

(~o ~ ( a ) r  then for all fair reduction paths P - P1 -% P2 -% "'" there is Pi 
such tha t  Pi ~ {r  | T}. 

7 R e a s o n i n g  a b o u t  S y s t e m s  

We now present a toy specification of a commercial  server usable for instance 
at a bookseller network site, and prove a couple of very simple properties about  
it with the program logic. Servers can perform three types of actions: o p e n ( a ) ,  

tha t  creates a new thread whose identity is returned to the user a by means of a 
message a . a n s ( t ) ,  d u m p ( a )  tha t  returns to a the current list of orders, clearing it 
afterwards, and d o n e ( r ,  l ) ,  explained shortly. Each thread can execute insertions 
i n s ( i )  and deletions d e l ( i )  of items i in the current shopping list at the user com- 
mand,  until q u i t  is invoked. After this happens,  the thread yields the collected 
shopping list (the order) to the server via a d o n e ( r ,  l )  request, commit t ing itseff 
to no further action. Obviously, only s . d o n e ( r ,  l) requests originated by threads 
should be served by the server. This is achieved in the proposed specification by 
the use of a private communicat ion channel kept in the c h  at t r ibute  of servers. 
The specification is presented in Figure 4, in a sugared syntax not hard to relate 
to the definitions in Section 4. 
So, let I = ~ n : o b j ( s . r e q  = n i l  A s . c h  = n )  A i n v { S e r * ( s )  | T} characterise the 

initial s tate of a system. We now prove tha t  I ~ inv  Vr : obj, l : l i [ s , d o n e ( r ,  I)]_L 
tha t  is, the privacy assumption just mentioned. To tha t  end, we first show the 
safety proper ty  I ~ i n v P  where P = Z n : o b j ( s . c h  = n | T) A i n v { S e r * ( s )  | T } .  

Since I ~ P ,  we first argue informally tha t  P ~ [a]P for every action a. Since 
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attribute s.ch is never mentioned in s post-formulas, its value n never changes 
by the frame condition. So we must just prove that such private value is never 
extruded. The only possibility is in an action 1̀  (n : obj)s .done(n,  l). But since 
say P ~ ($(u:  ob j ) s . open (u ) )T  then P ~ [1" (n: obj)s.done(n,l)]_L by R6, and 
therefore P ~ [$(n)s .done(n ,  l)]P. Thus I =~ invP. We now prove in detail that 
P ~ VRL[s .done(R,  L)]_L. 
1. ~ n ( ( S e r * ( s )  A s.ch -- n) | T), hypothesis and R5. By def of Ser*(s )  and R8 
2. En( ( (Vs ' r ' l ' s . ch  = r' A s.req = s' ~ (s .done(r ' ,  l')) T) A s.ch = n) | T) 
4. Zn(((Vr ' l ' -~s .ch = r' ~ [s.done(r',/')]_L) A s.ch = n) @ T), by pure logic. 
5. Z,~((Vr'l'-~n "- r' ~ [s.done(r',/ ')]_L) | T), by P2. 
6. 3 R L  (s .done(R,  L)) T, hypothesis. 
7. 2 R L ( ( s . d o n e ( R , L ) )  T A Zn((Vr ' l ' -~n & r' ~ [s .done(r ' , l ' ) ]2)  | T), by 5,6. 
S. 3RL(Z,~((Vr ' l ' -~n - r'  ~ [s.done(r',  I')]_L A (s .done(R,  L))  T A -~R - n)  | T), 
by R1 and noting that n is not free in s .done(R,  L).  
9. 3 R L ( Z n ( ( [ s . d o n e ( R ,  L)]_L A (s .done(R,  L))  T) | T), by pure logic. 
10. VRL[s .done(R ,  L)]_L, by 9,6 contradiction. 
11. P ~ VRL[s .done(R,  L)]_L, by 1 discharge, and we are done. 
We now consider the following system-wide property ~ stating that, in certain 
conditions, after a thread executes a quit  action, it should disable further actions 
and it's parent server must eventually acquire the shopping list produced by it. 
Then ~ is 
Z n ( S e r * ( s )  | (t.sl = l A T h r * ( t , s , n ) )  | T) ~ [ t .qui t](ev{3u(s .reqs  = l �9 u) | 
T} A |nv[S]_L) 

where S is the set of all actions by t. We now sketch the proof of ~, highlight- 
ing just the main steps. Assume Zn (Ser* (s) | (t.sl = l A Thr*  (t, s, n)) | T). This 
implies ~,~(Ser*(s)  | (t.sl = 1A Thr*( t ,  s, n)  A t .Ts(s,  n))  | T), where Ts(s,  n)  
is the dynamic axiom for quit  in the specification for threads. Now, [t.quit]B 
where B =_ ~n (Ser*  (s) | ( t .up = F A T h r *  (t, s, n) | s .done(n,  l)), using t.Ta (s, n), 
and noting that n is not free in t .quit.  Note that B ~ inv[S]_L, because B 
i nv ( t . up  = F| On the other hand, S ~ Zn(s .done(n ,  l ) | 1 7 4  T} ) .  
Now, s .done(n,  l) | i nv {  Ser* ( s) |  implies s .done(n,  l) | i n v ( e v s 3 r (  s .ch = n A 
s .reqs = r) A qr(s .ch  = n A s.reqs = r) ~ ([s.done(n, l)]) qr(s . reqs  = 1 * r) | T), 
and this last formula implies ev[un]{(3r(s .reqs = 1 �9 r) | T)} by R9, where Un 
is the set of actions without free occurrences of n. Since ~nev[un] r ::~ eV~nr , 
by R2, we conclude ~. 

8 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

We presented a declarative executable specification language and program logic 
for concurrent objects providing a unified framework for specifying and rea- 
soning about systems, thus demonstrating the usefulness of the Z:,~ language 
as a meta-language for structuring the definition of operational semantics and 
program verification logics of languages with concurrent and logic features. An 
aspect not covered in the present paper was object types, we expect also types 
to be accommodated in this framework. The proposed model can be extended 
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in several directions (for instance, modelling and reasoning about  inheritance, 
transactions,  or mobile code). An interesting observation about  #/2~ is tha t  the 
monoidal  s t ructure induced by | 1 together with ~ and Z~:r induces an Action 
Structure [9]. This fact may be explored in the definition of a more abst ract  char- 
acterisation of a verification logic for global/local properties of modular  systems 
in the presence of private names.  
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