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Abstract 

We propose a new graph-based approach to modelling asynchronous languages and show how 
the new model can be dewed as a collapse of the standard transition system model for asynchronous 
behaviour by utilising the commuting properties of asynchronous transitions. 

The motivation behind these new models stems from the issue of regularity for asynchronous 
processes. We note that the class of regular processes fails to contain many useful asynchronous 
processes and we identify a larger subclass of BPP ~cordingly. We call this new class asynchrononsly 
regular processes. 

Using the new models we provide two appealing abstract chaxacterisatious of asynchronous 
bisimulation equivalence, namely, as spans of open maps and as a winning strategies for a bisimu- 
lation game. Also, by exploiting the coincidence of finite graphs with regular processes we see that 
bisimulation is polynomial time decidable over our class of asynchronously regular processes. 

1 Introduction 
It is becoming increasingly clear that the nature of output messages in languages such as the asyn- 
chronous It-calculus, [2, 6], Pict [13] and the Join-calculus, [4] is one of persistent resources. Recently, 
this persistence of output was exposed at the level of transition systems by identifying certain commuting 
properties guaranteed of asynchronous systems [14]. Given such a situation, it would seem reasonable 
to question whether transition systems afford a good representation of asynchronous processes. After 
all, the ordering of transitions in a graph is used merely to reflect the precedence of actions which can 
be performed by the process. The distinguishing feature of output actions is that they cannot preclude 
other actions; so why model them as transitions? 

Our approach is to view output  messages purely in terms of  resources. Our  models, resource graphs,  
have no ou tpu t  transit ions but  instead record the  availability of ou tpu t  resources as computa t ion  pro- 
greases. This  might  be achieved by allowing each node to be a pair containing some ' s ta te '  of the sys tem 
along with the multiset  of resources which are currently available. In fact, we see in Section 3.1 tha t  this  
is pret ty much how the transition system model  behaves so little is to be gained from this solution. A 
much  more compact representation is possible if we don ' t  explicitly record the current resources avail- 
able but  simply see how resources become available. We augment  each input  and r t ransi t ion with the  
mul t ise t  of outputs  which become available as a result of performing this transition. It  should be clear 
t ha t  we will also need to store the information of  which resources are initially available in a system.  For 
example,  the  process 

P = c! [[ a?(b! [[ b! [[ Q) + r.(d! [[ R) 

has  an initial resource {c!} and two immedia te  t ransi t ions P a_~ and P ~ which release the resources 
{b!, b!} and {d!} respectively. We represent these two transi t ions as 

p a,{~b,b} Q and P "{-~} R, 

where the inpu t /ou tpu t  sense of actions is now implicit. This  move to recording resources on edges 
ra ther  than at nodes allows many more infinite stale processes to be modelled by finite resource graphs.  

*On leave from the University of Sussex. Supported by the EU-HCM Express network. 
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Figure 1: Transition system and resource graph for a! I] (b?(b! ]] r. ni l  )) 

To contrast the standard transition system models with the resource graph interpretation of a process 
consider the example process in Figure 1. The redundancy in the transition system model is highlighted 
well by the uniform shape of asynchronous transition systems imposed by Selinger's axioms [14]. We 
know, owing to the asynchronous nature of the language, that  the a! is possible at the initial node and, 
until it is used, will continue to be available, thus in the resource graph model this information is utilised 
to create a more compact graph. 

The models for the process 
P = a?(b! I[ P)  

are more illuminating. This process will in fact be modelled by an infinite transition system, 
a ?  a ?  a ?  

�9 �9 . . .  

�9 ~ b! "~ b! ~ b! 

yet the structure of the process is very simple - -  at all t imes there is an a? action possible and for 
each a? action performed an additional b! resource becomes available. Initially there are no b! resources 
available. In fact, this gives us a resource graph with a single node, initial resource set is empty and 
there is a single looping transition 

~,{b} 
r 

o 

So far we have shown how we could tailor transition systems to be more suited to modelling asyn- 
chronous processes. But we must consider how this would actually benefit us. The examples show us 
tha t  we immediately have a more compact representation of systems, so this could clearly be useful when 
it comes to checking equivalence of processes. Ideally we could check bisimulation between processes by 
building their resource graphs and checking some kind of bisimulation on these. This would necessitate 
defining the appropriate notion of bisimulation for resource graphs. Given such a situation, we would 
easily obtain a decision procedure for checking bisimilarity for the class of processes which receive finite 
resource graph models. 

It is well known that finite state transition systems correspond (up to strong bisimulation) to regular 
processes in CCS, that  is processes which make no use of the  static operators, parallel composition and 
restriction underneath recursion [9, 10]. If we forbid the use of parallel composition and restriction 
under recursion from asynchronous CCS we lose a great deal of expressive power, in fact, we lose the 
ability to perform more than a finite number of output  actions. This sorry state of affairs would mean 
that  even the paradigmatic asynchronous buffer process 

rer X.a?(a! II X)  

is not expressible. This restricted use of parallelism is certainly too strong for asynchronous languages 
and we must consider a weaker notion of regularity. We propose that  a parallel composition p ]] q in the 
scope of recursion binders be allowed providing that  either p or q is merely an output message - we call 
such processes asynchronously regular. The class of asynchronously regular processes would now include 
the asynchronous buffet process shown above as well as many other infinite stale processes. Moreover, 
all such processes will be modelled by finite resource graphs. 

In order to define bisimulation on resource graphs we appeal to the abstract definition proposed by 
Joyal, Nielsen, Winskel [7]. This definition simply requires us to choose a suitable category in which to 
observe basic computation paths. Using intuition gleaned from [1] to choose our notion of morphism 
of resource graphs, we see that the notion of asynchronous bisimulation proposed by [1] exists in an 
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abst ract  form. The key" to our choice of morphism lies in unders tanding internal r actions as a pair of 
unspecified synchronising actions, hidden from the environment .  One may  like to think of r prefixing 
as syntactic sugar for 

.a.(a! Ii a?P). 
We consider what effects specifying a name, a, for these actions, and allowing them to be seen by the 
environment ,  has; call this specified synchronising pair ra, so one might  think of ro prefixing as 

a! I[ a?P. 

To define our notion of morphism on resource graphs we discuss general considerations about  mor- 
ph i sms  of labelled graphs. We think of a morphism 

f : G----~ G' 

between two labelled graphs as representing tha t  G '  is a refinement of G. T h a t  is to say tha t  G is more  
specified than  G ~. A morphism should refine t ransi t ions of the  graph in some way. We will outline what  
we unders tand by refinement. 

Transi t ions represent both local communicat ion,  r moves,  and capacity for interacting in a more  
global sense, a? and a! moves. Given a process p, we can observe the  global computat ions  it can engage 
in by inducing them using an environment  process e s i tuated in parallel with  p. We say tha t  e offers 

a! 
an action a!, say, if e --=~, and tha t  p accepts this offer if it synchronises with e to perform an internal 
reduction or computation.  A transit ion p ~ p~ of some t ransi t ion sys tem can be understood then as 
saying tha t  the least offer one need make p to observe some  synchronisat ion and reduction to p~ is ~, 
where a! = a?, a? = a!, and ~, specified or not, is empty.  The  ordering on offers is s imply tha t  the  
e m p t y  offer is less than all other offers, which are incomparable.  We will expect tha t  any ra t ransi t ion 
can be refined by a r transition because we have informat ion about  the computa t ion  yielded by ra, the  
n a m e  of the channel on which synchronisation occurs, t ha t  we do not  have of the computat ion given 
by the  r action. We say that  a computat ion is covert if  we do not  know the name  of the synchronising 
channel.  All computat ions induced by r prefixes are covert. Using this  definition we say tha t  

p ~ p~ f-refines q ~ q' 

if  p maps  to q and q maps  to q' under  the morphism f ,  such tha t  the  least offer d made  to p can 
also be accepted by q to induce a reduction to q'. If the induced computa t ion  of p is covert then the  
corresponding induced computat ion of q mus t  also be covert. More precisely we ask tha t  

& [IP ~ P' implies dr I1 q i q' 

such tha t  if we don' t  know the name  on which p synchronises then  we cannot  know the name  on which 
q synchronises. We can see tha t  following refinements hold for transi t ion systems,  

p ~ p' f-refines f(p) ~ f(p') 
"rQ ~" I p ---* p' f-refines f(p) ~ f(p ), 

and these give rise to a fairly unsurpris ing definition [16] of  morph ism for asynchronous transi t ion 
sys tems.  However, we observe a peculiarity in the category of  resource graphs.  Edges of resource graphs  

a,S ml" are labelled with pairs, ra -,~ Refinement of these edges will have to take into account the resources 
which are collected. To spell this out  we say 

m ~ m '  f-refines n #-~' n '  

if m maps  to m ~, and n maps  to n t such tha t  the least offer 5 which (covertly) reduces m to s tate  m '  
with S extra resources can also be accepted by n so tha t  the (covert) reduction induced takes us to 
s ta te  n ~ with the same extra resources. Under this definition we have the following refinements 

a,s m '  /-refines f (m)  ?~ f (m')  rll ' , . . '> 

~,S+{a} m' f-refines f ( m )  r~.~S f (m')  rf/ 

rn r'L~S m f-refines f ( m )  r ~  f ( m ' ) .  
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The  second refinement holds because the least offer a! made to rn can be accepted by f ( m )  to reduce 
to f ( m ' )  with S extra resources, along with the extra a resource which was unused by the vo. 

By considering refinement to be transitive we can dispense with the idea of m T~s transitions 
a , S ~ { a ]  Tn I for resource graphs altogether and simply use m instead. The chief feature of our resource 

graphs morphisms then is that a morphism from R to Rr allows us to specify in R, a name for an internal 
synchronisation in R'. We reinforce these intuitions by exploiting the game theoretic characterisation 
of  bisimulation to highlight the rSle of r synchronisations as specified and unspecified pairs of actions. 

We briefly outline the structure of the remainder. The following short section recalls the category 
of  transition systems and describes the asynchrony axioms. In Section 3 we define our category of 
resource graphs and relate them to transition systems. Bisimulation equivalence is defined as the 
span of open maps in this category and we characterise it using bisimulation like relations. The game 
theoretic description of this equivalence is spelled out in Section 4. We demonstrate the usefulness 
of  our models in Section 5 by giving an enhanced notion of regularity for asynchronous systems and 
prove that  bisimulation equivalence is polynomial t ime decidable over this class. Section 6 contains our 
conclusions. 

A c k n o w l e d g m e n t s :  The author(s) would like to thank Catuscia Palamidessi and Guy McCusker for 
carefully reading a draft of this paper and suggesting many improvements.  Thanks also to Colin Stifling 
for providing some useful pointers in the literature. This work was carried out during research visits 
at  INRIA, Sophia-Antipolis and the University of Genova, which were funded by the EU-HCM Express 
network. I would sincerely like to thank Catuscia Palamidessi and Ilaria Castellani and their respective 
insti tutions for their extreme generosity and for directing me in my research. 

2 Asynchronous systems 
We recall, from [16], the definition of the category of transit ion systems, 3"S and describe the sub- 
category, AT,S,  of asynchronous transition systems, as eharacterised by Selinger. 

Firstly, objects of T S  are transition systems, (Jr n0, L, ----~) where no is a specified initial node. 
Morphisms in 3-S are pairs of morphisms 

(a, A) : (.h/', no, L, ----*) ~ (A p,  n~, L', ----*) 

such that  ~ : Af --* A/" and A : L ~ L ~ is a partial function with the property that  

{ n ~ n  ~implies c r n ~ c r n '  if An1  
~n = crn ~ otherwise. 

Composition of morphisms is given by pairwise (partial) function composition and the identity mor- 
phisms are simply pairs of identity functions on the respective sets. 

A morphism (a, A) : T ---, T ~ indicates that  T'  is a refinement o f T  in the sense that  T is more specified 
than  T ~. Observe that T may have more atomic actions than T '  with extra transitions pertaining to 
these actions. Also, T may have a more specific structure than  T' ,  with less non-determinism and fewer 
transitions. Indeed, when the A component of a morphism is the  identity then this morphism is simply 
an inclusion of T in TL This idea of a morphism being a refinement is examined again in the category 
of  resource graphs. 

The particular sub-category ..43",.9 of 3"S in which we are interested is described as follows. Objects 
of  the category are transition systems whose label set L is typed,  that  is 

L C A x { ! , ? , r } U { r }  

where .4 is some set of channel names. That is, each action is either an output,  a!, an input a?, the result 
of a synchronisation of these ra, or an internal, hidden, synchronisation, r .  These transition systems 
are subject to certain axioms, presented in Figure 2 which characterise their asynchronous behaviour 
[141. 

Morphisms of .,43",.9 are similar to morphisms in 3-8 except that  the relabelling component )~ is now 
a partial function on A. We write r~ to mean either ra or r and define An! = (An)!, An? = (An)?, 
Ar = r ,  and Ar~ = r~,s. Composition and identities are defined as in 3-3. 
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Figure 2: Axioms for asynchronous  t ransi t ion sys tems 

3 R e s o u r c e  g r a p h s  

A resource graph is a graph based model for systems in which there is some notion of resource, that 
is, some  action which is persistent and not  subject  to reactive behaviour.  A resource's use is never 
precluded. The particular application we have in mind is for modelling asynchronous systems wherein 
the I actions of the systems are considered as resources. 

Formally, a resource graph is a quintuple 

(.~1, .4, rno, So,"~) 

where .M is a set of nodes, .A is some set of names ,  rno is a specified initial node in .M and So is a 
mul t i se t  of  resources which are initially available. We write .4 "~ for the set of all multisets over the set 
~4. So we see tha t  So 6 ~4 "~ The edges of the graph are given by 

~C_~•215215 

and we write rn ~-~ m' if (m, a, S, m') 6",~. We will use + and - to denote union and difference where 
multiset difference S - S ~ is a partial operator and is only defined when S t C S. These operators are 
extended pointwise to multiset valued functions. 
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We can now describe our category of resource graphs,  in fact we describe two. The f irst , /~G, has  
morph i sms  similar to the category A T S  in tha t  a morph ism represents refinement by introducing extra  
a tomic  actions and embedding. We use this category to relate the  s tandard transit ion system models to 
resource graph models. The second category we define, ~ A ,  contains morphisms  which, following the 
ideas outlined in the introduction, also allow refinement by specifying on which name  a synchronisation 
takes place. The two categories are such tha t  T ~  is a lluf sub-category of 7~GA. 

The  objects of ~ are resource graphs.  A morph ism (o., A, ~2) from 

R = (.M,A, mo,So, '~)  

to 
R' = (M',-4', m~, s~,-.4 

is a triple where o. is a function A4 --~ .h4', A is a partial funct ion .4 U {r} ~ .4' U {r} which preserves 
r and  ~ is a function .M --* -4"* such tha t  the  following conditions are satisfied: 

(i) ~m0 = rnb 

(ii) AS0 + ~om0 = S~ 

(iii) m a ~  m '  implies 

,~$1 o.tTl t o.m where S' = AS + ~ m '  - ~ra if Aa l 
o.m = o.m' and AS = 0, ~om = ~om' otherwise. 

The  ~ component  of a morphism allows for a resource graph to be embedded within a larger resource 
graph containing additional resources available at each node. Identi ty morphisms  in 7 ~  are of the  form 
(Id, Id, Ce) where C e denotes the constant  empty  mult iset  function.  Composi t ion is defined by 

Co., A, ~); (o.', A', # )  = (o.; o.', A; A', (~,; A' + o.; #)). 

It is straightforward enough to check tha t  7~# is indeed a category. 

3.1 Relating the transition system and resource graph models 

t~r 
We describe an adjunction -4~r,9 ~ 7~{~ between our category of asynchronous transition systems 

and our simple category of resource graphs. The counit of this adjunction is in fact an isomorphism so 
the adjunction is a reflection. 

The functor ra : 7~ --* -4T~9 acts on objects as follows: 

r a ( ~ 4 , . 4 ,  ,-,,o, s0,,-~) = (.,~ • A " ,  .4, (too, So), ---*) 

where ----* is defined by 

(m, s + {a}) "-~ (m, s) 

(m, s) ~ (m', s') 
(m, S) ~ (m', S') 
(m, S + {a}) - ~  (m', S') 

o , S  ~ 
if m -,.* rn' and 3" = S + S"  

~r, S t l  m s if m ~ and S'  = S + S" 

if m a-~" m '  and S' = S % S". 

On morphisms  we have that  ra(o., A, ~) = (o.', A) where o.'(m, S) = (am,  AS + ~pm). 
In the other direction we need a couple of prel iminary definitions before we can describe ar. Firstly, 

given an asynchronous transition sys tem we let x denote the  least equivalence on its nodes such tha t  

n a ~  n '  implies n ~ n ' .  

Secondly, we write n s---L- if there exists a (possibly infinite) sequence of transi t ions 

a2! at,! ak+t! 
n a.fl~ltlt n l  .----.} . . . . . - - ~  n k ~ , . .  
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S~ such that  ~ k  ak = S. Define Outs(n) to be the maximum S such that  n ---*. 
We can now describe our functor at .  On objects: 

at(H, n0, L, --~) = (~r215 [no], Outs(.0),--*) 

where ,4 is the first projection of the label set L C_ .A x {!, ?, r} and -.~ is defined by 

In] ~ [n'] if n ".-2_, n '  
and S = Outs(n') - Outs(n). T,S T 

In] ".-* In'] if n ~ n '  

The reader is invited to check that  the asynchrony axioms guarantee that  Outs(n) C Outs(n'), thus 
ensuring that  this does define a resource graph. 

On morphisms we have that ar(a,  ),) = ( H ,  "~, (t~; Outs(_) - Outs( _); ,~)) where [r = Inn] and 
the  third component is applied to any representative of the ~. equivalence class. This is a well-defined 
resource graph morphism because of the asynchrony axioms. 

T h e o r e m  3.1 ar is left adjoin~ to ra, moreover the counit, ra;ar ~ Id, of lhe adjunction is an 
isomorphism. 

P r o o f :  The counit of the adjunction is (~, Id, Co) where E([(m, S)]) = m. This is easily seen to be 
natural  and universal and it has an inverse (Id, e -1, Co) where r (m) = [(m, 0)]. Dually, the unit of  
the adjunction is (Id, [_] x Ou~s(.)). 1:3 

We see that  the unit of the adjunction does not  necessarily have an inverse. This is because in 
mapping our resource graph to a transition system we consider all configurations of nodes and multisets. 
This includes many configurations which don't  necessarily arise during computation. Thus, if we restrict 
our attention to those configurations which are reachable, in some sense, then we can find an inverse for 
our unit. 

To this end, define the set of reachable configurations of  a resource graph to be Reach(too, So) where 
Reach is defined inductively as follows: 

Reacho(m,S) = 0 
Reach.+x(,-, S) = {( , . ,  S') I S' e_ S} U U Reachn(m', S" + S). 

Let Reach(re, S) = U Reach,(m, S). 
n>0 

We immediately note that  all reachable configurations of  the resource graph ar(T) are of the form 
([n], Outs(n)) for some n" E T. Thus, by replacing the set of all configurations .K4 x A ' "  by just  the 
reachable ones, Reach(too, So), we can obtain an equivalence between the sub-categories of A T $  and 
~ G  whose graphs only contain reachable states. 

3 . 2  A l a r g e r  c a t e g o r y  o f  r e s o u r c e  g r a p h s  

We now consider a slightly more general category 7 ~ A  of  which T~G is a lluf sub-category, that  is, 
the objects of 7~GA are exactly the objects of ?~G. The extension lies in the notion of morphism. 
We relax the definition of morphism of resource graphs in accordance with the motivation outlined in 
the introduction. The generalisation is tantamount  to allowing a r action of the target graph to be 
specified as a synchronisation on a particular name. We argued that  a synchronisation on channel a is a 
refinement of the action a? where an extra a! resource is made available. The new notion of morphism 
utitises this observation. 

A morphism of/r  is a triple (~, A, ~) as above, however we ask that  the following conditions be 
satisfied instead: 

(i) ~'mo = m~ as above 

(ii) ~So + ~mo = S~ as above 
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(iii) m "~ m . . . . . .  s '  , i m p l i e s  o ' m  ~ ~ r n  

(iv) m "~ m' implies 
Aa,S' 

O"rn -,~ O'rt l '  or 
, s "  if An 1 

o 'Fn  "~ .  o 'r l2 '  

am = am' and AS -- 0, ~m = ~m'  otherwise 

where S' = AS + ~rn' - ~m and S" = (A(S - {a})) + ~rn' - ~m. Identities and composition are defined 
as in R ~  and 7 ~ , 4  is also seen to be a category. 

3 . 3  B i s i m u l a t i o n  o n  r e s o u r c e  g r a p h s  

We propose a definition of bisimulation, suitable for resource graphs, in abstract form. Namely, we 
use the machinery of open maps, [7], to declare two resource graphs with label the same label set `4, 
bisimilar if there exists a span of open maps between them in the  sub-category 7~`4o of 7~`4 .  All of 
this sub-category's objects have label set ,4 and all morphisms have the identity as the A component. 
Furthermore, edges in the graphs of ~ , 4 o  enjoy the following determinacy conditions: 

m ~ m '  and m a ~ ' m l  implies S = S  I 
"r, S I  m l  

m~ m' and m --* implies S =  S' 

One should note that  this determinacy condition is a technical restriction and can easily be enforced in 
an arbitrary resource graph by simply sending offending pairs of transitions to different targets. 

We define paths in T~,4o to be resource graphs of the form 

a2,S:~ a k , S k  
~/~0 u . + ,  Ft21 ~ . . . " -~  F/~k 

with initial node m0 and initial resources So. 
Recall that  we call a morphism / : R -* R' open if for all paths P, Q such that  the following 

C O l T l m u t e s  

pC , R  

,1 1' 
Q< " R' 

then we have a morphism h : Q --* R such that  

pC , R  

Qc , R' 

(we use ,-~ to denote inclusion morphisms). 
Define bisimulation then as R ~o R'  iff there exists a 

R R'  

with f ,  g open. It is easy to see that  ~o is both reflexive and symmetric,  but to prove that  it is transitive 
it is sufficient to check that  7~G`4o has pullbacks [7]. 

P r o p o s i t i o n  3.2 ~ A o  has pullbacks, which makes ~o an equivalence relation. 
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3 . 4  C h a r a c t e r i s i n g  " o  

The abstract definition of bisimulation using open maps,  while being quite general, is not particularly 
illuminating. For this reason it is natural to seek simpler characterisations of this relation. 

To this end we consider the following class of relations. For resource graphs 

(2,4, A, m0, So, ~ )  and (.M', A, m~, S~,',~) 

such that  So = S~ we call a symmetric relation B on .h4 x r a resource graph bisimulation if (rn0, m~) E 
B and whenever (ml,  m~) E B then 

�9 if ml ~ m~ then there exists a rn~ such that  m2 ~ rn~ with (m~, m~) E B 

~.~' 
�9 if ma ~ m~ then there exists a m~ such that  m2 ~ m ,  or m~ m~ with (m~, m~) E B, and 

S' + {a} = S. 

We write R ~ 9  R'  if there exists a resource graph bisimulation relating R and R ~. 

T h e o r e m  3.3 ~ 0  and ~o coincide. 

3.5 A m o d e l  for  a s y n c h r o n o u s  C C S  

We recall the notion of asynchronous bisimulation, ~a , ,  as proposed by Amadio, Castellani, Sangiorgi 
[1] (albeit for the 7r-calculus and without % actions) and show that  the functor ar  and the equivalence 
~o provide a fully abstract interpretation for ~a , .  

A symmetric relation B on asynchronous CCS processes is called an asynchronous bisimulation if 
whenever (p, q) E B we have 

�9 if p _2~ p, then there exists a q' such that  q a_~ q, with (p~, r  E B. 

�9 i f p  .52_. p~ then there exists a q' such that  q ~ r with (p~, r  E B. 

�9 i f p  r_..~ p, then there exists a q' such that  q r q~ with (p~,q~) E B. 

o? , . , ~ r ~~ . �9 i f p - - - * p  then thereexasts aq  such tha t  q w i t h ( p ' , q ' ) e B o r q - ~ q ' w ~ t h ( p ' , a ! i ] q ' ) e B .  

Recall that  r~ means either ra or r .  The largest such relation will be denoted ~a , .  
By considering asynchronous processes as asynchronous transition systems, via operational seman- 

tics, we can interpret processes as resource graphs by means of  the functor at.  This interpretation is 
fully abstract for ~a , .  

T h e o r e m  3.4 For asynchronous processes p and q, p ~a ,  q i f  and only i f  at(p) ~o ar(q). 

P r o o f :  Show p ~a,  q iff at(p) ~rs  at(q) and use Theorem 3.3. 

The reader should note that ~o,  is an atypical notion of bisimulation for transitions systems and 
differs from the one in [1] in that  r actions must  be matched solely by r actions, thereby disallowing the 
possibility of matching with a ra action. A more s tandard notion of equivalence is gained by replacing 
the third matching condition above with 

if p ----* p' then there exists a ql such that  q ----* with (p', q') E B. 

Let ~+j denote the equivalence yielded by this modification. This situation is of course rather unsat- 
isfactory in general, but we can at least console ourselves with the fact that  was coincides with the 
more standard ~+s on the class of transition systems for which Outs  is always finite at each node�9 In 
particular ~as and ~+8 coincide on our class of regular processes in Section 5. 

P r o p o s i t i o n  3.5 ~a,  q and ~+~ coincide on the class of  transifion systems such that Outs  is finite at 
each node. 
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P r o o f :  One inclusion is immediate.  For the reverse inclusion we need to show that. ~+, is an asyn- 
chronous bisimulation. The only way that  ~+,  may  fail to be an asynchronous bisimulation is if, given 
P ~+s q we have p ~ p' being matched by q ~---~" q' for some q'. We show tha t  there must  be a match ing  
r t ransi t ion in this case. Now, we know that  Outs(p) is finite and tha t  each of these output  transi t ions 
f rom p mus t  be matched by q. Therefore there exist p0, q0 such tha t  

al! an! all  an! 
P - - ' * ' " ' - " * P o  and q . . . . .  q0, 

Outs(po) = Outs(qo) = 0 and P0 ~+, q0. We know tha t  asynchrony ensures P0 - - ~  P~ for some p~ and 
t ha t  this  mus t  be matched by q0 ~ q~ because q0 can no longer perform a ra transit ion as Outs(qo) = 0. 
Again,  by asynchrony we know that  q ~ q" for some q". It is easy to check tha t  p' ~+,  q" follows 
f rom p~ ~+,  q~. [3 

4 G a m e  t h e o r e t i c  d e s c r i p t i o n  o f  ""o 

We extend our characterisation of asynchronous bis imulat ion further  by showing how the notion can be 
captured as winning strategies of a suitable game.  The  use of  games  to characterise bisimulation has  
provided a conceptually powerful tool for unders tanding  bisimulat ion as an  equivalence which captures 
interaction [15]. In our setting the game characterisat ion helps us  unders tand  the rSle of r as a pair of 
unspecified, complementary actions. 

We give a general definition of what we mean  by a game and ins tant ia te  this  definition later to give us 
our  appropriate equivalence. So, a game F, is a quadruple  (C, co, I>, ~) where C is a set of configurations 
with a specified initial configuration e0. The relation t> C_ C x C comprises the rules of the game. This  
relation tells us how play may  continue from one move to the  next.  The  function ,X : C --* {O, P} labels 
moves  as either Opponent or Player moves according to who is next  to play - we require ~c0 -= O and 
Ac ~ Ac' whenever c I> d .  A play of a game is a sequence 

e 0 l > e l I : > c  2 ~ > - . - D c k { : > - - -  

We write P(F)  for the set of all plays and abuse nota t ion  by writ ing ~cs to mean  the label of the  last  
move of cs (if it exists). A play, cs, is called max i ma l  if it is infinite or cannot  be extended, tha t  is there 
is no move c such that  cs I> e. 

We say tha t  O wins the finite play cs if ~cs = P and cs is maximal .  Dually, we say tha t  P wins a 
(possibly) infinite play if ~cs = O and the play is max imal .  A strategy for O is a partial function from 
Pos(O) = {cs I ~cs = O} to M ( P )  = {c I ~c = P} .  We can define a s t ra tegy for P similarly. 

Given an O-strategy ,%, we write P(ro) for 

{cs e P(r) I yes' r- c s  . ~ c s '  = 0 implies (cs' t> ~ro(cs')) t- cs} 

where t" is the prefix ordering on plays. We say tha t  the  s t ra tegy re is winning if all max imal  plays of 
P(lro) are finite and labelled P .  

Dually, we can define PQrp) for player strategies :rp and say tha t  ~rp is winning if all max imal  plays 
of P(Trp) are infinite or labelled O. 

4 . 1  T h e  a s y n c h r o n o u s  b i s i m u l a t i o n  g a m e  

We can now describe the game which characterises asynchronous bisimulat ion simply by describing the 
configurations of the game and the rules. Before formally defining these however, we give an intuitive 
explanat ion of the game. 

Imagine a table containing a pile of cards, labelled with names  from some set ,4, arranged in such a 
way as to model a resource graph. In addition to this pile of cards there is a hand of cards kept as a 

a,$ mt reserve. So, if the resource graph has a m --~ t ransi t ion,  this means  there will be an a card available 
for play from the pile. If it is played then the cards in S mus t  be picked up and kept in the reserve hand 

rn ~ rt2 t and the pile of cards will now reflect state m' .  If the resource graph has  a transit ion then the 
player has  a blank card available. If she wishes to play this  blank card she mus t  pencil in a name,  play 
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Left Rules: If d E {L, E} 
Table: 
((m, S), (m',  S'),  .'s, d) t> ((m", S + S"),  (,n', S ') ,  a?'.s, d) 

if m o,s~' rn" and d = L implies hd(zs) = a? 

l:teserve: 
( ( m , S ) , ( m ' , S ' ) , : s , d )  ~ ( ( m , S  - {a}) , (m' ,S ' ) ,a! :s ,d)  

if d = L implies hd(zs) = a! 

Blank: 
((m, S), (m', S'), zs, d) > ((m", S + S" + {a}), (m', S'), a?zs, d) 

if m r~"  m" and d = L implies hd(zs) = a! 

Right Rules: If d E {R, E} 
Table: 
((m, S), (m', S'), zs, d) > ((m, S), (m", S' + S"), a?--s, _d) 

a , S  Iz 
if m'  -,-.* m"  and d = R implies hd(zs) = a? 

Reserve: 
((m, s), (m', S'),--., d) > ((m, S), (m', S' - {a}),  ~!--s, ~) 

if d = R implies hd(--s) = a! 

Blank: 
((m, s), (m', S'), ~s, d) ~. ((m, S), (m", S' + S" + { .} ) ,  a?--s, d) 

~-,S H 
if m'  -.~ m"  and d = R implies hd(zs) = a! 

w h e r e L = E , E = R a n d _ R = E , E = L .  

Figure 3: Rules for asynchronous bisimulation game 

it, pick up the cards in S for the reserve hand and in addition to these must flu in a blank card with the 
same name and place it in the reserve hand. A card from the reserve hand may be played irrespective 
of  the pile of cards representing the resource graph. 

A configuration of our game is a pair of the above tables, that  is, two tables with a pile of cards 
and a separate reserve hand each. At each turn, Opponent  can play a card from either table and Player 
mus t  play the same card f rom the other table. The only extra  condition is that  a card from a reserve 
hand is played by Player if and only if Opponent has played her card from a reserve hand. 

Opponent always starts and play continues until one of  the players becomes stuck. Opponent wins 
if Player becomes stuck and Player wins otherwise. 

To formalise this, given two resource graphs 

R =  ( .M,A ,  mo,So, .~)  and R' = (.~4',.A, m~,S~,-.-*) 

we describe the game Fa(R, R')  as the quadruple (C, co, ~>, ),) where C is the set of all 

((-,, S), (m', S'), --s, d) 

such that  m E .h4, m' E .A4', S ,S '  e A " ,  zs E (A x {!,?}) '" and d e { L , R , E } .  Clearly, the nodes of 
the  resource graphs represents the pile of cards on the tables and the respective multisets represent the 
reserve hands. ~re use the list --s to represent the cards that  have already been played and d merely to 
indicate which table must be played from next, the Left, Right or Either. The cards in zs are tagged 
with a ! or a ? to indicate whether the card was played from a table or a reserve hand. It should be no 
surprise then that  the initial configuration is 

co = ((too, So), (~ , ,  SD, ~, ~:). 
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We can label moves by using the last component so that  Ac = P if d E {L,R} and Ac = O if d = E. 
The rules for the game are given in Figure 3 and fall into three pairs of symmetric rules which describe 
the moves of playing a card from the table, the reserve hand and playing a blank card by penciling in 
a name. 

We write R ~ r  R' if there exists a winning Player strategy according to the rules of FA(R, R'). It 
is simple enough to see that this is indeed an equivalence relation, in fact this is exactly resource graph 
bisimulation. 

T h e o r e m  4.1 ~rs  coincides with ~r .  

P r o o f :  It is easy to see that ~ r g C ~ r .  For the reverse inclusion, given a winning strategy, it is sufficient 
to build a bisimulation relation. This is constructed as pairs of  nodes which occur in the configurations 
of plays according to the winning strategy. We take exactly those pairs which occur after Player moves. 
To see that  this will be a resource graph bisimulation we note that  r transitions must be matched by r 
transitions - -  otherwise Opponent could win by choosing a fresh name to pencil in on the blank card 
given by the r action. Player couldn't hope to match this unless he had also had a r move available. To 
see that  the resources being collected by each graph must  be identical we note that,  otherwise, Opponent 
could win by simply playing a move from the larger of the two reserve hands. [] 

5 Regular asynchronous processes 
We hinted earlier that our new model would lend itself to providing a notion of regular process for 
asynchronous calculi whereby regular terms have finite graphs. By finite graph we mean finitely many 
nodes, finitely many transitions and each resource multiset is finite. So far we have interpreted asyn- 
chronous CCS in Tr indirectly by first giving an .AT"S semantics and then applying the functor at .  
This approach suffices for modelling our language; indeed, to establish a regular term/finite resource 
graph relationship one need only show that the equivalence relation used by the functor ar has finite 
index on transition systems generated by regular terms. However, this method is slightly unsatisfactory 
as it  involves building potentially infinite graphs and collapsing them. What  would be more pleasing 
is a direct interpretation of aCCS in 7~.A by which regular terms immediately receive finite graph 
models. Furthermore, we should require that  this interpretation be compositional and coincides (up to 
equivalence) with the indirect interpretation. 

In fact, for our purposes it suffices to interpret what  we will refer to as (asynchrononsly} regnlar 
terms of aCCS. These can be characterised by the following grammar 

p := ni l  [ X I a! II P I P II a! ] ~ cq.pl ] r ee  X.p 
I 

where I is a finite indexing set, X is drawn from some set of variables Vat, the ai are either a? or r 
and all recursions are guarded. We adopt the conventional notions of free and bound variables here. 

To interpret recursion, we take the approach of [9] and augment resource graphs with an extra 
component. This new component, <1 is a relation on nodes of the graph and the ambient set of recursion 
variables, Var. We say that a variable, X, is nngnarded at a node m if m <~ X and we call a resource 
graph closed if <I is the empty relation. 

We make use of the following operators on resource graphs: firstly, we note that resource graphs 
have a tensor product structure, | with unit I. Given graphs 

and 

this is defined in the obvious way as 

R= (A~,A, rno, So,~. <) 

(.x~ ,A  ,mo,So, , < ) 

R ~ R' = (.h4 x .hal', A + A' .  (rn0, rn~), So + S~,-,-*| <~ U ,~') 
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where 
a , S  " ~ ,  r r /  (re, n) -..*r ( m ' , n )  i f m  a,s , 

(m, n) %:-~| (m, n ')  if n ~ n ' .  

The  tensor unit is I = ({*},0 ,* ,0 ,0 ,0) .  The definition of | easily lifts to morphisms to become a 
bifunctor on I~GA. 

We interpret an output action a! as the resource graph 

({.}, {~},., { a } , 0 , 0 )  

and we will refer to this graph simply by a!. Similarly, use the name X to refer to the resource graph 

({.}, 0,., 0, 0, {( . ,  x ) } )  

Another useful operation is that  of the lifted sum of resource graphs. Given an I indexed set of 
graphs R/, an I indexed set of actions ai,  and a multiset  S, we define 

Z(~,,, R.,) = ( (U.~ , )  + { ' } ,  U x ,  u {,:,, I ,:,, r ~},- ,  0, ~ . ,  U <,) 

where ,,,o,} 
Finally, we describe how we interpret recursion over resource graphs. Given a graph R, we define 

r e c  X . R  to be the graph 
(~,A, too, S0,H+,<+) 

where <3+ is just <~ with all pairs (m, X) removed. -,-*+ is defined in two steps. Firstly, define 

r n ~ : m '  if m ~ m '  a n d m ' ~ X  

m~176 t if r n ? - ~ m '  a n d r n  1<3X. 

Then,  let m if m0 m'  and m <3 X,  or m ~ 1  m' .  
The informed reader will notice that  this definition of recursion differs slightly from that  in [9] and 

is not  sufficient to model general recursion, but we exploit the property that  regular terms never have 
more  than one unguarded variable to give a simple definition. 

These operators now allow us to interpret regular terms of aCCS in the desired manner: 

[ n i l ]  = I 
I x ]  = x 
[a! II pl = a! | [p| 
Ip II a!l = Iyl e a! 
[ E  Oti.Pi] "~ E(Oti, [Pi]) 
[ r e e X . p ]  = ree  X.[p] .  

Let ~5 denote the transition system that  would model p using the standard SOS semantics of CCS. 

P r o p o s i t i o n  5.1 

(i) The resource graph [2] is finite for any regular Serra p. 

(ii) I f  p is closed lhen [p] is a closed graph. 

(iii) Every fin:re closed graph is ~rg equivalent to [p| for some regular p. 

(i,,) ar(~)~~ IP]. 

This firmly establishes the correspondence between asynchronously regular terms and finite resource 
graphs. 
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5 .1  D e c i d i n g  b i s i m u l a t i o n  e q u i v a l e n c e  

To see the usefulness of having finite models we need only look at the problem of deciding bisimulation 
equivalence. It is evident that ~a8 will be a decidableequivalence over asynchronously regular terms 
due to work on infinite state transition systems [3]. Specifically, asynchronously regular terms are a 
small subclass of BPP and bisimulation equivalence is decidable over this class of processes. What  is 
not clear however is the complexity of this decision procedure. The proofs that  bisimulation equivalence 
is decidable over BPP do not provide any upper bounds for the decision procedure [5, 11]. The class 
of asynchronously regular processes are much simpler than BPP and therefore allow us to find such 
bounds. In fact, because our models for this class are finite then standard techniques apply [8, 12]. 

T h e o r e m  5.2 Asynchronous bisimnlation equivalence, ~as, is decidable in polynomial ~ime for (asyn- 
chronously) regular processes. 

Proof :  In order to decide P ~a, Q, by Proposition 5.1, Proposition 3.5 and Theorem 3.4 it is sufficient 
to check [P] ~r9 [Q]. We know by Proposition 5.1, (i) that  these resource graphs are finite. The decision 
procedure now follows by first checking the initial resource sets of each graphs, and then solving the 
partition refinement problem of [12] for the finite set of relations 

mE~,sm' if m I:~ m, 

mEa,sm I if m ~ m  I 
+ t a , S + { a }  Flit r S t mE~.,s m if m or m :~Z m .  

These relations are finite in number because we know that  only finitely many names are used and only 
finitely many different S appear on the edges of our graphs, t:] 

We have now provided a notion of regularity for asynchronous processes which allows much more 
expressivity than the standard notion of regularity for CCS. We have also shown that a suitable notion 
of bisimulation equivalence is polynomial time decidable over this class of processes. Unfortunately 
though, this enhanced notion of regularity is not as robust as we would like. In particular, it is the case 
tha t  one can form parallel compositions and restrictions of CCS regular terms and stay within the class 
of regular processes [9, 10]. Sadly, this is not the case in the present work. Whilst parallel composition 
preserves finiteness of the models of regular terms, the restriction of such graphs does not. In fact, 
using the familiar argument of reducing bisimulation equivalence to the halting problem for two-counter 
Minsky Machines [11] we can show that  allowing restriction of regular terms, unsurprisingly, entails 
undecidability of our equivalence. 

We conclude this section by briefly mentioning that the direct interpretation of asynchronously 
regular CCS terms as resource graphs can be extended to whole of aCCS in such a way as to ensure 
that  Proposition 5.1, (iv) still holds. This extension is non-trivial however and involves defining both 
the recursion and restriction operators on graphs as the least fixed point of certain functionals so that  
the resulting resource graphs may become infinite. 

6 Conc lus ion  

We have presented a novel approach to modelling asynchronous systems. The chief feature of these new 
models is the treatment of asynchronous transmission as the use of resources. Resource graphs yield a 
direct presentation of asynchronous behaviour, without recourse to various commutativity axioms. They 
also provide a compact representation of many infinite state systems, thereby allowing effective proce- 
dures for deciding bisimilarity. We discovered that the somewhat unorthodox notion of asynchronous 
bisimilarity arises naturally in the category of resource graphs and provided insightful characterisations 
of this equivalence. 

The present work is concerned with synchronising processes rather than communicating processes, 
tha t  is, no information is transmitted by output actions. Therefore a treatment of asynchrony in the 
~r-calculus is beyond the scope of resource graphs as presented. An issue worth further investigation is 
a generalisation of the resource graph model which could cater for name passing and dynamic scoping 
as can be found in the r-calculus. 
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