
Verifiable and Executable Logic Specifications of
Concurrent Objects in s

Luls Caires and Luis Monteiro
{ l c a i r e s , lra}@d• f c t . un l . p t

Departamento de InformAtica - Universidade Nova de Lisboa

A b s t r a c t . We present the core-/:. fragment o f / ~ and its program logic. We
illustrate the adequacy of E~ as a recta-language for jointly defining opera-
tional semantics and program logics of languages with concurrent and logic
features, considering the case of a specification logic for concurrent objects ad-
dressing mobile features like creation of objects and channels in a simple way.
Specifications are executable by a translation that assigns to every specifica-
tion a model in the form of a core-s program. We also illustrate the usefulness
of this framework in reasoning about systems and their components.

1 I n t r o d u c t i o n

The "proof-search as computation" paradigm has inspired the design of several
programming and specification languages [6]. In [1] we presented s a simple
language that supports the reduction and state-oriented style of specification of
mobile process calculi without compromising the relational style of specification
typical of logic programming. In particular, we have shown that both the 7r-
calculus [10] and a version of the logic of hereditary Harrop formulas [7] can be
adequately encoded into /:~. On the other hand, s can itself be encoded in
classical linear logic, in such a way that successful computations correspond to
proofs [3]. As illustrated in [2],/:~ suits itself well as a gpecification language of
the operational semantics of programming languages with concurrent and logic
features; we also proposed/:~ as a meta-language for the compositional definition
of operational semantics and program verification logics of languages of such a
kind. Herein, we pursue this general directions, picking the case of declarative
object-oriented specification of concurrent systems.
MOTIVATION. Several embeddings of object-oriented constructs into variants of
r-calculus have been presented in the li terature [12, 16, 14]. However [11], the
7r-calculus, while supporting the basic features of concurrency, mobility, abstrac-
tion and creation of processes and names, is a low level calculus, so the question
arises about what kind of idioms are more suitable to model and reason about
object systems and their components. In this setting, most of the current ap-
proaches focus On operational semantics or types, and the object languages have
a definite operational character. In this paper, we develop a contribution in this
general theme, stressing the instrumental use of the E~ framework in the spirit
stated above. More specifically, we consider the case of a declarative specification
language and program logic for concurrent objects that provides a unified sce-
nario for specifying and reasoning about systems. This is achieved in the context

43

of a well-defined operational semantics that renders specifications executable and
makes essential use of the reductive and deductive features of/:~.

OVERVIEW. First, we define core-/:~, a small yet expressive fragment of / :~ ,
and its program logic #s The logic #/:~ is based on a many-sorted first-order
version of the #-calculus enriched with connectives enabling the implicit expres-
sion of component location and a hiding quantifier. For instance, a property

| r holds of a system with two components that satisfy respectively ~o and
r and Z , ~ holds of a system that satisfies ~ in a context where a name n is
private. Then, we present a specification logic for concurrent objects that ac-
tually reduces to an idiom of #/:~. From the viewpoint of logical specification,
our proposal extends existing ones (for instance, [15]) by addressing mobile fea-
tures like dynamically changing number of components and creation of private
channels in an intrinsic way, while supporting both local and global reasoning
by relying on the monoidal structure induced by | Moreover, specifications are
executable by means of a syntax-directed encoding that assigns to each speci-
fication a model in the form of a core-s program. This translation relies on a
combination of techniques from process calculi and proof-theoretic approaches
to logic programming. We also illustrate the usefulness of this framework in
reasoning about systems and their components by giving some examples.

OBJECT MODEL. We consider a standard asynchronous model of concurrent
objects as closed entities that exhibit computational behaviour by performing
mutually exclusive actions over a private state. Actions are triggered by serving
request messages from the environment, but are only allowed to ocurr under
certain enabling conditions. Actions can change the object's internal state, cause
the sending of action requests to other objects or even the creation of new objects
or channels, and display internal non-determinism. Thus, any specification of the
behaviour of an object must define conditions under which actions can occur,
and also what are their effects.

SPECIFICATION LANGUAGE. Since [13], many authors adopted subsets of some
temporal logic (TL) as a specification language for concurrent systems. But un-
restricted use of TL often leads to unimplementable specifications, and typical
approaches pick some restricted class of formulas as dynamic axioms. For in-
stance in [4], one finds safety formulas like ~ A A* ~ Xr and liveness formulas
like qo ~ FA* - where A* denotes the occurrence of action A, and X and F are re-
spectively the next and eventually operators of (linear) TL. Concerning liveness
properties, in our asynchronous model we will not be able to assert such a strong
assertion, but just something like the weaker ~o ~ XmA* where mA* asserts the
existence of a pending request for action A. Then, whether mA* implies FA*
depends on fairness assumptions and on the actual enabling conditions of action
A. In summary, we adopt the (branching time) logic inherited from #s and
consider specifications of object classes that enumerate instance attributes, and
include dynamic axioms of the form ~ ~ ([A]) r and static axioms defining the
meaning of non-logical symbols.

STRUCTURE OF THE PAPER. In Sections 2-3 we introduce core-s and its pro-
gram logic. In Section 4, we introduce the object specification language and

44

present its interpretat ion in / :~ in Section 5. After discussing some properties of
this interpretat ion in Section 6, we present in Section 7 an example of reasoning
about a system.

2 T h e c o r e - s L a n g u a g e

Here we introduce core-s a small yet expressive fragment of s [1, 2].
SYNTAX. Given a set V of variables, the set TO;) of untyped terms over Y is
defined inductively as follows: variables are terms, if x is a variable and t l , - - �9 , tn
are terms then x (t l , . . . , t,~) is also a t e rm t (s.t. head(t) = x). In general, we
will use x , y , z , i , j for variables, a, b, c, t, u, v for terms, ~ for a list of distinct
variables and t for a sequence (t l , . . . , t~) or a multiset ~]t l , . . . , t , ~ of terms,
depending on context. Sometimes, we will write x.t for x(t) and call names to
variables. Untyped agents of core-/:r are defined by

Inaction 0 denotes the well-terminated process. An atom a can be seen either
as an elementary message to be sent asynchronously or as a da ta element in the
shared state, p[q stands for the parallel composition of p and q; we sometimes
write rh for roll �9 . . link when the m are atoms. Restriction ux induces generation
of private names; uxp binds x in p. To explain the behaviour of the input prefix
fc ~ ~[g]p we star t by considering the particular case where the test g is 0, which
we abbreviate by ~ ~, ~[]p. The agent ~ ~, ~NP waits for a message b (a multiset of
terms) and then behaves like a(p) , if there is a substitution cr with domain ~ such
tha t a(5) - b. In general, in addition to receiving the message, ~ ~ ~[g]p must
also perform successfully the test v,(g). Roughly, a test g succeeds if there is an
atomically encapsulated computat ion sequence start ing with g and reaching a
success s tate (defined below). The replicable agent !~ ~[g]p behaves just like i t 's
non-replicable version, except tha t it does not consume itself upon reduction. In
input prefix agents, the input variables ~ must have free occurrences in either
or g, al though not in the head of some a. Note however tha t in non-replicable
input prefix, 5 may be empty, this corresponds to the testing agent of [1]. In
both forms, ~ may be empty, in which case the prefix ~c, may be ommited. For
agents, we will use normally p, q, r, g.
TYPING. Here we introduce a simple type system for core-s Assume given a
set {2 of primit ive sorts, containing at least o, and a set A of primitive basic
types containing say nat, bool. Basic types fi and types ~- are given by

: : = : : = n

A type tha t is not basic is called a sort. The definition of types and sorts is
stratified in such a way that no te rm of basic type 6 can contain a subterm of
some sort. The motivation for this stratification is to limit scope extrusion to
terms of sort kind. Signatures are partial maps from variables to types. We use
Z, ~ , F for signatures, and assume that x r r when writing Z , x :~-. Terms and

45

Y, ,X:~ '~-p
I- UX : Tp

Z ~ - h : (T ~ , . ' ' , T k) ~ Z l - t i : T i
~" h(t~ , . . . , tk) : ~3

~ - h (t ~ , . . . , t k) : o ~ - p ~ - q

t- hit~,. . . , tk) ~ ~- PIq

Z , & : ~ - g Z , 2 : ~ - p Z , ~ c : ~ t - a i : o

Fig. 1. Typing of terms and agents.

agents are typed by the rules in Figure 1. We will refer by T~ (S) the set of terms
t such that Z ~- t : T is valid. Note that binding occurrences of variables in vx
and &~, are now explicitly assigned a type. In the rule for restriction, T must be
a sort and, in the rules for input prefix agents, any variable x not occurring free
in 5 must be assigned a basic type. If ~ t- p is valid, we will say that S ; p is a
well-typed agent, bringing explicit the typing context. For well-typed agents we
will use P, Q, R, and write :P for the set of all well-typed agents.
REDUCTION. The operational semantics of s is defined by a relation of reduc-
tion between agents. Following [8], we first define a structural congruence relation

that abstracts away from irrelevant notational distinctions. = is the smallest
congruence relation over agents containing a-conversion and closed under equa-
tions (i) Piq ~- qiP, (ii) (piq)I r ~- ql(plr), (iii) pI 0 ~ p, (iv) vx(piq) ~- vxplq i fx is
not free in q, (v) ~xO --- O, (vi) !r ~-!ri!r and (vii) !rlSc ~ 5[air ~-!rI~ ~ 5[qi!r]r if
are not free in p and !r stands for some replicable input prefix agent. Reduction
is the least relation P -+ Q between well-typed agents P and Q such that

~;Z]X : 7"p -+ ~;VX : Tq if ~',X : T;p ~ ~ , X : ~-;q

Z; ~ ~ [g]Plq --+ Z; a(p)I q if Z; a(g) -5, V/

Z;(nI x : ~5[g]Piq -~ E;aiP)iq } if Z ; a i g) -~ ~/Arh -- 0(5)
a[g]plq : e a[g]plq

Here a assigns to each x : r a term t E Tr(Z) and x / (a success state) is any agent
of the form ~; v~ : ~(!p), where !p is a composition of a (possibly null) number of
replicating agents. As usual, we will refer by -~ the transitive-reflexive closure
of ~ . Subject reduction holds: if P E P and P --+ Q then also Q E P.
LABELLED TRANSITION SYSTEM. To capture the compositional behaviour of
agents, an "open" version of the reduction relation must be defined that cap-
tures not only the behaviour of agents in isolation but also the behaviour they
can exhibit with adequate cooperation of the environment. As usual, this is for-
malised by means of an action-labelled transition system (LTS), where actions
may be output (? a), input iS a) or silent (T). Several possibilities arise at
this point, we must require at least soundness, that is, agreement of _L~ with
reduction. Additionally, we can also impose a notion of relevance for P, more
precisely, that whenever P ~ Q there is P ' E P such that P' ~ Q', P IP ' E 7)
and PIP ' -~ QIQ', and likewise when P ~-~ Q.

46

. l"a S; a--~ .,U; 0 if head(a) CDef

S; !p ~ .,U; !p

S , x :"r;p ~ S~,x : T;q if X r a
z~; UX : Tp -'~ SI; UX : Tq

Is]

S; a 4.!~:~.~b[]p 2~; p(p) if p(b) -- a A head(a) �9 Def

E, Y: 7; !qla(g) 24 ~/

z; 5:: a[g]p s, 9: o(p)

~,,x : r;p ~ Et;q
if x �9 a A x ~_ head(a)

~; ux : Tp "r(x_~)a X~; q

Z; p i"(~)~ Z, 5: : f ; p' ~; q r174 ~ , F, 5: : f ; q'

S;plq ~ ~ , F ; v s : : ~(P'lq')

S;p-Sr S ' ;p ' S;p~-~ ,V,,F;p ' S ;q t-~ s , O ; q '

S';Plq -5, S';P'Iq S;p[q t ~ r ~ ,F,O;p ' lq '

Fig. 2. LTS specification for core-/: ,

ACTIONS. Z-actions are objects of the forms $(5: : ~)5!p (output action) or
$(5: : ~)5!p (input action) where 5: : ~ is a possibly empty signature, each ai is an
atom and each !p a replication such that Z, 5: : ~ t- all " " la,~lIpll"" liPm is valid.
To grasp the meaning of the binding signature, just consider it a generalisation
of r-calculus bound input and bound output actions, in our notation, x(y) would
be rendered by r and x(y) by $(y)x(y). When all components 5:, 5 and
!p of an action are void, both r and $ will be noted T (the silent action). To
highlight the typing context we may write r ; a for Z-actions a. The set of all
actions will be noted Act, and individual actions by a, b, c. We will also define
head((x : T)5!h.p) as the set of heads of all 5 and all h. Actions a and b of the
same polarity compose into another action a | b; composition of (5: : ~)Slp with
(# : ~)SIq is defined as (5: : "~, # : ~)55!pq. Intuitively, a | b is the concurrent
execution of a and b; | is commutative, associative and has T for unit.
LTS SPECIFICATION. In Figure 2, we present a LTS specification for core-s
Most rules have the form one expects. Substitution a assigns each x : T a term
in Tr(57,# : ~), and p a term in Tr(Z) . When we are interested in computations
starting from agents F; p with F a given global signature, we let Def C r and
define two transitions for an agent Z; a, to distinguish the case where a is to
be substituted in place by it 's definition (when head(a) E De]), from the case
where a is to be sent to the environment. This specification defines a sound and
relevant transition relation -~ for all of IP, and should be taken as the reference
transition relation. Note however that when developing applications of core-/ : ,
(for instance, when studying certain restricted idioms as in this paper) we might
be interested just in some subset of P. Since -St might not be relevant for that
subset, additional provisos may be placed occasionally in some of the rules above,
in order to obtain relevance for the fragment under consideration.

47

~V~;P ~I,v P(t)
S; p ~I,v t - t
S; p ~I,, mo
S;p ~I,. ~ A r
S; p ~I,. Vx : ~-~
S ; p ~I,v (S) (p
Z ; p ~I,v X
S;p ~i,. pX.~

S ; p ~I , . [a]
S; b'X : Tp ~I,v Sx~O

S; 0 ~I,v 1

if t �9 I t (P)

if not S ; p ~I,v qo
if S;p ~I,. ~o and S;p ~I,v r
if Z ; p ~I,~ qo{~/t} for all t �9 T~(S)
if 3 (S ;a) �9 S3(Z' ;q) �9 79(S;p-St S';q and S';q ~I,~ qo)
if S ; p E v(X)
if VS C_ 79(clos(S) ~ S ;p �9 S) where

clos(S) is V(F; q) �9 79(/"; q ~I,vtx~s] ~o ~ (F; q) �9 S)
if p - ah/
if S,X:T;p~i,vqo
if p ~ ql r and S; q ~ I , . qo and S; r ~I,v

Fig. 3. Satisfaction of p s formulas.

3 A program logic for core-/:,r

The program logic p/:~ is basically a many sorted first-order version of the
propositional p-calculus (see [5]) extended with operators for handling private
names and spatial distribution. Formulas of p / : . are

,z ::= P(~) I t -- ~ I--,~ I ~ A ~ I W : ",,Z I (S)~IX I p X . ~ I S~:,-~ I ~ , | I It] I 1

The formulas expressing conjunction (qo A r properties P(t) , equality (t - u),
possibility ((S)~) , universal quantification (Vx : T~), negation (-%0) and least
fixed point (pX.tp) are to be understood in the usual way. In a fixed point
formula pX.qo, any occurrence of X must be under an even number of negations
and under no | The remaining forms are particular to pZ:~ and deserve further
comments. Exqo asserts a property of a state embedded into a context where the
name x is private. The formula qo|162 holds in every state that can be partitioned
into a component satisfying qo and a component satisfying r 1 is the unit for
| Finally, [t] is true of those states that essentially contain just the message t.
Formulas are expected to be well-typed w.r.t, a signature Z; for ps formulas
~, we assume a corresponding judgement form S F- ~ defined as expected. If
such a judgement is valid, qo will be called a S-formula.
SEMANTICS. Truth of formulas of ps is taken with respect to a structure that
consists in a labelled transition system for core-/:. 1 together with a map I as-
signing to each signature E an interpretation I s . Such interpretations assign to
each predicate symbol of type (T1,... , ~-~)O a subset of T~ 1 (S) x . . . x T~ (Z).
I is required to be monotonic, that is S C_ S t implies that, for every predicate

1 In general, the reference LTS; sometimes a suitable restriction may be required, cf.
previous remarks on relevance.

48

symbol P, I f (P) C_ I~,(P). In Figure 3 we present the relation - ~ I , v - of
satisfaction between E-terms and well-typed E-formulas of #s The definition
is parametric on the interpretation map I and also on a valuation v. This valua-
tion assigns sets of well-typed terms to propositional variables X, and is needed
to interpret the fixed point operator. When interpreting formulas without free
propositional variables, the valuation is irrelevant and could be omitted.

Some specific comments about this definition are in order. First, core-s
terms are taken modulo structural congruence ~. In the clause for iS)~o, S is
a set of s actions. To follow usual notations we will write (.) ~o for (S) ~o when
S is the set of all actions. In the clause of #X4o, the property clos(S) holds of
prefixed points of the mapping that sends sets of terms satisfying a property r
to the set of terms satisfying the property ~o{z/r The syntactic restriction on
the occurrences of X in #X4o causes this mapping to be monotonic, therefore
the clause for #X.~o defines the least fixed point as the intersection of all prefixed
points, cf. Knaster-Tarsky theorem. Other logical connectives (say, V, 3, O) are
defined in the usual way according to standard tarskian semantics. The following
usual abbreviations will also be used: IS]q0 for --(S)-,qo (necessity), vX.~o for
-,#X.~qo{X/-x} (greatest fixed point), _1_ for # X . X (false) and T for -,_l_ (true).
We will also write {~} for E ~ when no x occurs free in ~, and introduce the
following derived operators: ([S]) q0 standing for (S) T A [S]qo, inv[s]qO standing
for vX.qoA[S]X (~ holds along any S-path) and ev[s]qo standing for #X.~oV(S) X
(~o will eventually hold along some S-path) and evs[s]~ for #X.~ V((S) T A [S]X)
(qo will eventually hold along any S-path); inv[.]~o will be abbreviated by inv~o
and likewise for ev~o and evs.

The use of an explicit signature is essential in the definition of satisfaction.
For instance, note that Z~-7 =:~ VyZx(~x - y) is true in any interpretation. This
formula asserts intuitively that if a state has some private name, then this name
is distinct from every term in the current environment. The scoping behaviour
of private names induces the need to consider the brackets (~o} even when the
private names do not ocurr in ~. For instance, a : o; vb: o b[]a ~ {(.) (ta) -7} but

o; . b : o V: (') (*o) -7.

4 A s p e c i f i c a t i o n l a n g u a g e fo r c o n c u r r e n t o b j e c t s

The specification language we present here is an idiom of the program logic of
Section 3. Essentially, we consider specifications of classes of objects that indicate
besides the instance state variables, for each possible action A a set of dynamic
axioms of the form ~o ~ ([A]) r where ~ (the pre-state formula) is a proposition
over the object's state and r (the pos-state formula) is a proposition defining
the new state of the object and other side effects induced by the execution of
A. Possible side effects are the posting of action requests i.m (for other objects)
and of creation requests ui : c(5) (for a new object i of class c(5)). Besides
this components, a specification also comprises a post-state formula defining the
initial state of objects of the class and a static theory (called so because it does
not involve any dynamic modalities) defining the meaning of the non-logical

49

constants (predicate symbols) occurring elsewhere in the specification. At this
stage, the reader may want to give a look at the sample specification in Fig. 4.

We assume given a set of basic types and a set of basic sorts (containing, at
least o and act). The type (act)o will be abbreviated by obj. A system specification
is triple (Z, C, S) where E is a signature, the set of class names C is a subset
of E, and S is a mapping assigning to each c E C a class specification Sc of
type E(c) ---- To. A parametric E-class specification of type (T1,... ,T~)O is then
a five-tuple (A, / : ,Z, ~ , 7-) such that (1) A a n d / : and ~ are pairwise disjoint
signatures, (2) A is of the form al : ~'1,... ,a,~ : Tn (3) Z is a post-state formula,
T~ is a finite set of dynamic axioms and T is a finite sets of static axioms.
Post-state formulas and dynamic and static axioms will be defined shortly.
PARAMETERS. Signature A lists the parameters of the class specification. If A is
empty, the specification is non-parametric and therefore fully determined. Given
a E-class specification (.4,/:, Z, T~, T) of type (~'1, �9 �9 �9 , Tn)O and terms ti E T~, (~)
we obtain some non-parametric concrete instance (O,Z{~/~), n{a/~}, T{a/~}).
LOCAL SYMBOLS. S igna ture / : splits in two components: /:attrs, containing the
declarations of the class instance's attributes and /:preds, which assigns to each
predicate symbol defined by the local static theory T a predicate type (~)o.
DYNAMIC THEORY. Dynamic axioms have the form V~ : "~(SA~0 ~ ([A])r where
the action A is a term of type act, S is a state formula, 7~ is a static formula, r
is a post-state formula and ~ are some variables with free occurrences at least in
S, 7~ or A - those that occur just in qo and r should have basic type. A formula
of the form S A ~ will be called a pre-state formula. These kinds of formulas are
defined by

(state formulas) S ::= T [a = t [S A S
(static formulas) ~ ::= P(t) I T I 7 ~ A ~ I qo V
(post-state formulas) r ::= S] p i : c(t) r I i.m | r

where a E /:attrs, P E /:preds and c E C . In the definition of post-state formulas,
i is assumed of type obj and m is assumed of type act.
INITIAL. I is a post-state formula specifying the object 's state at birth time.
STATIC THEORY. 7- is a set of static axioms of the form V~ : ~(~o ~ P(t)) where
qo is a static formula.
COMMENTS. All formulas in the class specification are well-typed w.r.t, the sig-
nature Z`4/:, self: obj, except that self cannot occur in T. To avoid useless incon-
sistencies, no more than a single occurrence of a particular at tr ibute symbol is
allowed in pre- and post-state formulas, and the state formulas in the antecedent
of dynamic axiom should be pairwise exclusive.
SEMANTICS. Semantics of class specifications is given by translation into a #/:~
formulas. To perform this, we must understand formulas in a specification as
asserting properties of a prototypical object of the given class and bring this
arbi t rary object explicit. More precisely, if i is a variable of type obj and ~ a
formula in a class specification, the formula i.~ asserts the property 7~ relativized
to the object i. This relativization is essential also to enable global reasoning
about systems composed of multiple interacting objects. Now, i.~ is obtained

50

from ~ as follows: replace self by i, rename predicate symbols P as c .P 2 is the
class name, replace actions A in dynamic axioms by $ i (A) and replace equations
a = t by i .a = t. Moreover, understand ui : c(t)r as Ei:obj([c(i,t)] @ r and
j . m as [j(m)]. Every expression of the form i.a = t must also be translated
to some formula of # / : . . This translation depends on the actual representation
of objects as agents of core-/:.. Several possibilities arise in this point, we just
require invariant validity of the following principles

P1 Vt : T(i .a -- t ~ [.](3y : Ti.a ---- y)) (Persistence of Attributes)
P2 Vt : T~v : T,(i .a = t A i.a = v ~ v -- t) (Attribute values are functional)
P3 --(3z : T(i.a = z) | 3 z : T(i.a = Z) | T) (Unicity)

SPECIFICATION FORMULAS AND MODELS. Let Z ~ be obtained from Z by chang-
ing the types assigned to class names in C from (~)o to (obj, ~)o and s be ob-
tained f rom/ : by renaming each predicate symbol in ~ p r e d s from P to c.P. Then,
every Z-class specification C = (A,/: , Z, ~ , T) yields the Z~

C * (i , ~) = S ~ (A i . a t = v t) A (A i . D j) A (A c.Pk)
al Es Dj ET~ P~ E T

This formula expresses the full content of the specification and can be used to
define a notion of model for a system specification.

Def in i t i on 1 A model for a system specification ~P = (E,C, S) is an interpre-
tation map I and an assignment of a E~ !de to each c E C such that

for all c e C Pc ~ I (!dc) (i .Z A inv(S*(i ,~) | T})

v, ol'Co i : obj; c(i, ~) for some ~, and satisfaction is taken w.r.t. where Pc ~ .-, J*~preds,

some sound restriction of the reference L T S relevant to (QIPc ~ Q for c ~ C}.

5 From Specifications to Agents

In this section, we show how models for class specifications can be systematically
constructed in a rather simple way. Basically, an object "located at" name i will
be represented by an agent of the form us : a(s(i , ~)[uc.p(R(n)is [T(c.T))) where
R(7~)i8 and T(c.T) are encodings of respectively the dynamic and static theory,
and s(i, ~) is a "record" of the attribute values. We first introduce a canonic form
for dynamic axioms in which all of the object's attributes occur both in pre- and
post -state formulas. The motivation is that this simplifies the description of the
translation and renders explicit the intended frame condition.
CANONIC FORM. Let Vx(S1Aqo ~ ([a]) r be a dynamic axiom where $2 is the
maximal state formula embedded into the post-state formula r Then, its canonic
form is VYC~k(S1 A S~ A qo ~ ([a]) r where S~ is al = yl A- . . A ak = Yk

2 When ~ is a static axiom, we also write c.~ for i.~o

51

for those attributes ai not occurring in S1 and S~ is bl -- vl A.. �9 h bl = vz where
bi = vi is the (unique) equation in S A S~ for an at t r ibute bi not occurring in $2.

From now on, we fix a Z-class specification S = (A, Z:,Z, T~, T) associated to
c : (T1, �9 �9 �9 , T~)O in some system specification (Z, C, S), and consider its associated
specification formula S* (i, 5~) for some i of type obj. W.l.o.g. we will take the
canonic form of every axiom in/~.
STATIC FORMULAS AND AXIOMS. Are encoded by the mapping T (-)

T<T) ~. 0
T(~i A (p~) ~ [T((pi)]T(cp2)
T(~l V ~2) ~-> [~,n: o(nl!n[T(~l)]O[!n[T(~2)])]O
T<P(t)) ~ c .P(t)
T(V~: "?(~o =~ c.P(t))) H. !~: "? ~, P(t')[T(,.p>]0

This translation assigns to the theory 7" a well-typed core-l:~ F- term Tic.'/-]
defined as T(c.dz) I " " IT(c.d-) where el, are the formulas in 7". We have

P r o p o s i t i o n 1 Let S be a signature, 7" be a static theory and i .~ a goal formula
over ~=. Then ~=; 7" F ~o is provable in classical logic iJ~ ~; T<T) IT<ida) -~ x/.

STATE AND POST-STATE FORMULAS. We consider now the encoding of post-state
formulas; state formulas are but a special case of these. We first sequentialise in
an arbitrary way al, a2 , . . . , am the at tr ibute names defined in L:attrs and define
the type as as (obj, o, ~ (a l) , " " , f~(am))o. Let PC->: be the translation map

P(al = tl A . - . A am = tm>~ ~+ s(i, t l , . . . , tin)

P<uj: 0(~)r ~ Uj:obj(C(j, t')lP<r
P(j.a | r ~ j (a) iP(r

, / .

P<-)s IS parametric on two variables i and s, respectively of type obj and ac . This
encoding represents the state of an object as a term s(i, g;), where i is the object
name and g are the current values of it's attributes. We now can interpret in #Z:.
a t t r ibute valuation formulas i.ak =- t (where ak is the k-th at tr ibute in sequence
defined above) by the formula 3~ : r x l , . . . ,Xk~,t, Xk+2,. . . ,xm-1)]
where the ~ are the appropriate types and t occurs in the k-th argument position
of s. We will see shortly that this interpretation fully satisfies principles P1-3.

P r o p o s i t i o n 2 Let ~o be a post-state formula in a class specification and S ~-
i .~. Then ~; us : a s (P (r h/) ~I i . r is valid for every I.

DYNAMIC AXIOMS. Of the form r = g& : ~(S A ~ ~ <[a]> r are translated by
the map R<-)~ given by R(r = !~ : ~ ~, P(S>~ : i(a)[T(i.~)]P<r
CLASSES AND SYSTEMS. A ~-class specification G is encoded into the Zo agent

C(,S') =! i : obj, 6~: ~=~ ~, c(i, 5)~Obs(i , 5~)

where Obs(i , 5) - ~ s : as(P(2:>~ I 'c-p: Z:pred~(R(n}i, IT(c.7"))) is the represen-
tat ion of an object i of class C in a state satisfying 27. In general, an agent of

52

the form vs : as(s(i,~)l~c, p : s [T(c.7"))) will represent an object
"located at" i. Finally, a system ~ = (S , C, S) is encoded into the S ~ agent
S<~) = IcecC(Sc) and we will take Def = C when defining the open operational
semantic of a system of objects using the LTS of Section 2. Some remarks are
needed before stating and proving the correctness of above defined encoding.
COMPUTATIONS AND CONFIGURATIONS. A computation in system ~ = (S , C, S)
is a reduction sequence I ~ $1 ~ $2 . - . with I of the form S~ S(~)IP and
I ~ [c(i, ~)] for some class c 6 C. Every Si must have the form S'; S(!P)[v~ :
~(Obl[.. . [Obnlml[... link) where the Obj are objects and the mj are either
creation requests or messages i(a). Since the agent S(!P) encoding ~P is fixed
once for all, we can abstract of its presence and consider just agents like E' ; v~ :
~(Obl[.. . [Obn[ml[... [mk), assuming that for transitions ~ c the action !d.C
is always the encoding of some class specification in S(kV). Moreover, any compo-
nent of a system also has this particular structure, so we can focus our concern
just on well-typed agents of this form, to be called configurations. The following
characterises the kind of actions configurations can perform with and without
cooperation of the environment in a system reduction.

P r o p o s i t i o n 3 Let C be a configuration of a system kv. If C --~ C' is a transition
occurring inside the derivation of a reduction between system configurations, then
c is of the forms T,~i.m, $i.m or J~p for some definition p = C(S>.

Hence, for instance when proving a (safety) property like I ~ invqo from I ~
and qo ~ [.]qo we can soundly restrict the universe of actions. Now, note that if

S ; p t~4~ Q and Z; p ~:b Q, then there is no configuration r such that Z; r $J4 ~ r '
and S; plr is also configuration, because an object i cannot be located both in
p and r. Hence, the reference LTS can be refined to approximate relevance, by
adding to rule [s] the proviso: "if not (a - ~ i(a) and q $J4 b for some b)". The
transition relation obtained thus is easily seen to be a subset of the reference
transition relation and can be proven (still) sound w.r.t, the fragment of system
configurations. Therefore, in the sequel, we will always refer to this restricted
transition relation. We can now state correctness of the translation.

L e m m a 1 Let S = (.A, / : , / ,7~ ,T) be a E-class specification of a class c. Let I
be any interpretation such that I s (c . P) = { (t l , . . . , t ,) [Z; e .T t- c.P({)}. Then

F, i : obj; Obs(i,~) ~I i.Z/k inv{S* (i, ~3) | T}

where F is of the form Z~176 ' for any Z'.

An immediate consequence of Lemma 1 is that the translation just presented
provides a model for system specifications.

T h e o r e m 1 Let @ = (Z ,C ,S) be a system specification. Then

Zol.co obj;c(i,~) ~ I (C(Sc>)(i.ZA inv{S*(i ,~) | T}) ~'~preds, i :

for every c 6 C and ~ of the appropriate types, I assigns to each signature S
the interpretation I~. (c.P) = { (V l , . . . , Vkv) I ~; c.T P c.P(O)} and satisfaction
is taken w.r.t, the relevant LTS for system configurations.

53

6 Some General Properties of Systems

In this section, we state several properties found useful to reason about systems
and that can be proven valid in any configuration. We start by stating correctness
of the interpretation of at tr ibute valuations w.r.t, principles P1-3.

Proposition 4 For every configuration P of a system ~ = (~, C, S), and every
C class c 6 C such that a 6 s we have P ~ P1 A P2 A P3.

We now introduce the following properties R1 and R2 that are true of all of 7 ~.
E l . PRIVACY. ~ : T ~ ~ Vy:T~:~(~A-~x - y). If a state has some private name,
then this name is distinct from every term in the current environment.
R2. TELESCOPING. ~'~:~(ev[s]99/k inv[U]_l_) ~ evZ~:~o where S is the set of
actions without free occurrences of v 6 ~ and U is the set of actions extruding
some v. Thus, we can move a restriction "forward" in a computat ion if the
internal context does not extrude any of the restricted names.

The remaining properties are specific to object system configurations. We
assume that i, j are generic object names.
R3. LOCALITY. (~i ~ j) A i.~ | 7- =~ [j.m](i.~ | T) for every pre-state formula
~. Attr ibute values of an object can only be changed by the object 's own actions.
R4. GROUPING. (-~i -- j) A (i.~ | T) A (j .r | T) ~ (i.~ | j . r | T) allows the
concatenation of assertions about disjoint components of a configuration.
Rh. MERGING. (i.~P | T) /k (i .r | T) ~ ((i.~ A i .r | T) allows the merging of
assertions about the same component of a configuration.
R6. RELEVANCE I. (~. i.a) T ~ [~ i.m]_l_ expresses that if some object is located
in the system then no messages directed to it could be sent to the environment.
R7. RELEVANCE II. Sc(i ,~) | ~o ~ S*(i,a) | (~ A [$ i.m]_l_) Messages directed
to an object i cannot be received by the internal context surrounding i.
R8. SUPPORT. VX : ~((i.a> T ~ i.~) given that V~ : ~(i.~ ~ ([i.a]> i .r is the
single dynamic axiom for the action a in S c (i, 5).
R9. ACT. ([a] | i nv (T | (c y s t) A (~ ~ ($ a) r ~ ev[s]{r | T} where S is
any action set containing 7. Together with a fairness assumption, this ensures
that every request for a message that is never forever disabled will be attended.
E l 0 . CREATION. For each class c of type (T1,... ,T,~)O, the principle c(i ,5) |
[/.ml] | | [i.?nk] | 7-) ~ ev[s] (ZASc* (i, a) | [/-~1] | | [i.Tnk] | "[- where S
can be anything not excluding Sd with d is C(Sc) for some c 6 C. Every request
for a new object is fulfilled. We now bring explicit a fairness assumption.

D e f i n i t i o n 2 A computation 191 -?4 P2 ~ "'" is fair if whenever P~ ~- ~ :
~(b[Q) and Q ~ inv evs (J,b} T then for some n > i, Pn -~ tel : ~(b[Q'),

Q' ~ Q", P~+I ~- v9 : ~ Q" and P~ :+ P~+I.

In a fair computation, a message request for an action that is only sometimes
disabled will necessarily result in its execution. The important remark to make is
that the weak eventualities asserted in the creation and synchronisation axioms
above express in fact strong eventualities, if we restrict our concern just to fair
computations. For instance, we can prove that if P ~ I ([a] | inv(T | (evs~) A

SerO is
attrs
req : li
ch : obj
initial
v n : N (r e q = n i l A eh = n)
dynamic
Vr, a : obj ch = r ~ ([open(a)])

v t : T h r (r , s) a . a n s (t)
Vs : li r : obj, l : li ch = r A req = s

([done(r, l)]) req = l �9 s
v l : lti a: obi req = l ~ ([d~mp(a)])

req -=- n i l | a.sl(1)
end

N 0 is
end

54

Thr (s:obj,r:obj) is
attrs
up : bool
sl : Ii
initial
up---- T A sl = n i l
dynamic
Vl : li, x : i u p - - TA sl = l

([ins(x)]) st = x �9 l
Vlu : li, x : i up = T A sl = l

A r e m (l , x , u)
([del(~)]) sZ =

Vl : li u p = T A s l = l
([qu@ up = V | s .done(r , 0

stat ic
Vx : i , l : li r e m (x , x �9 1,1)
V x y : i, lr : li r e i n (x , y �9 l, x �9 r)

r e i n (x , l, r)
end

Fig . 4. A sample specification

(~o ~ (a) r then for all fair reduction paths P - P1 -% P2 -% "'" there is Pi
such tha t Pi ~ {r | T}.

7 R e a s o n i n g a b o u t S y s t e m s

We now present a toy specification of a commercial server usable for instance
at a bookseller network site, and prove a couple of very simple properties about
it with the program logic. Servers can perform three types of actions: o p e n (a) ,

tha t creates a new thread whose identity is returned to the user a by means of a
message a . a n s (t) , d u m p (a) tha t returns to a the current list of orders, clearing it
afterwards, and d o n e (r , l) , explained shortly. Each thread can execute insertions
i n s (i) and deletions d e l (i) of items i in the current shopping list at the user com-
mand, until q u i t is invoked. After this happens, the thread yields the collected
shopping list (the order) to the server via a d o n e (r , l) request, commit t ing itseff
to no further action. Obviously, only s . d o n e (r , l) requests originated by threads
should be served by the server. This is achieved in the proposed specification by
the use of a private communicat ion channel kept in the c h at t r ibute of servers.
The specification is presented in Figure 4, in a sugared syntax not hard to relate
to the definitions in Section 4.
So, let I = ~ n : o b j (s . r e q = n i l A s . c h = n) A i n v { S e r * (s) | T} characterise the

initial s tate of a system. We now prove tha t I ~ inv Vr : obj, l : l i [s , d o n e (r , I)]_L
tha t is, the privacy assumption just mentioned. To tha t end, we first show the
safety proper ty I ~ i n v P where P = Z n : o b j (s . c h = n | T) A i n v { S e r * (s) | T } .

Since I ~ P , we first argue informally tha t P ~ [a]P for every action a. Since

55

attribute s.ch is never mentioned in s post-formulas, its value n never changes
by the frame condition. So we must just prove that such private value is never
extruded. The only possibility is in an action 1̀ (n : obj)s .done(n, l). But since
say P ~ ($(u: ob j) s . open (u))T then P ~ [1" (n: obj)s.done(n,l)]_L by R6, and
therefore P ~ [$(n)s .done(n , l)]P. Thus I =~ invP. We now prove in detail that
P ~ VRL[s .done(R, L)]_L.
1. ~ n ((S e r * (s) A s.ch -- n) | T), hypothesis and R5. By def of Ser*(s) and R8
2. En(((Vs ' r ' l ' s . ch = r' A s.req = s' ~ (s .done(r ' , l')) T) A s.ch = n) | T)
4. Zn(((Vr ' l ' -~s .ch = r' ~ [s.done(r',/')]_L) A s.ch = n) @ T), by pure logic.
5. Z,~((Vr'l'-~n "- r' ~ [s.done(r',/ ')]_L) | T), by P2.
6. 3 R L (s .done(R, L)) T, hypothesis.
7. 2 R L ((s . d o n e (R , L)) T A Zn((Vr ' l ' -~n & r' ~ [s .done(r ' , l ')]2) | T), by 5,6.
S. 3RL(Z,~((Vr ' l ' -~n - r' ~ [s.done(r', I')]_L A (s .done(R, L)) T A -~R - n) | T),
by R1 and noting that n is not free in s .done(R, L).
9. 3 R L (Z n (([s . d o n e (R , L)]_L A (s .done(R, L)) T) | T), by pure logic.
10. VRL[s .done(R , L)]_L, by 9,6 contradiction.
11. P ~ VRL[s .done(R, L)]_L, by 1 discharge, and we are done.
We now consider the following system-wide property ~ stating that, in certain
conditions, after a thread executes a quit action, it should disable further actions
and it's parent server must eventually acquire the shopping list produced by it.
Then ~ is
Z n (S e r * (s) | (t.sl = l A T h r * (t , s , n)) | T) ~ [t .qui t](ev{3u(s .reqs = l �9 u) |
T} A |nv[S]_L)

where S is the set of all actions by t. We now sketch the proof of ~, highlight-
ing just the main steps. Assume Zn (Ser* (s) | (t.sl = l A Thr* (t, s, n)) | T). This
implies ~,~(Ser*(s) | (t.sl = 1A Thr*(t , s, n) A t .Ts(s, n)) | T), where Ts(s, n)
is the dynamic axiom for quit in the specification for threads. Now, [t.quit]B
where B =_ ~n (Ser* (s) | (t .up = F A T h r * (t, s, n) | s .done(n, l)), using t.Ta (s, n),
and noting that n is not free in t .quit. Note that B ~ inv[S]_L, because B
i nv (t . up = F| On the other hand, S ~ Zn(s .done(n , l) | 1 7 4 T}) .
Now, s .done(n, l) | i nv { Ser* (s) | implies s .done(n, l) | i n v (e v s 3 r (s .ch = n A
s .reqs = r) A qr(s .ch = n A s.reqs = r) ~ ([s.done(n, l)]) qr(s . reqs = 1 * r) | T),
and this last formula implies ev[un]{(3r(s .reqs = 1 �9 r) | T)} by R9, where Un
is the set of actions without free occurrences of n. Since ~nev[un] r ::~ eV~nr ,
by R2, we conclude ~.

8 C o n c l u s i o n s a n d F u r t h e r W o r k

We presented a declarative executable specification language and program logic
for concurrent objects providing a unified framework for specifying and rea-
soning about systems, thus demonstrating the usefulness of the Z:,~ language
as a meta-language for structuring the definition of operational semantics and
program verification logics of languages with concurrent and logic features. An
aspect not covered in the present paper was object types, we expect also types
to be accommodated in this framework. The proposed model can be extended

56

in several directions (for instance, modelling and reasoning about inheritance,
transactions, or mobile code). An interesting observation about #/2~ is tha t the
monoidal s t ructure induced by | 1 together with ~ and Z~:r induces an Action
Structure [9]. This fact may be explored in the definition of a more abst ract char-
acterisation of a verification logic for global/local properties of modular systems
in the presence of private names.

Acknowledgements To the anonymous referees for their useful comments and
Project ESCOLA P R A X I S / 2 / 2 . 1 / M A T / 4 6 / 9 4 for partially support ing this work.

References

1. L. Calres. A language for the logical specification of processes and relations. In
Michael Hanus, editor, Proceedings of the Algebraic and Logic Programming Inter-
national Conference, number 1139 in LNCS, pages 150-164, 1996.

2. L. Caires. A language for the logical specification of processes and relations. Tech-
nical Report 6.96, Universidade Nova de Lisbon, DI/FCT, 1996. http://www-
ctp .di.fct .unl.pt/,-.lcaires/writings/lpi6.96.ps.gz.

3. L. Caires and L. Monteiro. Proof net semantics of proof search computation. In
K. Meinke and M. Hanus, editors, Proceedings of the Algebraic and Logic Program-
ming International Conference, number 1298 in LNCS, pages 194-208, 1997.

4. J. Fiadeiro and T. Maibaum. Temporal theories as modularisation units for con-
current system specification. Formal Aspects of Computing, 4(3):239-272, 1992.

5. D. Kozen. Results on the propositional #-calculus. TCS, 27(3):333-354, 1983.
6. D. Miller. A survey of linear logic programming. Computational Logic, 2(2), 1995.
7. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proof as a founda-

tion for logic programming. Ann. of Pure and App. Logic, (51):125-157, 1991.
8. R. Milner. Functions as processes. Math. Struc. in Computer Sciences, 2(2):119-

141, 1992.
9. R. Milner. Calculi for interaction. Acta Informatica, 33(8):707-737, 1996.

10. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I -4- II.
Information and Computation, 100(1):1-77, 1992.

11. O. Nierstrasz, J-G. Schneider, and M. Lumpe. Formalizing composable software
systems - A research agenda. In Proceedings 1st IFIP Workshop on Formal Meth-
ods for Open Object-based Distributed Systems FMOODS'96, pages 271-282. Chap-
mann and Hall, 1996.

12. B. Pierce and D. Turner. Concurrent objects in a process calculus. In Takayasu
Ito and Akinori Yonezawa, editors, Theory and Practice of Parallel Programming
(TPPP), Sendai, Japan (Nov. 199~), number 907 in Lecture Notes in Computer
Science, pages 187-215. Springer-Verlag, April 1995.

13. A. Pnueli. The temporal semantics of concurrent programs. In G. Kahn, editor,
Semantics of Concurrent Computations, volume 70 of LNCS, pages 1-20, Evian,
France, July 1979. Springer-Verlag, Berlin, Germany.

14. D. Sangiorgi. An interpretation of typed objects into the typed ~r-calculus. Tech-
nical report, INRIA Technical Report RR-3000, 1996.

15. A. Sernadas, C. Sernadas, and J. Costa. Object specification logic. Journal of
Logic and Computation, 5(5):603-630, October 1995.

16. D. Walker. Objects in the 7r-calculus. Journal of Information and Computation,
116(2):253-271, 1995.

