
Resource Based Models for Asynchrony*

J. Rathke
Dipartimento di Informatica e Scienze dell'Informazione

Universit~ degli Studi di Genova

via Dodecaneso 35, 16146 Genova, Italy

julianr~cogs.susx.ac.uk

Abstract

We propose a new graph-based approach to modelling asynchronous languages and show how
the new model can be dewed as a collapse of the standard transition system model for asynchronous
behaviour by utilising the commuting properties of asynchronous transitions.

The motivation behind these new models stems from the issue of regularity for asynchronous
processes. We note that the class of regular processes fails to contain many useful asynchronous
processes and we identify a larger subclass of BPP ~cordingly. We call this new class asynchrononsly
regular processes.

Using the new models we provide two appealing abstract chaxacterisatious of asynchronous
bisimulation equivalence, namely, as spans of open maps and as a winning strategies for a bisimu-
lation game. Also, by exploiting the coincidence of finite graphs with regular processes we see that
bisimulation is polynomial time decidable over our class of asynchronously regular processes.

1 Introduction
It is becoming increasingly clear that the nature of output messages in languages such as the asyn-
chronous It-calculus, [2, 6], Pict [13] and the Join-calculus, [4] is one of persistent resources. Recently,
this persistence of output was exposed at the level of transition systems by identifying certain commuting
properties guaranteed of asynchronous systems [14]. Given such a situation, it would seem reasonable
to question whether transition systems afford a good representation of asynchronous processes. After
all, the ordering of transitions in a graph is used merely to reflect the precedence of actions which can
be performed by the process. The distinguishing feature of output actions is that they cannot preclude
other actions; so why model them as transitions?

Our approach is to view output messages purely in terms of resources. Our models, resource graphs,
have no ou tpu t transit ions but instead record the availability of ou tpu t resources as computa t ion pro-
greases. This might be achieved by allowing each node to be a pair containing some ' s ta te ' of the sys tem
along with the multiset of resources which are currently available. In fact, we see in Section 3.1 tha t this
is pret ty much how the transition system model behaves so little is to be gained from this solution. A
much more compact representation is possible if we don ' t explicitly record the current resources avail-
able but simply see how resources become available. We augment each input and r t ransi t ion with the
mul t ise t of outputs which become available as a result of performing this transition. It should be clear
t ha t we will also need to store the information of which resources are initially available in a system. For
example, the process

P = c! [[a?(b! [[b! [[Q) + r.(d! [[R)

has an initial resource {c!} and two immedia te t ransi t ions P a_~ and P ~ which release the resources
{b!, b!} and {d!} respectively. We represent these two transi t ions as

p a,{~b,b} Q and P "{-~} R,

where the inpu t /ou tpu t sense of actions is now implicit. This move to recording resources on edges
ra ther than at nodes allows many more infinite stale processes to be modelled by finite resource graphs.

*On leave from the University of Sussex. Supported by the EU-HCM Express network.

274

a~

i 'i b? t? ~,{6}
b! a! b!

b! a! b!

B

Figure 1: Transition system and resource graph for a! I] (b?(b!]] r. ni l))

To contrast the standard transition system models with the resource graph interpretation of a process
consider the example process in Figure 1. The redundancy in the transition system model is highlighted
well by the uniform shape of asynchronous transition systems imposed by Selinger's axioms [14]. We
know, owing to the asynchronous nature of the language, that the a! is possible at the initial node and,
until it is used, will continue to be available, thus in the resource graph model this information is utilised
to create a more compact graph.

The models for the process
P = a?(b! I[P)

are more illuminating. This process will in fact be modelled by an infinite transition system,
a ? a ? a ?

�9 �9 . . .

�9 ~ b! "~ b! ~ b!

yet the structure of the process is very simple - - at all t imes there is an a? action possible and for
each a? action performed an additional b! resource becomes available. Initially there are no b! resources
available. In fact, this gives us a resource graph with a single node, initial resource set is empty and
there is a single looping transition

~,{b}
r

o

So far we have shown how we could tailor transition systems to be more suited to modelling asyn-
chronous processes. But we must consider how this would actually benefit us. The examples show us
tha t we immediately have a more compact representation of systems, so this could clearly be useful when
it comes to checking equivalence of processes. Ideally we could check bisimulation between processes by
building their resource graphs and checking some kind of bisimulation on these. This would necessitate
defining the appropriate notion of bisimulation for resource graphs. Given such a situation, we would
easily obtain a decision procedure for checking bisimilarity for the class of processes which receive finite
resource graph models.

It is well known that finite state transition systems correspond (up to strong bisimulation) to regular
processes in CCS, that is processes which make no use of the static operators, parallel composition and
restriction underneath recursion [9, 10]. If we forbid the use of parallel composition and restriction
under recursion from asynchronous CCS we lose a great deal of expressive power, in fact, we lose the
ability to perform more than a finite number of output actions. This sorry state of affairs would mean
that even the paradigmatic asynchronous buffer process

rer X.a?(a! II X)

is not expressible. This restricted use of parallelism is certainly too strong for asynchronous languages
and we must consider a weaker notion of regularity. We propose that a parallel composition p]] q in the
scope of recursion binders be allowed providing that either p or q is merely an output message - we call
such processes asynchronously regular. The class of asynchronously regular processes would now include
the asynchronous buffet process shown above as well as many other infinite stale processes. Moreover,
all such processes will be modelled by finite resource graphs.

In order to define bisimulation on resource graphs we appeal to the abstract definition proposed by
Joyal, Nielsen, Winskel [7]. This definition simply requires us to choose a suitable category in which to
observe basic computation paths. Using intuition gleaned from [1] to choose our notion of morphism
of resource graphs, we see that the notion of asynchronous bisimulation proposed by [1] exists in an

275

abst ract form. The key" to our choice of morphism lies in unders tanding internal r actions as a pair of
unspecified synchronising actions, hidden from the environment . One may like to think of r prefixing
as syntactic sugar for

.a.(a! Ii a?P).
We consider what effects specifying a name, a, for these actions, and allowing them to be seen by the
environment , has; call this specified synchronising pair ra, so one might think of ro prefixing as

a! I[a?P.

To define our notion of morphism on resource graphs we discuss general considerations about mor-
ph i sms of labelled graphs. We think of a morphism

f : G----~ G'

between two labelled graphs as representing tha t G ' is a refinement of G. T h a t is to say tha t G is more
specified than G ~. A morphism should refine t ransi t ions of the graph in some way. We will outline what
we unders tand by refinement.

Transi t ions represent both local communicat ion, r moves, and capacity for interacting in a more
global sense, a? and a! moves. Given a process p, we can observe the global computat ions it can engage
in by inducing them using an environment process e s i tuated in parallel with p. We say tha t e offers

a!
an action a!, say, if e --=~, and tha t p accepts this offer if it synchronises with e to perform an internal
reduction or computation. A transit ion p ~ p~ of some t ransi t ion sys tem can be understood then as
saying tha t the least offer one need make p to observe some synchronisat ion and reduction to p~ is ~,
where a! = a?, a? = a!, and ~, specified or not, is empty. The ordering on offers is s imply tha t the
e m p t y offer is less than all other offers, which are incomparable. We will expect tha t any ra t ransi t ion
can be refined by a r transition because we have informat ion about the computa t ion yielded by ra, the
n a m e of the channel on which synchronisation occurs, t ha t we do not have of the computat ion given
by the r action. We say that a computat ion is covert if we do not know the name of the synchronising
channel. All computat ions induced by r prefixes are covert. Using this definition we say tha t

p ~ p~ f-refines q ~ q'

if p maps to q and q maps to q' under the morphism f , such tha t the least offer d made to p can
also be accepted by q to induce a reduction to q'. If the induced computa t ion of p is covert then the
corresponding induced computat ion of q mus t also be covert. More precisely we ask tha t

& [IP ~ P' implies dr I1 q i q'

such tha t if we don' t know the name on which p synchronises then we cannot know the name on which
q synchronises. We can see tha t following refinements hold for transi t ion systems,

p ~ p' f-refines f(p) ~ f(p')
"rQ ~" I p ---* p' f-refines f(p) ~ f(p),

and these give rise to a fairly unsurpris ing definition [16] of morph ism for asynchronous transi t ion
sys tems. However, we observe a peculiarity in the category of resource graphs. Edges of resource graphs

a,S ml" are labelled with pairs, ra -,~ Refinement of these edges will have to take into account the resources
which are collected. To spell this out we say

m ~ m ' f-refines n #-~' n '

if m maps to m ~, and n maps to n t such tha t the least offer 5 which (covertly) reduces m to s tate m '
with S extra resources can also be accepted by n so tha t the (covert) reduction induced takes us to
s ta te n ~ with the same extra resources. Under this definition we have the following refinements

a,s m ' /-refines f (m) ?~ f (m') rll ' , . . '>

~,S+{a} m' f-refines f (m) r~.~S f (m') rf/

rn r'L~S m f-refines f (m) r ~ f (m ') .

276

The second refinement holds because the least offer a! made to rn can be accepted by f (m) to reduce
to f (m ') with S extra resources, along with the extra a resource which was unused by the vo.

By considering refinement to be transitive we can dispense with the idea of m T~s transitions
a , S ~ { a] Tn I for resource graphs altogether and simply use m instead. The chief feature of our resource

graphs morphisms then is that a morphism from R to Rr allows us to specify in R, a name for an internal
synchronisation in R'. We reinforce these intuitions by exploiting the game theoretic characterisation
of bisimulation to highlight the rSle of r synchronisations as specified and unspecified pairs of actions.

We briefly outline the structure of the remainder. The following short section recalls the category
of transition systems and describes the asynchrony axioms. In Section 3 we define our category of
resource graphs and relate them to transition systems. Bisimulation equivalence is defined as the
span of open maps in this category and we characterise it using bisimulation like relations. The game
theoretic description of this equivalence is spelled out in Section 4. We demonstrate the usefulness
of our models in Section 5 by giving an enhanced notion of regularity for asynchronous systems and
prove that bisimulation equivalence is polynomial t ime decidable over this class. Section 6 contains our
conclusions.

A c k n o w l e d g m e n t s : The author(s) would like to thank Catuscia Palamidessi and Guy McCusker for
carefully reading a draft of this paper and suggesting many improvements. Thanks also to Colin Stifling
for providing some useful pointers in the literature. This work was carried out during research visits
at INRIA, Sophia-Antipolis and the University of Genova, which were funded by the EU-HCM Express
network. I would sincerely like to thank Catuscia Palamidessi and Ilaria Castellani and their respective
insti tutions for their extreme generosity and for directing me in my research.

2 Asynchronous systems
We recall, from [16], the definition of the category of transit ion systems, 3"S and describe the sub-
category, AT,S, of asynchronous transition systems, as eharacterised by Selinger.

Firstly, objects of T S are transition systems, (Jr n0, L, ----~) where no is a specified initial node.
Morphisms in 3-S are pairs of morphisms

(a, A) : (.h/', no, L, ----*) ~ (A p, n~, L', ----*)

such that ~ : Af --* A/" and A : L ~ L ~ is a partial function with the property that

{ n ~ n ~implies c r n ~ c r n ' if An1
~n = crn ~ otherwise.

Composition of morphisms is given by pairwise (partial) function composition and the identity mor-
phisms are simply pairs of identity functions on the respective sets.

A morphism (a, A) : T ---, T ~ indicates that T' is a refinement o f T in the sense that T is more specified
than T ~. Observe that T may have more atomic actions than T ' with extra transitions pertaining to
these actions. Also, T may have a more specific structure than T' , with less non-determinism and fewer
transitions. Indeed, when the A component of a morphism is the identity then this morphism is simply
an inclusion of T in TL This idea of a morphism being a refinement is examined again in the category
of resource graphs.

The particular sub-category ..43",.9 of 3"S in which we are interested is described as follows. Objects
of the category are transition systems whose label set L is typed, that is

L C A x { ! , ? , r } U { r }

where .4 is some set of channel names. That is, each action is either an output, a!, an input a?, the result
of a synchronisation of these ra, or an internal, hidden, synchronisation, r . These transition systems
are subject to certain axioms, presented in Figure 2 which characterise their asynchronous behaviour
[141.

Morphisms of .,43",.9 are similar to morphisms in 3-8 except that the relabelling component)~ is now
a partial function on A. We write r~ to mean either ra or r and define An! = (An)!, An? = (An)?,
Ar = r , and Ar~ = r~,s. Composition and identities are defined as in 3-3.

277

�9 n a!,~, n r

1o
n I!

a!
4 n) I1 t

ol

at �9 n ~t ~ t

~ 1
r l t!

implies 3n '" .

implies 3n'"-

implies

.! for a # to. n ~" n '

4 l o
n ''I ~ TIll

a!
n " n ' for a#a!,~

4 1 o
n H ~ n tH

n I ~ n ' t

a~
�9 n 9! �9 n' implies n ~ n'

n tt n te

a! a! " n " n ' implies B n ' . n ' n ' if a # b and

4 4 1,.
n i t ~ H ~ n l H

a~
�9 n implies ~n", n'"- n * n"

n t nee: ~ n t

a!
n ,~n ' f f a = b

4S
n II

Figure 2: Axioms for asynchronous t ransi t ion sys tems

3 R e s o u r c e g r a p h s

A resource graph is a graph based model for systems in which there is some notion of resource, that
is, some action which is persistent and not subject to reactive behaviour. A resource's use is never
precluded. The particular application we have in mind is for modelling asynchronous systems wherein
the I actions of the systems are considered as resources.

Formally, a resource graph is a quintuple

(.~1, .4, rno, So,"~)

where .M is a set of nodes, .A is some set of names , rno is a specified initial node in .M and So is a
mul t i se t of resources which are initially available. We write .4 "~ for the set of all multisets over the set
~4. So we see tha t So 6 ~4 "~ The edges of the graph are given by

~C_~•215215

and we write rn ~-~ m' if (m, a, S, m') 6",~. We will use + and - to denote union and difference where
multiset difference S - S ~ is a partial operator and is only defined when S t C S. These operators are
extended pointwise to multiset valued functions.

278

We can now describe our category of resource graphs, in fact we describe two. The f irst , /~G, has
morph i sms similar to the category A T S in tha t a morph ism represents refinement by introducing extra
a tomic actions and embedding. We use this category to relate the s tandard transit ion system models to
resource graph models. The second category we define, ~ A , contains morphisms which, following the
ideas outlined in the introduction, also allow refinement by specifying on which name a synchronisation
takes place. The two categories are such tha t T ~ is a lluf sub-category of 7~GA.

The objects of ~ are resource graphs. A morph ism (o., A, ~2) from

R = (.M,A, mo,So, '~)

to
R' = (M',-4', m~, s~,-.4

is a triple where o. is a function A4 --~ .h4', A is a partial funct ion .4 U {r} ~ .4' U {r} which preserves
r and ~ is a function .M --* -4"* such tha t the following conditions are satisfied:

(i) ~m0 = rnb

(ii) AS0 + ~om0 = S~

(iii) m a ~ m ' implies

,~$1 o.tTl t o.m where S' = AS + ~ m ' - ~ra if Aa l
o.m = o.m' and AS = 0, ~om = ~om' otherwise.

The ~ component of a morphism allows for a resource graph to be embedded within a larger resource
graph containing additional resources available at each node. Identi ty morphisms in 7 ~ are of the form
(Id, Id, Ce) where C e denotes the constant empty mult iset function. Composi t ion is defined by

Co., A, ~); (o.', A', #) = (o.; o.', A; A', (~,; A' + o.; #)).

It is straightforward enough to check tha t 7~# is indeed a category.

3.1 Relating the transition system and resource graph models

t~r
We describe an adjunction -4~r,9 ~ 7~{~ between our category of asynchronous transition systems

and our simple category of resource graphs. The counit of this adjunction is in fact an isomorphism so
the adjunction is a reflection.

The functor ra : 7~ --* -4T~9 acts on objects as follows:

r a (~ 4 , . 4 , ,-,,o, s0,,-~) = (.,~ • A " , .4, (too, So), ---*)

where ----* is defined by

(m, s + {a}) "-~ (m, s)

(m, s) ~ (m', s')
(m, S) ~ (m', S')
(m, S + {a}) - ~ (m', S')

o , S ~
if m -,.* rn' and 3" = S + S"

~r, S t l m s if m ~ and S' = S + S"

if m a-~" m ' and S' = S % S".

On morphisms we have that ra(o., A, ~) = (o.', A) where o.'(m, S) = (am, AS + ~pm).
In the other direction we need a couple of prel iminary definitions before we can describe ar. Firstly,

given an asynchronous transition sys tem we let x denote the least equivalence on its nodes such tha t

n a ~ n ' implies n ~ n ' .

Secondly, we write n s---L- if there exists a (possibly infinite) sequence of transi t ions

a2! at,! ak+t!
n a.fl~ltlt n l .----.} - - ~ n k ~ , . .

279

S~ such that ~ k ak = S. Define Outs(n) to be the maximum S such that n ---*.
We can now describe our functor at . On objects:

at(H, n0, L, --~) = (~r215 [no], Outs(.0),--*)

where ,4 is the first projection of the label set L C_ .A x {!, ?, r} and -.~ is defined by

In] ~ [n'] if n ".-2_, n '
and S = Outs(n') - Outs(n). T,S T

In] ".-* In'] if n ~ n '

The reader is invited to check that the asynchrony axioms guarantee that Outs(n) C Outs(n'), thus
ensuring that this does define a resource graph.

On morphisms we have that ar(a,),) = (H , "~, (t~; Outs(_) - Outs(_); ,~)) where [r = Inn] and
the third component is applied to any representative of the ~. equivalence class. This is a well-defined
resource graph morphism because of the asynchrony axioms.

T h e o r e m 3.1 ar is left adjoin~ to ra, moreover the counit, ra;ar ~ Id, of lhe adjunction is an
isomorphism.

P r o o f : The counit of the adjunction is (~, Id, Co) where E([(m, S)]) = m. This is easily seen to be
natural and universal and it has an inverse (Id, e -1, Co) where r (m) = [(m, 0)]. Dually, the unit of
the adjunction is (Id, [_] x Ou~s(.)). 1:3

We see that the unit of the adjunction does not necessarily have an inverse. This is because in
mapping our resource graph to a transition system we consider all configurations of nodes and multisets.
This includes many configurations which don't necessarily arise during computation. Thus, if we restrict
our attention to those configurations which are reachable, in some sense, then we can find an inverse for
our unit.

To this end, define the set of reachable configurations of a resource graph to be Reach(too, So) where
Reach is defined inductively as follows:

Reacho(m,S) = 0
Reach.+x(,-, S) = {(, . , S') I S' e_ S} U U Reachn(m', S" + S).

Let Reach(re, S) = U Reach,(m, S).
n>0

We immediately note that all reachable configurations of the resource graph ar(T) are of the form
([n], Outs(n)) for some n" E T. Thus, by replacing the set of all configurations .K4 x A ' " by just the
reachable ones, Reach(too, So), we can obtain an equivalence between the sub-categories of A T $ and
~ G whose graphs only contain reachable states.

3 . 2 A l a r g e r c a t e g o r y o f r e s o u r c e g r a p h s

We now consider a slightly more general category 7 ~ A of which T~G is a lluf sub-category, that is,
the objects of 7~GA are exactly the objects of ?~G. The extension lies in the notion of morphism.
We relax the definition of morphism of resource graphs in accordance with the motivation outlined in
the introduction. The generalisation is tantamount to allowing a r action of the target graph to be
specified as a synchronisation on a particular name. We argued that a synchronisation on channel a is a
refinement of the action a? where an extra a! resource is made available. The new notion of morphism
utitises this observation.

A morphism of/r is a triple (~, A, ~) as above, however we ask that the following conditions be
satisfied instead:

(i) ~'mo = m~ as above

(ii) ~So + ~mo = S~ as above

280

(iii) m "~ m s ' , i m p l i e s o ' m ~ ~ r n

(iv) m "~ m' implies
Aa,S'

O"rn -,~ O'rt l ' or
, s " if An 1

o 'Fn "~ . o 'r l2 '

am = am' and AS -- 0, ~m = ~m' otherwise

where S' = AS + ~rn' - ~m and S" = (A(S - {a})) + ~rn' - ~m. Identities and composition are defined
as in R ~ and 7 ~ , 4 is also seen to be a category.

3 . 3 B i s i m u l a t i o n o n r e s o u r c e g r a p h s

We propose a definition of bisimulation, suitable for resource graphs, in abstract form. Namely, we
use the machinery of open maps, [7], to declare two resource graphs with label the same label set `4,
bisimilar if there exists a span of open maps between them in the sub-category 7~`4o of 7~`4 . All of
this sub-category's objects have label set ,4 and all morphisms have the identity as the A component.
Furthermore, edges in the graphs of ~ , 4 o enjoy the following determinacy conditions:

m ~ m ' and m a ~ ' m l implies S = S I
"r, S I m l

m~ m' and m --* implies S = S'

One should note that this determinacy condition is a technical restriction and can easily be enforced in
an arbitrary resource graph by simply sending offending pairs of transitions to different targets.

We define paths in T~,4o to be resource graphs of the form

a2,S:~ a k , S k
~/~0 u . + , Ft21 ~ . . . " -~ F/~k

with initial node m0 and initial resources So.
Recall that we call a morphism / : R -* R' open if for all paths P, Q such that the following

C O l T l m u t e s

pC , R

,1 1'
Q< " R'

then we have a morphism h : Q --* R such that

pC , R

Qc , R'

(we use ,-~ to denote inclusion morphisms).
Define bisimulation then as R ~o R' iff there exists a

R R'

with f , g open. It is easy to see that ~o is both reflexive and symmetric, but to prove that it is transitive
it is sufficient to check that 7~G`4o has pullbacks [7].

P r o p o s i t i o n 3.2 ~ A o has pullbacks, which makes ~o an equivalence relation.

281

3 . 4 C h a r a c t e r i s i n g " o

The abstract definition of bisimulation using open maps, while being quite general, is not particularly
illuminating. For this reason it is natural to seek simpler characterisations of this relation.

To this end we consider the following class of relations. For resource graphs

(2,4, A, m0, So, ~) and (.M', A, m~, S~,',~)

such that So = S~ we call a symmetric relation B on .h4 x r a resource graph bisimulation if (rn0, m~) E
B and whenever (ml, m~) E B then

�9 if ml ~ m~ then there exists a rn~ such that m2 ~ rn~ with (m~, m~) E B

~.~'
�9 if ma ~ m~ then there exists a m~ such that m2 ~ m , or m~ m~ with (m~, m~) E B, and

S' + {a} = S.

We write R ~ 9 R' if there exists a resource graph bisimulation relating R and R ~.

T h e o r e m 3.3 ~ 0 and ~o coincide.

3.5 A m o d e l for a s y n c h r o n o u s C C S

We recall the notion of asynchronous bisimulation, ~a , , as proposed by Amadio, Castellani, Sangiorgi
[1] (albeit for the 7r-calculus and without % actions) and show that the functor ar and the equivalence
~o provide a fully abstract interpretation for ~a , .

A symmetric relation B on asynchronous CCS processes is called an asynchronous bisimulation if
whenever (p, q) E B we have

�9 if p _2~ p, then there exists a q' such that q a_~ q, with (p~, r E B.

�9 i f p .52_. p~ then there exists a q' such that q ~ r with (p~, r E B.

�9 i f p r_..~ p, then there exists a q' such that q r q~ with (p~,q~) E B.

o? , . , ~ r ~~ . �9 i f p - - - * p then thereexasts aq such tha t q w i t h (p ' , q ') e B o r q - ~ q ' w ~ t h (p ' , a ! i] q ') e B .

Recall that r~ means either ra or r . The largest such relation will be denoted ~a , .
By considering asynchronous processes as asynchronous transition systems, via operational seman-

tics, we can interpret processes as resource graphs by means of the functor at. This interpretation is
fully abstract for ~a , .

T h e o r e m 3.4 For asynchronous processes p and q, p ~a , q i f and only i f at(p) ~o ar(q).

P r o o f : Show p ~a, q iff at(p) ~rs at(q) and use Theorem 3.3.

The reader should note that ~o, is an atypical notion of bisimulation for transitions systems and
differs from the one in [1] in that r actions must be matched solely by r actions, thereby disallowing the
possibility of matching with a ra action. A more s tandard notion of equivalence is gained by replacing
the third matching condition above with

if p ----* p' then there exists a ql such that q ----* with (p', q') E B.

Let ~+j denote the equivalence yielded by this modification. This situation is of course rather unsat-
isfactory in general, but we can at least console ourselves with the fact that was coincides with the
more standard ~+s on the class of transition systems for which Outs is always finite at each node�9 In
particular ~as and ~+8 coincide on our class of regular processes in Section 5.

P r o p o s i t i o n 3.5 ~a, q and ~+~ coincide on the class of transifion systems such that Outs is finite at
each node.

282

P r o o f : One inclusion is immediate. For the reverse inclusion we need to show that. ~+, is an asyn-
chronous bisimulation. The only way that ~+, may fail to be an asynchronous bisimulation is if, given
P ~+s q we have p ~ p' being matched by q ~---~" q' for some q'. We show tha t there must be a match ing
r t ransi t ion in this case. Now, we know that Outs(p) is finite and tha t each of these output transi t ions
f rom p mus t be matched by q. Therefore there exist p0, q0 such tha t

al! an! all an!
P - - ' * ' " ' - " * P o and q q0,

Outs(po) = Outs(qo) = 0 and P0 ~+, q0. We know tha t asynchrony ensures P0 - - ~ P~ for some p~ and
t ha t this mus t be matched by q0 ~ q~ because q0 can no longer perform a ra transit ion as Outs(qo) = 0.
Again, by asynchrony we know that q ~ q" for some q". It is easy to check tha t p' ~+, q" follows
f rom p~ ~+, q~. [3

4 G a m e t h e o r e t i c d e s c r i p t i o n o f ""o

We extend our characterisation of asynchronous bis imulat ion further by showing how the notion can be
captured as winning strategies of a suitable game. The use of games to characterise bisimulation has
provided a conceptually powerful tool for unders tanding bisimulat ion as an equivalence which captures
interaction [15]. In our setting the game characterisat ion helps us unders tand the rSle of r as a pair of
unspecified, complementary actions.

We give a general definition of what we mean by a game and ins tant ia te this definition later to give us
our appropriate equivalence. So, a game F, is a quadruple (C, co, I>, ~) where C is a set of configurations
with a specified initial configuration e0. The relation t> C_ C x C comprises the rules of the game. This
relation tells us how play may continue from one move to the next. The function ,X : C --* {O, P} labels
moves as either Opponent or Player moves according to who is next to play - we require ~c0 -= O and
Ac ~ Ac' whenever c I> d . A play of a game is a sequence

e 0 l > e l I : > c 2 ~ > - . - D c k { : > - - -

We write P(F) for the set of all plays and abuse nota t ion by writ ing ~cs to mean the label of the last
move of cs (if it exists). A play, cs, is called max i ma l if it is infinite or cannot be extended, tha t is there
is no move c such that cs I> e.

We say tha t O wins the finite play cs if ~cs = P and cs is maximal . Dually, we say tha t P wins a
(possibly) infinite play if ~cs = O and the play is max imal . A strategy for O is a partial function from
Pos(O) = {cs I ~cs = O} to M (P) = {c I ~c = P} . We can define a s t ra tegy for P similarly.

Given an O-strategy ,%, we write P(ro) for

{cs e P(r) I yes' r- c s . ~ c s ' = 0 implies (cs' t> ~ro(cs')) t- cs}

where t" is the prefix ordering on plays. We say tha t the s t ra tegy re is winning if all max imal plays of
P(lro) are finite and labelled P .

Dually, we can define PQrp) for player strategies :rp and say tha t ~rp is winning if all max imal plays
of P(Trp) are infinite or labelled O.

4 . 1 T h e a s y n c h r o n o u s b i s i m u l a t i o n g a m e

We can now describe the game which characterises asynchronous bisimulat ion simply by describing the
configurations of the game and the rules. Before formally defining these however, we give an intuitive
explanat ion of the game.

Imagine a table containing a pile of cards, labelled with names from some set ,4, arranged in such a
way as to model a resource graph. In addition to this pile of cards there is a hand of cards kept as a

a,$ mt reserve. So, if the resource graph has a m --~ t ransi t ion, this means there will be an a card available
for play from the pile. If it is played then the cards in S mus t be picked up and kept in the reserve hand

rn ~ rt2 t and the pile of cards will now reflect state m' . If the resource graph has a transit ion then the
player has a blank card available. If she wishes to play this blank card she mus t pencil in a name, play

283

Left Rules: If d E {L, E}
Table:
((m, S), (m', S'), .'s, d) t> ((m", S + S"), (,n', S ') , a?'.s, d)

if m o,s~' rn" and d = L implies hd(zs) = a?

l:teserve:
((m , S) , (m ' , S ') , : s , d) ~ ((m , S - {a}) , (m' ,S ') ,a! :s ,d)

if d = L implies hd(zs) = a!

Blank:
((m, S), (m', S'), zs, d) > ((m", S + S" + {a}), (m', S'), a?zs, d)

if m r~" m" and d = L implies hd(zs) = a!

Right Rules: If d E {R, E}
Table:
((m, S), (m', S'), zs, d) > ((m, S), (m", S' + S"), a?--s, _d)

a , S Iz
if m' -,-.* m" and d = R implies hd(zs) = a?

Reserve:
((m, s), (m', S'),--., d) > ((m, S), (m', S' - {a}), ~!--s, ~)

if d = R implies hd(--s) = a!

Blank:
((m, s), (m', S'), ~s, d) ~. ((m, S), (m", S' + S" + { .}) , a?--s, d)

~-,S H
if m' -.~ m" and d = R implies hd(zs) = a!

w h e r e L = E , E = R a n d _ R = E , E = L .

Figure 3: Rules for asynchronous bisimulation game

it, pick up the cards in S for the reserve hand and in addition to these must flu in a blank card with the
same name and place it in the reserve hand. A card from the reserve hand may be played irrespective
of the pile of cards representing the resource graph.

A configuration of our game is a pair of the above tables, that is, two tables with a pile of cards
and a separate reserve hand each. At each turn, Opponent can play a card from either table and Player
mus t play the same card f rom the other table. The only extra condition is that a card from a reserve
hand is played by Player if and only if Opponent has played her card from a reserve hand.

Opponent always starts and play continues until one of the players becomes stuck. Opponent wins
if Player becomes stuck and Player wins otherwise.

To formalise this, given two resource graphs

R = (.M,A , mo,So, .~) and R' = (.~4',.A, m~,S~,-.-*)

we describe the game Fa(R, R') as the quadruple (C, co, ~>,),) where C is the set of all

((-,, S), (m', S'), --s, d)

such that m E .h4, m' E .A4', S ,S ' e A " , zs E (A x {!,?}) '" and d e { L , R , E } . Clearly, the nodes of
the resource graphs represents the pile of cards on the tables and the respective multisets represent the
reserve hands. ~re use the list --s to represent the cards that have already been played and d merely to
indicate which table must be played from next, the Left, Right or Either. The cards in zs are tagged
with a ! or a ? to indicate whether the card was played from a table or a reserve hand. It should be no
surprise then that the initial configuration is

co = ((too, So), (~ , , SD, ~, ~:).

284

We can label moves by using the last component so that Ac = P if d E {L,R} and Ac = O if d = E.
The rules for the game are given in Figure 3 and fall into three pairs of symmetric rules which describe
the moves of playing a card from the table, the reserve hand and playing a blank card by penciling in
a name.

We write R ~ r R' if there exists a winning Player strategy according to the rules of FA(R, R'). It
is simple enough to see that this is indeed an equivalence relation, in fact this is exactly resource graph
bisimulation.

T h e o r e m 4.1 ~rs coincides with ~r .

P r o o f : It is easy to see that ~ r g C ~ r . For the reverse inclusion, given a winning strategy, it is sufficient
to build a bisimulation relation. This is constructed as pairs of nodes which occur in the configurations
of plays according to the winning strategy. We take exactly those pairs which occur after Player moves.
To see that this will be a resource graph bisimulation we note that r transitions must be matched by r
transitions - - otherwise Opponent could win by choosing a fresh name to pencil in on the blank card
given by the r action. Player couldn't hope to match this unless he had also had a r move available. To
see that the resources being collected by each graph must be identical we note that, otherwise, Opponent
could win by simply playing a move from the larger of the two reserve hands. []

5 Regular asynchronous processes
We hinted earlier that our new model would lend itself to providing a notion of regular process for
asynchronous calculi whereby regular terms have finite graphs. By finite graph we mean finitely many
nodes, finitely many transitions and each resource multiset is finite. So far we have interpreted asyn-
chronous CCS in Tr indirectly by first giving an .AT"S semantics and then applying the functor at .
This approach suffices for modelling our language; indeed, to establish a regular term/finite resource
graph relationship one need only show that the equivalence relation used by the functor ar has finite
index on transition systems generated by regular terms. However, this method is slightly unsatisfactory
as it involves building potentially infinite graphs and collapsing them. What would be more pleasing
is a direct interpretation of aCCS in 7~.A by which regular terms immediately receive finite graph
models. Furthermore, we should require that this interpretation be compositional and coincides (up to
equivalence) with the indirect interpretation.

In fact, for our purposes it suffices to interpret what we will refer to as (asynchrononsly} regnlar
terms of aCCS. These can be characterised by the following grammar

p := ni l [X I a! II P I P II a!] ~ cq.pl] r ee X.p
I

where I is a finite indexing set, X is drawn from some set of variables Vat, the ai are either a? or r
and all recursions are guarded. We adopt the conventional notions of free and bound variables here.

To interpret recursion, we take the approach of [9] and augment resource graphs with an extra
component. This new component, <1 is a relation on nodes of the graph and the ambient set of recursion
variables, Var. We say that a variable, X, is nngnarded at a node m if m <~ X and we call a resource
graph closed if <I is the empty relation.

We make use of the following operators on resource graphs: firstly, we note that resource graphs
have a tensor product structure, | with unit I. Given graphs

and

this is defined in the obvious way as

R= (A~,A, rno, So,~. <)

(.x~ ,A ,mo,So, , <)

R ~ R' = (.h4 x .hal', A + A' . (rn0, rn~), So + S~,-,-*| <~ U ,~')

285

where
a , S " ~ , r r / (re, n) -..*r (m ' , n) i f m a,s ,

(m, n) %:-~| (m, n ') if n ~ n ' .

The tensor unit is I = ({*},0 ,* ,0 ,0 ,0) . The definition of | easily lifts to morphisms to become a
bifunctor on I~GA.

We interpret an output action a! as the resource graph

({.}, {~},., { a } , 0 , 0)

and we will refer to this graph simply by a!. Similarly, use the name X to refer to the resource graph

({.}, 0,., 0, 0, {(. , x) })

Another useful operation is that of the lifted sum of resource graphs. Given an I indexed set of
graphs R/, an I indexed set of actions ai, and a multiset S, we define

Z(~,,, R.,) = ((U.~ ,) + { ' } , U x , u {,:,, I ,:,, r ~},- , 0, ~ . , U <,)

where ,,,o,}
Finally, we describe how we interpret recursion over resource graphs. Given a graph R, we define

r e c X . R to be the graph
(~,A, too, S0,H+,<+)

where <3+ is just <~ with all pairs (m, X) removed. -,-*+ is defined in two steps. Firstly, define

r n ~ : m ' if m ~ m ' a n d m ' ~ X

m~176 t if r n ? - ~ m ' a n d r n 1<3X.

Then, let m if m0 m' and m <3 X, or m ~ 1 m' .
The informed reader will notice that this definition of recursion differs slightly from that in [9] and

is not sufficient to model general recursion, but we exploit the property that regular terms never have
more than one unguarded variable to give a simple definition.

These operators now allow us to interpret regular terms of aCCS in the desired manner:

[n i l] = I
I x] = x
[a! II pl = a! | [p|
Ip II a!l = Iyl e a!
[E Oti.Pi] "~ E(Oti, [Pi])
[r e e X . p] = ree X.[p] .

Let ~5 denote the transition system that would model p using the standard SOS semantics of CCS.

P r o p o s i t i o n 5.1

(i) The resource graph [2] is finite for any regular Serra p.

(ii) I f p is closed lhen [p] is a closed graph.

(iii) Every fin:re closed graph is ~rg equivalent to [p| for some regular p.

(i,,) ar(~)~~ IP].

This firmly establishes the correspondence between asynchronously regular terms and finite resource
graphs.

286

5 .1 D e c i d i n g b i s i m u l a t i o n e q u i v a l e n c e

To see the usefulness of having finite models we need only look at the problem of deciding bisimulation
equivalence. It is evident that ~a8 will be a decidableequivalence over asynchronously regular terms
due to work on infinite state transition systems [3]. Specifically, asynchronously regular terms are a
small subclass of BPP and bisimulation equivalence is decidable over this class of processes. What is
not clear however is the complexity of this decision procedure. The proofs that bisimulation equivalence
is decidable over BPP do not provide any upper bounds for the decision procedure [5, 11]. The class
of asynchronously regular processes are much simpler than BPP and therefore allow us to find such
bounds. In fact, because our models for this class are finite then standard techniques apply [8, 12].

T h e o r e m 5.2 Asynchronous bisimnlation equivalence, ~as, is decidable in polynomial ~ime for (asyn-
chronously) regular processes.

Proof : In order to decide P ~a, Q, by Proposition 5.1, Proposition 3.5 and Theorem 3.4 it is sufficient
to check [P] ~r9 [Q]. We know by Proposition 5.1, (i) that these resource graphs are finite. The decision
procedure now follows by first checking the initial resource sets of each graphs, and then solving the
partition refinement problem of [12] for the finite set of relations

mE~,sm' if m I:~ m,

mEa,sm I if m ~ m I
+ t a , S + { a } Flit r S t mE~.,s m if m or m :~Z m .

These relations are finite in number because we know that only finitely many names are used and only
finitely many different S appear on the edges of our graphs, t:]

We have now provided a notion of regularity for asynchronous processes which allows much more
expressivity than the standard notion of regularity for CCS. We have also shown that a suitable notion
of bisimulation equivalence is polynomial time decidable over this class of processes. Unfortunately
though, this enhanced notion of regularity is not as robust as we would like. In particular, it is the case
tha t one can form parallel compositions and restrictions of CCS regular terms and stay within the class
of regular processes [9, 10]. Sadly, this is not the case in the present work. Whilst parallel composition
preserves finiteness of the models of regular terms, the restriction of such graphs does not. In fact,
using the familiar argument of reducing bisimulation equivalence to the halting problem for two-counter
Minsky Machines [11] we can show that allowing restriction of regular terms, unsurprisingly, entails
undecidability of our equivalence.

We conclude this section by briefly mentioning that the direct interpretation of asynchronously
regular CCS terms as resource graphs can be extended to whole of aCCS in such a way as to ensure
that Proposition 5.1, (iv) still holds. This extension is non-trivial however and involves defining both
the recursion and restriction operators on graphs as the least fixed point of certain functionals so that
the resulting resource graphs may become infinite.

6 Conc lus ion

We have presented a novel approach to modelling asynchronous systems. The chief feature of these new
models is the treatment of asynchronous transmission as the use of resources. Resource graphs yield a
direct presentation of asynchronous behaviour, without recourse to various commutativity axioms. They
also provide a compact representation of many infinite state systems, thereby allowing effective proce-
dures for deciding bisimilarity. We discovered that the somewhat unorthodox notion of asynchronous
bisimilarity arises naturally in the category of resource graphs and provided insightful characterisations
of this equivalence.

The present work is concerned with synchronising processes rather than communicating processes,
tha t is, no information is transmitted by output actions. Therefore a treatment of asynchrony in the
~r-calculus is beyond the scope of resource graphs as presented. An issue worth further investigation is
a generalisation of the resource graph model which could cater for name passing and dynamic scoping
as can be found in the r-calculus.

287

References

[1] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous ~r-calculus.
In U. Montanari and V.Sassone, editors, Proceedings CONCUR 96, Pisa, volume 1119 of Lecture
Notes in Computer Science, pages 147-162. Springer-Verlag, 1996.

[2] G. Boudol. Asynchrony and the ~r-calculus. Technical Report 1702, INRIA, Sophia-Antipolis, 1991.

[3] S. Christensen, Y. Hirshfield, and F. MoUer. Bisimulation equivalence is decidable for basic parallel
processes. In E. Best, editor, Proceedings CONCUR 93, ttildesheim, volume 715 of Lecture Notes
in Computer Science, pages 143-157. Springer-Verlag, 1993.

[4] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Proc. ACM-POPL,
1996.

[5] Y. ttirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimulation equiv-
alence of normed basic parallel processes. In Proc. Mathematical Strnc~ures in Computer Science,
1996.

[6] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In Proc. ECOOP
91, Geneve, 1991.

[7] A. :loyal, M. Nielsen, and G. Winskel. Bisimulation and open maps. In Proceedings 8 ~h Annual
Symposium on Logic in Computer Science, pages 418--427. IEEE Computer Society Press, 1993.

[8] P.C. Kauellakis and S.A. Smolka. CCS expressions, finite state processes, and three problems of
equivalence. Information and Computation, 86:43-68, 1990.

[9] K. Milner. A complete inference system for a class of regular behaviours. Journal of Computer and
System Sciences, 28:439-466, 1984.

[10] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs, 1989.

[11] F. Moiler. Infinite results. In U. Montanari and V.Sassone, editors, Proceedings CONCUR 96, Pisa,
volume 1119 of Lecture Notes in Computer Science, pages 195-216. Springer-Verlag, 1996.

[12] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973-989, 1987.

[13] B. Pierce and D. Turner. Pict: A programming language based on the r-calculus, 1996. Univeristy
of Cambridge.

[14] P. Selinger. First-order axioms for asynchrony. In M. Bednarczyk, editor, Proceedings CONCUR
97, Warsaw, volume 1243 of Lecture Notes in Computer Science, pages 376-390. Springer-Verlag,
1997.

[15] C. Stirling. Bisimulation, model checking and other games, 1997. Notes for Mathfit Instructional
Meeting on Games and Computation, University of Edinburgh.

[16] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, Dov M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, Volume 4, pages 1-148. Oxford
University Press, 1995.

