
Partial  Metrics  and Co-cont inuous  Valuations* 

Michael A. Bukat in  1 and Svetlana Yu. Shorina 2 

1 Department of Computer Science, Brandeis University, Waltham, MA 02254, USA; 
b u k a t i n ~ c s . b r a n d e i s . e d u ;  http://www.cs.brandeis.edu/,,.bukatin/papers.html 

2 Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia; 
s v e t a ~ c p m . r u  

A b s t r a c t .  The existence of deep connections between partial metrics 
and valuations is well known in domain theory. However, the treatment 
of non-algebraic continuous Scott domains has been not quite satisfactory 
so far. 

In this paper we return to the continuous normalized valuations p on 
the systems of open sets and introduce notions of co-continuity ({U,~ i E 
I} is a filtered system of open sets =v p(Int(N,e I U,)) -- inf,ei p(U,)) 
and strong non-degeneracy (U C V are open sets =~ p(U) < /I(V)) for 
such valuations. We call the resulting class of valuations CC-valuations. 
The first central result of this paper is a construction of CC-valuations 
for Scott topologies on all continuous dcpo:s with countable bases. This 
is a surprising result because neither co-continuous, nor strongly non- 
degenerate valuations are usually possible for ordinary Hausdorff topolo- 
gies. 

Another central result is a new construction of partial metrics. Given 
a continuous Scott domain A and a CC-valuation p on the system of 
Scott open subsets of A, we construct a continuous partial metric on A 
yielding the Scott topology as u(x, y) = p(A \ (C~ n Cy)) - p(I~ n Iu), 
where C~ = {y E A[y E x} and I~ = {y E A[ {x,y} is unbounded}. This 
construction covers important cases based on the real line and allows to 
obtain an induced metric on Total(A) without the unpleasant restrictions 
known from earlier work. 

1 I n t r o d u c t i o n  

Recently the theory of  partial metrics introduced by Matthews [14] undergoes 
active development and is used in various applications f rom computa t iona l  de- 
scription of metric spaces [9] to the analysis of  parallel compu ta t i on  [13]. The  
relationship between part ial  metrics  and valuations was first noticed by O'Neill  
in [15]. 

In [3] Bukat in and Scott generalized this relationship by considering valua- 
tions on powersets of  bases, instead of  valuations on the domains  themselves, 
as in [15]. They  also explained the computa t iona l  intui t ion of part ial  metrics by 
generalizing them to relaxed metrics, which take values in the interval numbers. 

* Supported by A p p l i e d  C o n t i n u i t y  in C o m p u t a t i o n s  P ro j ec t .  



126 

Partial metrics can be considered as taking values in the upper bounds of those 
interval numbers. However it is often desirable to remove the most restrictive 
axioms of partial  metrics, like small self-distances: u(x, x) <_ u(x, y), and strong 
Vickers-Matthews triangle inequality: u(x, z) <_ u(x, y)+u(y,  z ) - u ( y ,  y). Thus [3] 
only requires symmet ry  and the ordinary triangle inequality for the upper bounds 
of relaxed metrics. 

However: it can be shown (see Section 6) that  if the upper bounds u(x, y) 
of relaxed metrics are based on the idea that  common information: or more 
precisely, measure of common information about x and y, brings negative con- 
tribution to u(x, y) - -  e.g. in the normalized world we can consider u(x, y) = 
1 - p(Info(x)  N Info(y)) - -  then all axioms of partial  metrics should hold for u. 
In fact, it makes sense to introduce both positive and negative information, and 
to define u(x, y) = 1 - p(Info(x)  n Info(y)) - p(Weginfo(x) n Neginfo(y)), then 
defining meaningful lower bounds l(x, y) = p(Info(x)  n Neginfo(y)) + p(Info (y) n 
ieginfo(x))  and obtaining an induced metric on Total(A).  

This is, essentially, the approach of Section 5 of[3], where Info(x) and 
Neginfo(x) can be understood as subsets of a domain basis. However: there 
was a number  of remaining open problems. In particular,  while [3] builds partial  
metrics on all continuous Scott domains with countable bases, the reliance of [3] 
on finite weights of non-compact basic elements does not allow to obtain some 
natural  partial  metrics on real-line based domains: and also introduces some un- 
pleasant restrictions on domains which should be satisfied in order to obtain an 
induced classical metric on Total(A).  

1.1 C o - c o n t i n u o u s  V a l u a t i o n s  

This paper rectifies these particular open problems by defining partial  metrics via 
valuations on the systems of Scott open sets of domains. The theory of valuations 
on open sets underwent a considerable development recently (see [5, 11, 18:2  l 
and references therein). However we have found that  we need a special condition 
of co-continuity for our valuations - -  for a filtered system of open sets {U/, i E 
I},  p ( I n t ( n i e  / U/)) = infiei(p(U/)) .  We need this condition to ensure Scott 
continuity of our partial  metrics. 

The paper s tarts  as follows. In Section 2 we remind the necessary defini- 
tions of domain theory. Section 3 defines various properties of valuations and 
introduces the class of CC-valuations - -  continuous, normalized, strongly non- 
degenerate, co-continuous valuations. Section 4 builds a CC-valuation on the 
system of Scott open sets of every continuous dcpo with a countable basis. This 
is the first central result of this paper. 

It seems that  the notion of co-continuity of valuations and this result for the 
case of continuous Scott domains with countable bases are both new and be- 
long to us. The generalization of this result to continuous dcpo's with countable 
bases belongs to Klaus Keimel [12]. He worked directly with completely distribu- 
tive lattices of Scott open sets of continuous dcpo's and used the results about 
completely distributive lattices obtained by Raney in the fifties (see Exercise 2.30 
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on page 204 of [8]). Here we present a proof which can be considered a simplifi- 
cation of both our original proof and the proof obtained by Keimel. This proof 
also works for all continuous dcpo's with countable bases. A part  of this proof, 
as predicted by Keimel, can be considered as a special case of Raney 's  results 
mentioned above. However, our construction is very simple and self-contained. 

Keimel also pointed out in [12] that  our results are quite surprising, because 
both co-continuity and strong non-degeneracy, U C V are open sets ~ p(U) < 
p(V), seem contradictory, as neither of them can hold for the system of open sets 
of the ordinary Hausdorff topology on [0, 1]. However, if we replace the system 
of open sets of this Hausdorff topology with the system of open intervals, both 
conditions would hold. We believe that  the reason behind our results is that  the 
Scott topology is coarse enough for its system of open sets to exhibit behaviors 
similar to the behaviors of typical bases of open sets of Hausdorff topologies. 

1.2 Appl icat ion to Partial  Metrics  

u(x, y) are based on the 
negative contribution to 
notion of pInfo-structure. 
improved. 

Section 5 discusses partial  and relaxed metrics and their properties. Section 6 
describes an approach to partial and relaxed metrics where the upper bounds 

idea of common information about x and y bringing 
u(x,y) .  We formalize this approach introducing the 
However, we feel that this formalization can be further 

In particular, Section 6 presents the second central result of this paper  - -  
given a CC-valuation on the system of Scott open sets of any continuous Scott 
domain (no assumptions about the cardinality of the basis are needed here), 
we build a Scott continuous relaxed metric (l, u) : A x A -+ R I,  such that 
u : A x A  ~ R -  is a partial  metric, the relaxed metric topology coincides with the 
Scott topology, and if x, y E Total(A), l(x, y) = u(x, y) and the resulting classical 
metric Total(A) x Total(A) ---+ R defines a subspace topology on Total(A). Here 
R I is the domain of interval numbers, R -  is the domain of upper bounds, and 
Total(A) is the set of maximal  elements of A. 

Section 7 discusses various examples and possibilities to weaken the strong 
non-degeneracy condition - -  to find a sufficiently general weaker condition is an 
open problem. 

A more detailed presentation can be found in [4]. 

2 C o n t i n u o u s  S c o t t  D o m a i n s  

Recall that  a non-empty partially ordered set (poset), (S, _C), is directed ifVx, y E 
S. 3z E S. x C z, y _ff z. A poset, (A, _K), is a dcpo if it has a least element, _L. 
and for any directed S C_ A, the least upper bound US of S exists in A. A set 
U C_ A is Scott open if Vx, y E A. x E U,x if_ y ::*- y E U and for any directed 
poset S C_ A, US E U ~ 3s E S. s E U. The Scott open subsets of a dcpo form 
the Scott topology. 
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Consider dcpo's (A, EA) and (B, U B) with the respective Scott topologies. 
f : A ---, B is (Scott) continuous iff it is monotonic (x EA Y ~ f ( x )  U B f ( y ) )  
and for any directed poset S C A, f (UAS)  = I IB{f(s)  I s E S}. 

We define continuous Scott domains in the spirit of [10]. Consider a dcpo 
(A, E). We say that  x << y (x is way below y) if for any directed set S C A, 
Y E US ~ 3s E S. x E s. An element x, such that  x << x, is called compact. 
We say that  A is bounded complete i fVB C A. (3a E A. Vb E B.b E a) ~ I-lAB 
exists. 

Consider a set K C_ A. Notice that  J-A E K.  We say that  a dcpo A is a 
continuous dcpo with basis K.  if for any a E A, the set Ka = {k E K ] k << a} 
is directed and a = UKa. We call elements of K basic elements. A continuous. 
bounded complete dcpo is called a continuous Scott domain. 

3 C C - v a l u a t i o n s  

Consider a topological space (X, 0 ) ,  where O consists of all open subsets of X. 
The following notions of the theory of valuations can be considered standard 
(for the most available presentation in a regular journal  see [5]; the fundamental  
text in the theory of valuations on Scott opens sets is [11]). 

D e f i n i t i o n  3.1. A function p : O ---+ [0, +oc] is called valuation if 

1. VU, V E O. U C_ V ~ p(U) <_ p(V); 
2. VU, V e O. , (U)  + , (V) = ~(U n V) + , ( ~  u V); 
3. ~(~) = o. 

D e f i n i t i o n  3.2. A valuation p is bounded if p ( X )  < +co.  A valuation p is 
normalized if ~u(X) = 1. 

R e m a r k :  If a valuation ,u is bounded and p ( X )  ~ O. then it is always easy 
to replace it with a normalized valuation p'(U) = p ( U ) / p ( X ) .  

D e f i n i t i o n  3.3. Define a direcledsystem of open sets:lJ = {Ui, i E I}, as sat- 
isfying the following condition: for any finite number of open sets 
Uil , Ui2, " " ,  Ui. E H there is Ui, i E I, such that Uil C_ Ui, . . ., Ui. C_ Ui. 

D e f i n i t i o n  3.4. A valuation p is called continuous when for any directed 
system of open sets P(UieI  Ui) = sup/e /p(Ui ) .  

We introduce two new properties of valuations. 
D e f i n i t i o n  3.5. A valuation p : 0 ---* [0, +oc] is strongly non-degenerate if 

vu, v E O. u c v ~ ~(u) < ~(v). a 
This is, obviously, a very strong requirement, and we will see later that it 

might be reasonable to look for weaker non-degeneracy conditions. 
Consider a decreasing sequence of open sets U1 _D U2 _D . . . ,  or. more gen- 

erally, a filtered system of open sets H = {Ui,i  E I}, meaning that for any 
finite system of open sets Uil, '" .Ui. E H there is Ui, i E I, such that  Ui C_ 

3 We use U C V as an equivalent of U C _ V & U # V .  
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Ui,, �9 �9 Ui C_ Ui,. Consider the interior of the intersection of these sets. It is 
easy to see that for a valuation p 

p ( In t (N  Ui)) < infp(Ui). 
- -  iEI  

iEI  

Def in i t i on  3.6. A valuation p is called co-continuous if for any filtered 
system of open sets {Ui, i E I} 

p(Int(r- ~ ui)) = }~f/~(ui). 
iEI  

Def in i t i on  3.7. A continuous, normalized, strongly non-degenerate, 
co-continuous valuation/2 is called a CC-valnalion. 

Informally speaking, the strong non-degeneracy provides for non-zero contri- 
butions of compact elements and reasonable "pieces of space". The co-continuity 
provides for single non-compact elements and borders B \ Int(B) of "reasonable" 
sets B C A to have zero measures. 

"Reasonable" sets here are Alexandrov open (i.e. upwardly closed) sets. 
Thus, it is possible to consider co-continuity as a method of dealing with non- 
discreteness of Scott topology. We follow here the remarkable definition of a 
discrete topology given by Alexandrov: a topology is discrete if an intersection 
of arbitrary family of open sets is open (e.g. see [1]). Of course, if one assumes the 
T1 separation axiom, then the Alexandrov's definition implies that all sets are 
open - -  the trivial (and more standard) version of the definition. In this sense. 
Alexandrov topology of upwardly closed sets is discrete, but Scott topology is 
not. 

We should also notice that since our valuations are bounded, they can be 
extended onto closed sets via formula p(C) = p ( A ) -  p(A \ C), and all definitions 
of this section can be expressed in the dual form. 

A bounded valuation p can be uniquely extended to an additive measure 
defined on the ring of sets generated from the open sets by operations n, u, 
\ [16]. The issues of (r-additivity are not in the scope of this text (interested 
readers are referred to [11, 2]). We deal with the specific infinite systems of 
sets we need, and mainly focus on quite orthogonal conditions given to us by 
co-continuity of p. 

3.1 E xa mpl e :  V a l u a t i o n s  Based  on  W e i g h t s  o f  Basic Elements  

This example essentially reproduces fi construction in [3]. Consider a continuous 
dcpo A with a countable basis K. Assign a converging system of weights to basic 
elements: w(k) > O, ~~keK w(k) = 1. Define p(g)  = ~kECr w(k). It is easy to 
see that /1 is a continuous, normalized, strongly non-degenerate valuation. 

However, p is co-continuous if and only if all basic elements are compact 
(which is possible only if A is algebraic). This is proved in [4] using the following 
observations. 
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First: observe that arbitrary intersections of Alexandrov open (i.e. upwardly 
closed) sets are Alexandrov open. Also it is a well-known fact that {yl x << y} 
is Scott open in a continuous dcpo. 

L e m m a  3.1 ( B o r d e r  L e m m a )  Consider an Alexandrov open set B C A. 
Then its interior in the Scott topology, Int(B) = {y E A [ 3x E B. x << y}. Cor- 
respondingly, the border of B in the Scott topology, B \ I n t ( B )  = {y E B i--,(3x E 
B . x  <<V)} 

3.2 A V e r t i c a l  S e g m e n t  o f  Rea l  L ine  

Consider the segment [0, 1]: [ -=<.  Define p((x ,  1]) = 1 - x. Unfortunately, to 
ensure strong non-degeneracy we have to define p([O, 1]) = 1 -t- e, e > O. This is 
the first hint that strong non-degeneracy is too strong in many cases. In order 
to obtain a normalized valuation we have to consider p '(U) = p(U) / (1  + e). The 
resulting p~ is a CC-valuation. 

4 C o n s t r u c t i n g  C C - v a l u a t i o n s  

In this section we build a CC-valuation for all continuous dcpo:s with countable 
bases. The construction generalizes the one of Subsection 3.1. We are still going 
to assign weights, w(k)  > 0, to compact elements. For non-compact basic ele- 
ments we proceed as follows. We focus our attention on the pairs of non-compact 
basic elements, (k ~, k ' ) ,  which do not have any compact elements between them, 
and call such elements continuously connected. We observe, that for every such 
pair we can construct a special kind of vertical chain, which "behaves like a ver- 
tical segment [0, 1] of real line". We call such chain a stick. We assign weights, 
v(k', k") > 0, to sticks as well: in such a way that the sum of all w(k) and all 
v( k', k") is 1. 

As in Subsection 3.1, compact elements k contribute w(k)  to p(U), if k E 
U. An intersection of the stick, associated with a continuously connected pair 
(k', k"): with an open set U "behaves as either (q: 1] or [q; 1]', where q E [0, 1]. 
Such stick contributes (1 - q). v(k ~, k ' )  to p(U).  The resulting p is the desired 
CC-valuation. 

It is possible to associate a complete lattice homomorphism from the lattice 
of Scott open sets to [0, 1] with every compact element and with every stick 
defined by basic continuously connected elements, k I and k ' .  Then, as suggested 
by Keimel [12], all these homomorphisms together can be thought of as an in- 
jective complete lattice homomorphism to [0, 1] J. From this point of view, our 
construction of p is the same as in [12]. 

Thus the discourse in this section yields the proof of the following: 

T h e o r e m  4.1 For any continuous dcpo A with a countable basis, there is a 
CC-valuation p on the system of its Scott open sets. 
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4.1 C o n t i n u o u s  C o n n e c t i v i t y  a n d  S t i cks  

D e f i n i t i o n  4.1. Two elements x << y are called continuously connected if the 
set {k E AIk is compact,  x << k << y} is empty.  

R e m a r k :  This implies that  x and y are not compact.  

L e m m a  4.1 If  x << y are continuously connected, then {z ix << z << y} has 
cardinality of at least continuum. 

P r o o f .  We use the well-known theorem on intermediate values that  x << 
y =~ 3z E A x << z << y (see [10]). Applying this theorem again and again we 
build a countable system of elements between x and y as follows: using rational 
numbers as indices for intermediate elements: 

x ~ a l / 2  ( ~  y, x <(( a l / 4  << a l / 2  (~  a3/4 ( (  y , . . .  

All these elements are non-compact  and hence non-equal. Now consider a di- 
rected set {ail i < r}, where r is a real number,  0 < r < 1. Introduce b~ = 
U{ai I i <_ r}. We prove that  if r < s then br << bs, and also that  x << br << bs << 
y: thus obtaining the required cardinality. Indeed it is easy to find such n and 
numbers qt, q2; q3, q4, that  

x << aqa/2.  E_ b~ ~_ aq~/2.  << aqa/2.  ~_ b, << aq412. << y 

D e f i n i t i o n  4.2. We call the set of continuum different non-compact  elements 
{a~ I r E (0; 1)} between continuously connected x << y, built in the proof above, 
such that  x << a~ << aq '(< z r r < q a (vertical) stick. 

4.2 P r o o f  o f  T h e o r e m  4.1 

Consider a continuous dcpo A with a countable basis K.  As discussed earlier: 
with every compact k E K we associate weight w(k) > 0, and with every con- 
tinuously connected pair (k', k"), k', k" E K, we associate weight v(k'~ k") > 0 
and a stick {ark ' 'k ' '  [ r E (0, 1)}. Since K is countable, we can require ~ w(k) + 
E k")= 1. 

Whenever we have an upwardly closed (i.e. Alexandrov open) set U, for any 
k~.k" k ~ k" stick {a~ ',k'l t r E (0, 1)} there is a number q v  E [0, 1], such that  r < qu ~ =~ 

k ~ k" k~.k" k ~ k tj a~ : ~ U and q v  < r ~ a r : E U. In particular, for a Scott open set U 
define 

k' k" i k") p(U)= E w(k)+ E (1-qu'  ).v(k, 
keuis compact k',k"EKare continuously connected 

It is easy to show that  p is a normalized valuation. The rest follows from the 
following Lemmas.  

L e m m a  4.2 p is continuous. 
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L e r a m a  4.3 p is strongly non-degenerate. 

P r o o f .  Let U and V be Scott open subsets of A and U C V. Let us prove 
that V \ U contains either a compact element or a stick between basic elements. 
Take z E V \ U .  I f x  is compact, then we are fine. Assume that x is not compact. 
We know that z = UKx, K ,  = {k E K [k ~<: x} is directed set. Since V is open 
3k E K~. k E V. Since k E_ z and z ~ U, k E V \ U. If there is k ~ - compact, 
such that k << k ~ << :e, we are fine, since k ~ E V \ U. Otherwise, since any basis 
includes all compact elements, k and z are continuously connected. 

Now, as in the theorem of intermediate values x = tlKx, A', = {k' E 
K l3k H E K. k ~ << k" << x} is directed set, thus 3k ~k H. k E k ~ << k" << x, 
thus (k, k H) yields the desired stick. 

If k E V \ U and k is compact: then p(V) - p(U) >_ w(k) > O. If the stick 
formed by (k, k') is in V \ U, then p(V)  - p(U) > v(k, k') > O. 

[] 

L e i n m a  4.4 p ~s co-continnous. 

P r o o f .  Recall the development in Subsection 3.1. Consider a filtered system 
of open sets {Ui, i E I}. By Lemma 3.1 for B = n ~ z  Ui, B \ Int(B) = {y E 
B ]-~(3x E B. z <~ y)}. Notice that B \ Int(B), in particular, does not contain 

k ~ k ~1 k l . k  I~ compact elements. Another important point is that for any stick, qB ~ = q In i (B) '  

The further development is essentially dual to the omitted proof of Lemma 4.2. 
We need to show that for any e > 0, there is such Ui,i E I. that p ( U i ) -  
p(Int(B))  < e. 

Take enough (a finite number) of compact elements, k t , . . . ,  kn, and contin- 
uously connected pairs of basic elements, (k~, k~ ) , . . . ,  (k~,,, k~), so that w(kl)  + 
. . .  + w(k,~) + v(k~,k~') + . . . +  v(k~m,k~) > 1 -  e/2. For each kj ~ Int(B),  take 

, ,  k~,k;' 
Uij, ij E I. such that kj ~ Uq. For each (kj, kj ), such that ~/Int(B) > 0, take 

., k; k;' k'~,*'j e/(2rn). A lower bound of these Ui~ and Ui,, *j E I, such that ~tInt(B) -- ~U,, < 
3 

Ui, is the desired Ui. 

D 

It should be noted that Bob Flagg suggested and Klaus Keimel showed that 
Lemma 5.3 of [7] can be adapted to obtain a dual proof of existence of CC- 
valuations (see [6] for one presentation of this). Klaus Keimel also noted that 
one can consider all pairs k, k ~ of basic elements, such that k << k ~, instead of 
considering just continuously connected pairs and compact elements. 

5 P a r t i a l  a n d  R e l a x e d  M e t r i c s  on  D o m a i n s  

The motivations behind the notion of relaxed metric, its computational meaning 
and its relationships with partial metrics [14] were explained in [3]. Here we focus 
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on the definitions and  basic propert ies:  revisit the issue of specific ax ioms of 
par t ia l  metr ics ,  and list the relevant open problems.  

The  distance domain  consists of  pairs (a: b) (also denoted as [a, b]) of  non- 
negat ive reals ( + o c  included),  such tha t  a < b. We denote this doma in  as R ]. 
[a, b] E R, [c, d] iff a _ < c and d _ < b. 

We can also th ink  about  R t as a subset  o f R  + x R - ,  where E R + = < ,  E n -  = > ,  
and bo th  R + and R -  consist of non-negat ive  reals and +co .  We call R + a 
domain of lower bounds; and R -  a domain of upper bounds. Thus  a distance 
funct ion p : A x A ---+ R I can be thought  of as a pair  of  distance funct ions  (l, u), 
I : A x A ~ R  + u : A x A ~ R - .  

D e f i n i t i o n  5 .1 .  A s y m m e t r i c  funct ion u : A x A ---, R -  is called a relaxed 
metric when it satisfies the t r iangle  inequality. A s y m m e t r i c  funct ion p : A • A ---+ 
R z is called a relaxed metric when its upper  par t  u is a relaxed metr ic .  

An open ball with  a center x E A and a real radius  e is defined as B~,~ = 
{y E A I u(x; y) < e}. Notice tha t  only upper  bounds  are Used in this definition 
- -  the ball only includes those points  y, about  which we are sure t ha t  they are 
not too far f rom x. 

We should fo rmula te  the not ion of a relaxed metr ic  open set more  carefully 
than  for o rd inary  metrics:  because it is now possible to have a ball  of  a non-zero 
posit ive radius,  which does not contain its own center. 

D e f i n i t i o n  5.2.  A subset U of  A is relaxed metric open if  for any point  
x E U, there is an e > u(x ,x)  such tha t  B~,~ C_ U. 

It is easy to show tha t  for a cont inuous relaxed metr ic  on a dcpo all relaxed 
metr ic  open sets are Scott open and form a topology. 

5.1 P a r t i a l  M e t r i c s  

The  distances p wi th  p(x, x) ~ 0 were first in t roduced by Ma t thews  [14, 13] 
They  are known as partial metrics and obey the following axioms:  

1. x = y iffp(x,x) =p(x , y )  =p(y ,y ) .  

3 .  = 

4. p(x,z) < p ( x , y ) + p ( y , z )  - p ( y , y ) .  

Whenever  par t ia l  metr ics  are used to describe a par t ia l ly  ordered domain ,  a 
s t ronger  fo rm of the first two ax ioms  is used: I f  x E y then p(x ,  x) = p(x, y), 
otherwise p(x,  x) < p(x,  y). We include the s t ronger  form in the definition of 
par t ia l  metr ics  for the purposes  of this paper .  

Section 8.1 of [3] discusses the issue of whether  ax ioms u(x, x) _< u(x, y) 
and u(x,  z) _< u(x,  y) + u(y, z) - u(y, y) should hold for the uppe r  bounds  of 
relaxed metrics.  In par t icular ,  the approach  in this pape r  is based on u(x,  y) = 
1 - p ( C o m m o n  in format ion  between x and y) and thus, as will be explained in 
details in the next  section, the ax ioms  of par t ia l  met r ics  hold. Fur ther  discussion 
of the u t i l i ta r ian  value of these ax ioms  can be found in [4]. 



134 

6 P a r t i a l  a n d  R e l a x e d  M e t r i c s  v i a  I n f o r m a t i o n  

6.1 #In fo - s t rue tures  

Some of the earlier known constructions of partial metrics can be understood via 
the mechanism of common information between elements x and y bringing neg- 
ative contribution to u(x, y) (see [3, Section 8]). This can be further formalized 
as follows. Assume that there is a set 27 representing information about elements 
of a dcpo A. We choose a ring: .M(2-): of admissible subsets of 27 and introduce 
a measure-like structure, p, on Ad(I) .  We associate a set, Info(x) E M(Z) ,  with 
every x E A. and call Info(x) a set of (positive) information about x. We also 
would like to consider negative information about x, Neginfo(x) E M(27)~ - -  in- 
tuitively speaking, this is information which cannot become true about x. when 
x is arbitrarily increased. 

D e f i n i t i o n  6.1. Given a dcpo A. the tuple of (A, 27, .h4(27), p, Info, Neginfo) 
is called a plnfo-structure on A: if M(Z)  C_ T(Z)  - -  a ring of subsets closed with 
respect to f3, U, \ and including I~ and 27: p : .M(Z) ---, [0: 1], Info : A --* M(Z) ,  
and Neginfo : A --~ Ad(2-), and the following axioms are satisfied: 

1. ( V A L U A T I O N  A X I O M S )  

(a) p(2-) = 1, p(0) = 0; 
(b) U C_ V ~ p(U) <_ p(V); 
(c) ~(u) + ~(v) = ~(u n v) + ~(u u v); 

2. (Info A X I O M S )  

(a) x U y r Info(x) C_ Info(y); 
(b) x f- 9 =r Info(x) C Info(y); 

3. (Neginfo A X I O M S )  

(a) Info(x) M Neginfo(x) = 0; 
(b) x U y ~ Neginfo(x) C Neginfo(y); 

4. ( S T R O N G  R E S P E C T  F O R  T O T A L I T Y )  
x E Total(A) ~ Info(x) U Neginfo(x) = 2-; 

5. ( C O N T I N U I T Y  O F  I N D U C E D  R E L A X E D  M E T R I C )  
if B is a directed subset of A and y E A. then 
(a) p(Info(l lB) M Info(y)) = sup~eB(p(Info(x) M Info(y)): 
(b) Z(~nfo(OB) n Neginfo(y)) = s~p.eB(,(~nfo(x) n Negi,fo(y)),  
(r , (  N~ginfo(UB) n Info(y)) = s~p.~B(,(N~ginfo(x)  n Znfo(y)), 
(d) , (N~ginfo(OB) n N~ginfo(y)) = ~ p . e B ( p ( N ~ g i n f o ( , )  n geginfo(y)); 

6. (SCOTT OPEN SETS ARE RELAXED METRIC OPEN) 
for any (basic) Scott open set U _C A and x E U, there is an e > 0: such that 
v y ~  A. , ( I n f o ( , ) )  - ~ ( In fo( , )  n Info(y)) < ,  ~ y ~ U. 

In terms of lattice theory: p is a (normalized) valuation on a lattice .M(2-). 
The consideration of unbounded measures is beyond the scope of this paper: 
and p(Z) = 1 is assumed for convenience. Axioms relating U and Info are in the 
spirit of information systems [17], although we are not considering any inference 
structure over 2" in this paper. 
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The requirements for negative information are relatively weak, because it is 
quite natural  to have Vx E A. Neginfo(x) = 0 if A has a top element. 

The axiom that  for x E Total(A): Info(x) U Neginfo(x) = 2"; is desirable 
because indeed, if some i E 2" does not belong to Info(x) and x can not be 
further increased: then by our intuition behind Neginfo(x), i should belong to 
Neginfo(x). However, this axiom might be too strong and will be further dis- 
cussed later. 

The last two axioms are not quite satisfactory - -  they almost immediately 
imply the properties: after which they are named, but they are complicated and 
might be difficult to establish. We hope, that  these axioms will be replaced by 
something more tractable in the future. One of the obstacles seems to be the 
fact in some valuable approaches (in particular: in this paper) it is not correct 
that  Xl C x2 U . . .  implies that  Info(lliENXi) ---- UieN Info(xi). 

The nature of these set-theoretical representations, 2": of  domains may vary: 
one can consider sets of tokens of information systems, powersets of domain 
bases, or powersets of domains themselves, custom-made sets for specific do- 
mains, etc. The approach via powersets of domain bases (see [3]) can be thought 
of as a partial  case of the approach via powersets of domains themselves adopted 
in the present paper. 

6.2 P a r t i a l  a n d  R e l a x e d  M e t r i c s  v i a  I J I n f o - s t r u c t u r e s  

Define the (upper est imate of the) distance between x and y from A as u : 
A • A---* R - :  

u( x~ y) = 1 - p( Info( x ) A ]nfo(y) ) - p( Neginfo( x ) A Neginfo(y) ). 

I.e. the more information x and y have in common the smaller is the distance 
between them. However a partially defined element might not have too much 
information at all: so its self-distance u(x, x) -- 1 - p(Info(x)) - p(Neginfo(x)) 
might be large. 

It is possible to find information which will never belong to Info(x)f)Info(y) 
or Neginfo(x)O Neginfo(y) even when x and y are arbitrari ly increased. In partic- 
ular, Info(x) M Neginfo(y) and Info(y) M Neginfo(x) represent such information. 
Then we can introduce the lower estimate of the distance l : A x A ---* R+:  

l( x, y) = p( Info( x ) M Neginfo(y) ) + p( Info(y) n Neginfo( x ) ). 

The proof of Lemma 9 of [3] is directly applicable and yields l(x, y) _< u(x; y). 
Thus we can form an i n d u c e d  r e l a x e d  m e t r i c ,  p : A x A ---+ R'r: p = (l; u), 
with a meaningful lower bound. 

The following theorem is proved in [4] without using the s t r o n g  r e s p e c t  fo r  
t o t a l i t y  axiom. 

T h e o r e m  6.1 Function u is a partial metric. Function p is a continuous relaxed 
metric. The relaxed metric topology coincides with the Scott topology. 
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Due to the axiom Yx E Total(A). Info(x) U Neginfo(x) = Z, the proof of 
Lemma 10 of [3] would go through~ yielding 

x, y E Total(A) ~ l(x, y) = u(x, y) 

and allowing to obtain the following theorem (of. Theorem 8 of [3]). 

T h e o r e m  6.2 For all x and y from Total(A), l(x,y) : ~(x~y). Consider 
d:  Total(A) x Total(A) ~ R,  d(x, y) = l(x, y) = u(x, y). Then (Total(A), d) is 
a metric space, and its metric topology is the s~bspace topology induced by the 
Scott topology on A. 

However. in [3] x E Total(A) ~ Info(x) U Neginfo(x) = I holds under an 
awkward condition, the regularity of the basis. While bases of algebraic Scott 
domains and of continuous lattices can be made regular, there are important  
continuous Scott domains, which cannot be given regular bases. In particular~ in 
a I no element, except for .1_, satisfies the condition of regularity, hence a regular 
basis cannot be provided for R I. 

The achievement of the construction to be described in Section 6.4 is that by 
removing the reliance on the weights of non-compact basic elements~ it eliminates 
the regularity requirement and implies x E Total(A) ~ Info(x)Ugeginfo(x) = E 
for all continuous Scott domains equipped with a CC-valuation (which is built 
above for all continuous Scott domains with countable bases) where Info(x) and 
Neginfo(z) are as described below in the Subsection 6.4. 

However, it still might be fruitful to consider replacing the axiom Vx E 
Total(A). Info(x) U Neginfo(z) = 2: by something like Yx E Total(A). p(E \ 
(Info(x) tO geginfo(x))) = O. 

6.3 A Previous ly  Known Construct ion 

Here we recall a construction from [3] based on a generally non-co-continuous val- 
uation of Subsection 3.1. We will reformulate it in our terms of pInfo-structures. 
In [3] it was natural to think that E = K.  Here we reformulate that con- 
struction in terms of Z = A. thus abandoning the condition x E Total(A) 
Info(x) U Neginfo(z) = Z altogether. 

Define Ix = {y E A l {x , y}  is unbounded}, Px = {y E A Iy << x} (cf. Ix = 
{le E K l{k, x} is unbounded}, I~'x = {k E / s ' l k  << x} in [3]). 

Define Info(x) = P~, Neginfo(x) = I~. Consider a valuation/1 of Subsec- 
tion 3.1: for any S C Z = A, p(S) = )"]~keSnK w(k). p is a continuous strongly 
non-degenerate valuation, but it is not co-continuous unless K consists only of 
compact elements. 

Because of this we cannot replace the inconvenient definition of Info(x)-= 
Px by Info(x) = Cx = {y E A ly E_ x} ( which would restore the condition 
x E Total(A) ~ Info(x) U Neginfo(x) = A) as p(Ck) would not be equal to 
sup~,<<k p(Ck,) if k is a non-compact basic element, leading to the non-continuity 
of the partial metric u(z, y). 
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Also the reliance on countable systems of finite weights excludes such natural 
partial metrics as metric u :  R~,I] x R~,I] ---* R - ,  where R~,I] is the set [0, 1] 
equipped with the dual partial order C = >. and u(z, y) = rnax(~:, y). We rectify 
all these  problems in the next Subsection. 

6.4 P a r t i a l  a n d  R e l a x e d  M e t r i c s  v ia  C C - v a l u a t i o n s  

Assume that there is a CC-valuation p(U) on Scott open sets of a domain A. 
Then it uniquely extends to an additive measure p on the ring of sets generated 
by the system of open sets. Define Z = A, Info(z)  = Cx, Neginfo(x) = Ix. It is 
easy to see that valuation, Info, and Neginfo axioms of pInfo-structure hold. We 
have z E Total(A)  ::~ Cx U Ix = A. Thus we only need to establish the axioms of 
c o n t i n u i t y  o f  i n d u c e d  r e l a x e d  m e t r i c s  and S c o t t  o p e n  sets are r e l a x e d  
m e t r i c  o p e n  in order to prove theorems 6.1 and 6.2 for our induced relaxed 
metric (u (x ,y )  = 1 - p ( C x n C y ) - p ( I x n l y ) ,  l (x ,y)  = p ( C x n l y ) + p ( C y n l x ) ) .  
These axioms are established by the Lemmas below. 

You will also see that for such bare-bones partial metrics: as u(x, y) -- 1 - 
p(Cz n Cy), which are nevertheless quite sufficient for topological purposes and 
for domains with T, only co-continuity matters: continuity is not important.  

Observe also that since the construction in Section 3.1 does form a CC- 
valuation for algebraic Scott domains with bases of compact elements, the con- 
struction in [3] can be considered as a partial case of our current construction if 
the basis does not contain non-compact elements. 

L e m m a  6.1 Assume that p is a co-continuous valuation and B is a directed 
subset of A. Then p(CuB n Q) = supxeB(P(Cx N Q)), where Q is a closed or 
open subset of A. 

R e m a r k :  Note that continuity of p is not required here. 

L e m m a  6.2 Assume that p is a continuous valuation and B is a directed subset 
of A. Then p ( I u s n Q )  = supzeB(p( IxnQ)) ,  where Q is an open or closed subset 
of A.  

R e m a r k :  Co-continuity is not needed here. 

L e m m a  6.3 Assume that p is a strongly non-degenerate valuation. Then the 
pInfo-s tructure axiom S c o t t  o p e n  sets are r e l a x e d  m e t r i c  o p e n  holds. 

R e m a r k :  Neither continuity: nor co-continuity required, and even the strong 
non-degeneracy condition can probably be made weaker (see the next Section). 

7 E x a m p l e s  a n d  N o n - d e g e n e r a c y  I s sues  

In this section we show some examples of "nice" partial metrics; based on valua- 
tions for vertical and interval domains of real numbers. Some of these valuations 
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are strongly non-degenerate, while others are not, yet all examples are quite 
natural.  

Consider the example from Subsection 3.2. The partial metric, based on the 
strongly non-degenerate valuation/1 ~ of that example would be u'(x, y) = (1 - 
min(x, y))/(1 + e), if x, y > 0, and u'(x,y) = 1, if x or y equals to 0. However. 
another nice valuation, p", can be defined on the basis of p of Subsection 3.2: 
p"((x, 1]) = p((x, 1]) = 1 - x, p"([0, 1]) = 1. p"  is not strongly non-degenerate, 
however it yields the nice partial metric u'(x, y) = 1 - min(x, y), yielding the 
Scott topology. 

Now we consider several valuations and distances on the domain of interval 
numbers located within the segment [0, 1]. This domain can be thought of as 
a triangle of pairs (x,y/ ,  0 < x < y < 1. Various valuations can either be 
concentrated o n 0 < x < y <  1, o r o n x = 0 , 0 < y <  l a n d y =  1 , 0 < x <  1, or, 
to insure non-degeneracy, on both of these areas with an extra weight at (0: 1). 

Among all these measures, the classical partial metric u([x,y]; [x', y']) = 
max(y, y~) - min(x, x ~) results from the valuation accumulated at x = 0, 0 _< 
y _< 1, and y = 1, 0 _< x < 1, namely p(U) = (Length({x = 0 ,0  _< y < 
1} f~ U) + Length({y = 1.0 < x < 1} N U))/2.  Partial metrics generated by 
strongly non-degenerate valuations contain quadratic expressions. 

It is our current feeling, that instead of trying to formalize weaker non- 
degeneracy conditions, it is fruitful to build a pInfo-structure based on E = 
[0, 1] + [0, 1] in situations like this. 

8 C o n c l u s i o n  

We introduced notions of co-continuous valuations and CC-valuations, and built 
CC-valuations for all continuous dcpo's with countable bases. Given such a val- 
uation, we presented a new construction of partial and relaxed metrics for all 
continuous Scott domains, improving a construction known before. 

The key open problem is to learn to construct not just topologically correct. 
but canonical measures and relaxed metrics for higher-order functional domains 
and reflexive domains, and also to learn how to compute these measures and 
metrics quickly. 
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