
Minor Searching, Normal Forms of Graph Relabelling:
Two Applications Based on Enumerations by Graph

Relabeiling*

Anne Bot t reau and Yves M~tivier**

LaBRI, Universit~ Bordeaux I, ENSERB
351 cours de la Liberation 33405 Talence cedex FRANCE

{bot~reau,metivier}~labri.u-bordeaux.fr, fax:(+33) 05 56 84 66 69

A b s t r a c t : Thi~ paper deals with graph relabelling introduced in [LMSgS]. Our first result con-
eerns the open problem of searching a graph o~ a minor in a graph with a distinguished verta%
by means of graph relabellings. We give and prove a graph renn'iting system which answers to this
problem. Secondly we define and study normal forms of graph relabeUings. We prove that any graph
re,n'itin 9 system can be simulated by a system in k-normal farm (with an integer k depending on
the original system). Proofs for both results are linked by the enumeration systems they used.

Key-words : Local computations, graph relabellin9, enumerations, paths, minor, normal
form of graph reun'itings.

I n t r o d u c t i o n

Graph rewriting systems have been introduced in [LMS95] as a suitable tool for expressing
distributed algorithms on a network of communicating processors. In tha t model a network is con-
sidered as a labelled graph whose vertices s tand for processors and edges stand for communication
links. Vertex labels hold for the states of processors and edge labels for the states of communica-
tion links. A computation in a network then corresponds to a sequence of labels transformations
leading to a final labelled graph. A computation step on a labelled graph consists in relabelling a
connected subgraph, using a graph rewriting rule.

Given a vertex in the graph, the computation of its new state depends on its current state and
on the states of its neighbours. In tha t way graph rewritings are an example of local computations.

Among models related to our model there are the local computations defined by Rosensthiel
and al. [RFH72], .Magluin [AngS0], and more recently by Yamashita and Kameda [YK96a, YK96b].
In [RFH721 a synchronous model is considered, where vertices represent identical deterministic fi-
nite automata. The basic computation step is to compute the next state of each processor according
to its state and the states of its neighbours. In [Ang80] an asynchronous model is considered. A
computation step means that two adjacent vertices exchange their labels and then compute new
ones. In [YK96a,YK96b] an asynchronous model is studied where a basic computation step means
that a processor either changes its state and then sends a message or receives a message. Our
model is an asynchronous model too.

Limitations of our formalism have been discussed in [LMZ95] and [BM96]. Some graph prop-
erties have been proved to be unrecognizable by local computations.

On the other side, graph rewriting power has been studied in [LM93,LMS95]. It has more
particularly concerned the definition of different classes of graph rewriting systems. Moreover
authors dealed with graphs with a distinguished vertex (also called 1-graphs in [Cou90]), showing
that graph rewriting were powerflzl on this kind of graph.

In [CM941, it has been proved that we can not decide whether or not a fixed graph is included
as a minor in a given graph by means of local computations. This problem remained open for 1-
graphs. In this paper we prove that searching a minor can be done by graph re,wirings on 1-graphs

* This work has been supported by the EC TMR. Network GETGR_%.TS (General theory of Graph of
Graph Transformation) through the Universit3" of Bordeaux.

~* Member of the Institut uaiversitaire de France.

111

(Theorem 1) : given a graph H, there is a graph rewriting system with priority which verifies if
H is a minor of G where G is a 1-graph. We describe a system with a finite number of rules and
labels depending on H. Rules number is given by a polynomial function of the edges number and
the vertices number of H whereas the labels number is given by an exponential function in the
number of vertices of H.

Given a positive integer k we define that a rewriting system is in k-normal form if each rule
only rewrites a path of length bounded by k - 1. In this paper we prove that graph rewriting
systems with priority can be normalized in k-normal form, for a convenient integer k depending
on the original system.

From any graph rewriting system 7s we use systems of enumeration so as to obtain a graph
rewriting system with priority in k-normal form which has the same behaviour as 7~ (Theorem 2).

The paper is organized as follows. The first section reviews the definitions related to graph
rewriting. In the second part we present systems of enumeration (m-enumeration and enumeration
of simple paths). The third part is devoted to the subgraph and minor searchings. Finally, in
Section 4, we present the notion of k-normal form and we explain our method for the normalization
of graph rewriting system.

1 G r a p h r e w r i t i n g

All graphs considered in this paper are finite, undirected and simple (i.e. without multiple
edges and self-loops). A graph G denoted (V(G), E(G)) is defined by a finite vertex-set and a
finite edge-set. An edge with end-points v and v' is denoted {v, v }. If v is a vertex of a graph
G, the degree of v is denoted degc(v) and the neighbourhood of v in G is denoted NG(v). The
subscript G is omitted when there is no ambiguity.

1.1 Label led graphs

Our work deals with labelled graph over an alphabet usually denoted L. A labelled graph over
L is a couple (G, A) where G is a connected graph, and A is a mapping of V(G) U E(G) in L. This
function is called the labelling hmction of the graph.

Two labelled graphs are isomorphic if the underlying graphs are isomorphic and if the labellings
are preserved.

An injection 8 of V(G) in V(G') is an occurrence of (G, A) in (G', A') if, for any vertices x and
y of V(G):

{z,y} e ECG) ~ {{9(x), eCy)} e E(G'),
~(z) = , v (e (~)) ,
.x({~, ~}) = ,v({e(~), e(~)}).

The graph ({9(G),A') having O(V(G)) as vertex-set and {{eCz),eC~)}/{z,~} e E(G)} as
edge-set is a subgraph of (G', i ') .

If the graph ({9(G), A') is an induced subgraph of (G', A'), (9 is an induced occurrence of (G, A)
tn (G', ~').

Let {9 be an occurrence of (G,)~) in (H, u) and {9' an occurrence of (G',)d) in (H, u), {9 and
{9' are disjoint if the corresponding subgraph are disjoint, which is denoted E9 N {9' = 0.

1. 9̀ Graph rewrit ing s y s t e m

A rewriting rule r is a couple {(Gr, Ar), (G~,A~)} of two connected labelled graphs having the
same underlying graph. Formally we define such a rule as a triplet :

Definition 1 A graph rewriting rule r is a triplet (Gr, At, A') where Gr is a connected graph, Ar
the initial labellin9 function and A" the final labellin9 function.

112

A rewriting rule r is applicable to a labelled graph (G, A) if there exists an occurrence (G1, ll)
of (G~, AT) in (G, A). This will be denoted by (G, A) ---+ (G, A') with A' equal to A except on G1

where it's equal to A~.

Defini t ion 2 A graph rewriting system 7E (GRS for short) is a triplet 7E = (L, I, P) where
L = Lv U Le is a set of labels, I = Iv U Ie is the set of initial labels, (Iv C L~ and Ie C Le), and
P the set o/graph rewriting rules.

If a rule r of a graph rewriting system 7~ can be applied onto a labelled graph (G, A), then we
write (G, A) ~ (G, l ') where l ' is equal to A except on the rewritten part of the graph.

Consider a GRS 7~ = (L, I , P), a labelled graph (G, lo) where lo is a labelling function over
I .

Definit ion 8 A rewriting sequence of length n, coming from (G, Ao) by means of R is defined as
the sequence o/ labelled graphs (G, Ai)o_<i_<, where Vi, i < n, (G, Ai) ~ (G, Ai+l).

Our notion of rewriting sequence corresponds to a notion of sequential computation. We can
define a distributed way of computing by saying that two consecutive rdabelling steps concerning
non-overlapping occurrencies may be applied in any order. Then they may be applied concurrently.
Our notion of relabelling sequence may be regarded as a serialization [Maz87] of some distributed
computation. This model is dearly asynchronous : several relabelling steps may be done at the
same time but we do not demand all of them to be done.

Defini t ion 4 Given a rewriting sequence (G, Ai)o<i<n and z in V(G) O E(G), the history of z
linked to the rewriting sequence (G, A~)0_<i<n is the word hn(z) defined by:

hn(z) = a~ (x)a~, (x) . . . X,~ (x).

with io =- O,
i o < i l < ' " < i j < n
Vk E {1, '" - ,n}, k E {i0," . , i j} iff z belongs to the rewritten occurrence in the rewriting step

(G, Ak-~) - ~ (G,A~)

Given a graph rewriting system 7E, the reflexive and transitive closure of 7~ is denoted --~.

Definit ion 5 An irreductible graph with respect to a GRS 7~ is a labelled graph to which no rule
is applicable.

Given a labelled graph (G, A) over I, we denote Irred~((G, A)) the set of irreductible graphs
coming from (G, A):

Irred~ ((G, A)) = {(G, A') / (G, A) -~ (G, A') and (G, A') irreductible with respect to 7~}.

Defini t ion 6 A GRS 7~ = (L, I, P) is called noethexian if there doesn't ezist any infinite rewriting
sequence coming from a graph labelled over I.

A graph rewriting system where the set of rules is given with a partial order is called a graph
rewriting system with priority (PGRS for short).

The partial order defined on the set of rules is denoted <, the applicability of the rules of such
a system is defined in the following way.

Let 7E be a PGRS, r a rule of this system, and (G, A) a labelled graph. The rule r is applicable
to an occurrence ~9 of (Gr, A,) in (G,A) ff there doesn't exist in (G,A) any occurrence ~9' of
(Gr,, AT,) ~Sth r ' > r which overlaps O.

113

Example 1 Let us consider the following PGRS with two rules.

A N M
Rz: - - ~ - A

O --

M A A F
R2: -- O -- r "_ C

With, R1 > R2.

The order defined on the set of rules has the following meaning : the rule R2 is applicable to an
occurrence ~ if and only if there is no occurrence for]Z1 overlapping ~.

This system labels vertices and edges in order to form a spanning tree.

A graph rewriting rule with forbidden contexts is a pair (r, ~) where r is a rewriting rule
(Gr,Ar,A~) and ~ is a finite fum!]y of pairs {((Gi,Ai),@~)}iel. with (G~,A~) a labelled graph
(called forbidden context) and @i an occurrence of (G~, At) in (G~, Ai). The forbidden contexts of
such a rule are used as follows :

Let (r, ~,) be a graph rewriting rule with fobidden contexts, let ~ be an occurrence of (G~, A,)
in a graph (G, A). The rule (r, ~) is applicable to @ if there doesn't exist, for no i, an occurrence
~i of (G,, A,) such tha t ~ , e l ---- ~.

Such rules define Kraph rewriting system with forbidden contexts (FCGRS for short).

2 Some enumeration's problems solved by graph rewriting systems

Several graph rewriting systems exist for the computation of a sp~nnlng tree on a labelled
graph with a distinguished vertex. Such a computation is done thanks to labelling. A set of edges
is labelled so that it forms a spunning tree of the graph in which the root is the distinguished
vertex. Given such a labelled graph, there exists a graph rewriting system with priority which
allows depth-first traversals of the tree. Such a PGRS has been introduced in [LMS95].

In this section we recall a well-known PGRS for the enumeration of m-tuples of vertices and
we introduce a new PGRS for the enumeration of simple paths. These graph rewriting systems
use a PGRS for the computation of a spanning tree which we call ~swn and a PGRS for the
traversal of a tree which we call ~rav.

2.1 m-enumeration

In [LMS95], it was proved tha t enumerating all the m-tuples of vertices of a labelled graph can
be done by means of a graph rewriting system. Without going into further details, we recall how
this system runs.

We consider labelled graphs with a distinguished vertex. Firstly, ~,va~ is used on such a labelled
graph in order to obtain a sp~n-ing tree (by lab~lllng). This enumeration uses m traversals of the
spanning tree in order to obtain a m-tuple (zl, z2,-- �9 xm). Then, given a m-tuple (2~I, 3;2," " ",;~m),
a new traversal is started so as to obtain a new m-tuple (zz, ~,"., y) with y # x=. This process
is repeated until we can't find any vertex I/for this last position. Then we start new traversals
by changing the two last vertices of the m-tuple, and so on until there is no vertex to be the first
vertex of a m-tuple.

Thus this graph re~u'iting system is based on the system T~=~. The labels of the enumeration
system are made up of three components :

114

- a label issued from the traversal system.
- a label of the set {Search, Return, Reset, Stop) with the following meaning :

�9 Sea~ch : a vertex is searched.
�9 R e t u r n : a vertex has been found.
�9 R e s e t : the current m-tuple is modified.
�9 S t o p : the enumeration is done.

- a m-tuple of labels such tha t the label in posi t ion i gives an information about the position of
the vertex in the current m-tuple. There are t h ree different values :

�9 0 : the vertex is not the i ~h vertex of the current m-tuple .
�9 1 : the vertex is the i th vertex of the current rn-tuple.
�9 T : the vertex was the i th vertex of all the rn-tuple having the same first i - 1 th components.

The system has a finite number of rules (#rulese,u,n = O(rn)) and a finite number of labels
(#labels = O(rn �9 2"~)).

2 .2 E n u m e r a t i o n o f s h n p l e p a t h s

In a connected labelled graph, we consider the simple paths coming from a source vertex to a
target vertex. Our aim is to enumerate all these simple pa ths by means of graph rewritinEs. To this
end, we encode a graph rewriting system which labels these paths one by one. Each pa th is encoded
by labels on its ~ r t i ces and edges. We consider t h a t t h e source vertex is labelled Search and the
target vertex is labelled Ending.

D e s c r i p t i o n
We work on a connected labelled graph G. We denote by I the Search-labelled vertex of G.

We denote by J the Ending-labelled vertex. At t h e beginning, no edge is labelled.
We star t on I . We mark a simple pa th from I to J , by labelling the edges and the vertices used

in the path (the labels are E I j and Vzj). When we have a path, backtracking is used in order to
change the last edge and to look for a new path . So we keep the same prefix of the path, we jus t
change the last edge. We go on until we have t r ied all the possibilities from the vertex I .

Let us now describe a graph rewriting sys tem encoding this algorithm.
Let Y E {Ending, e} where ~ design the empty word t h a t is to say '%o label".

Graph rewriting system with priority 7~enu,n,7~ (I , J) �9
The first rule allows the traversa/ to go on. We label the vertex and the edge which we put in
t h e path we are building.

Search VIj Search
Rm: " : : �9 r : (I)

EIZ

If we reach the Ending-labelled vertex, then we have found a simple path coming from I :

Search Ending V: j Found
Rz2: r r . _ .: (2)

EIJ

As we have a simple path, we use the backtracking in order to search another path. We label
this edge with E'-Ij so that we won't use i t in a new path with the same prefix.

Vza Found Search Ending
RE3: r . ~ r r (I)

Eta 79xs

115

I f there are no unlabelled edges incident to the Search-labelled vertex, then there are no paths
with this preSx anymore. We have to change this preSx :

Search Clean
Rz4: �9 . �9 (0)

We erase the labels -EIj from the edges incident to the Clean-labelled vertex :

Clean Y Clean Y
REs: r ~. ~ r ~. (2)

When the cleaning mode is done, we start a backtrack :

Clean Back REg: �9 , �9 (I)

We go back from the vertex labelled Back (the edge labelled Enr and incident to the Back-
labelled vertex changes its label). Then we start a new search of path :

VI.T Back Search
RE~: : : . : : (I)

When we can no longer backtrack, the enumeration is done.

Back End
Rzs: �9 I, �9 (0)

I n v a r i a u t s a n d p r o p e r t i e s
Let G be a connected graph. The initial labelling function of G ~o is defined by :

Xo(I) = Search
~o(J) = Ending
Yx E VCG) UE(G) \ { I o } U {J}, >,o(x) = e.

Let L be the set of labels :

L = {Search, Found, Ending , Clean, Back, End}.

We say that L is the set of active labels.
Let A be the set of labels of the whole system :

A = {e, V I j , E I j , - J E I j } U L .

From now on we consider a connected graph G with an initial labelling function A0 (as we de-
fined it before). We consider a rewriting sequence (Gi)i>o 1 obtained by the application of ~r~enum,~,
on (G, ~o)-

In order to prove the ending and the validity of our system, we give some properties of ~e.~,~.p.
The easy proofs of the fottr following in~axiants will be omitted.

1 G~ stands for (G, A~).

116

Invar iant 1 Vi > O, there exists only one vertex z in Gi such that)~i(X) ~ L \ {Ending}.

We denote this vertex xz.

Each unlabelled edge can not receive E I j a~ a label if its end-points are labelled VIa (RE1).

Invar iant 2 Vi >_ O, the set of edges labelled Ez j in Gi]grins a simple path from I to xL.

We denote this simple path Ci(xz).

Invar iant 3 u >_ O, any vertex z labelled V1.r by Jki is on the path Ci(zz).

Invar iant 4 Vi > O, let a be an edge of G such that hi(a) = EH. The edge a is incident to only
one vertex of Ci(xz).

We denote this vertex by 5~ and we denote by -Ci(a) the prefix of Ci(xL) from I to ~a.
Let P be a simple path, e be an edge incident to an end-point of P, (P.e) denotes the path

obtained by extending P by the edge e.

Invar iant 5 Let i > O, let a be an edge of G with hi(a) = -EIJ. Vk > i, one of the following
propositions is true :

(i) ~k(a) =-gxs;
(il) Xk(a) ~ Exa, and there is a vertex x of'Oi(a) such that X~(x) E {Clean, Back, End);
(i~l) Ak(a) # -EIJ, Ci(a) is no longer a prefix of Ch(x$) and there is an edge b of G such that

)~(b) = E-'~a and such that (~k(b).b) is a prefix oral(a).

Proof Proof is rather technical and not detailed there. We use an induction on k, starting with
k =i . []

Consider a vertex x, labelled Search after i steps of rewriting, then the vertices, which are
labelled Vza, are not concerned by the rewritings until x is not labelled Back. The history of
x, hi(z), concerning the sequence of rewriting of length i, is the prefix of all the histories of x
concerning any sequence of length j , for j > i. We denote hi(x) = hi(x)mid(X), and we state
that :

Property 1 Let z E V(G) and i > 0 such that hi(x) is ending by Search. For any vertex x' of
V(G) which has a history hi(x') ending by Vii , and for all j , j > i, such that mid(z) doesn't
contain Back, the vertex x' keeps the same history : hi(x') = hi(x').

We denote by S(Gi,z) the subgraph of Gi induced by the vertices labelled e or Ending which
are connected to x by simple paths made of ualabelled edges. This connected subgraph contains

L e m m a 1 For any vertex z of G, for any positive integer i such that hi(x) = Search,there is j ,
j > i, such that the three following propositions are true :

i) ~j(z) = Clean and mid(z) doesn't contain Back.
ii) The subgraphs S(Gi,x) and S(Gj ,x) are isomorphic.
iii) The rewriting sequence from Gi to Gj allowed to enumerate all the simple paths of S(Gj, x)

starting at x and finishing on the vertex labelled Ending if this vertex is in the subgraph.

Proof By induction on the number of edges of G. []

Proposit ion I The graph rewriting system 7~n~,~,7~ is noetherian for any connected graph G
given with an initial labelling function)to as it has been previously defined.

117

Proof Consider a connected graph G, with an initial labelling function A0 such that :

3z e V(G), Ao(z) = Search.

Lemma 1 is applicable to G with z and the initial labelling : 3j > 0 such that Aj(x) = Clean,
moj(z) doesn't contain Back, and such that the subgraphs S(Go, x) and S(Gj,x) are equal.
On Gj, we can apply the rule REs, RE7 and then REs, and we have after these two steps of
rewriting : Aj+~ (z) = End, and Vy e (V(G) \ {x}) U E(G), Aj+2 (y) = e. Eventually, no more rules
axe applicable to Gj+2. 1:3

Proposition 2 On any connected graph G given with an initial labelling ~nction Ao such that
one vertex is Search-labelled and another one is Ending-labelled, the system ~enum,9 enumerates
all the simple paths having these two singular vertices as end-paints.

Proo] The proof directly comes from the Lemma 1 applied to the graph G with the labelling
function ~o. []

Our system ~e . .m.P has a constant number of rules and a constant number of labels.

3 Subgraph and minor searching

In the previous section we introduced two systems encoding two different kinds of enumeration.
Our purpose is now to present a first application of these two systems :

The m-enumeration is used so as to verify if a connected labelled graph contains a connected
labelled graph H as a subgraph.

The enumeration of simple paths is used in order to verify if a connected labelled graph contaln~
a connected labelled graph H as a minor.

3.1 Subgraph searrh;-g

We consider a connected labelled graph H with rn vertices. We know that we are able to
enumerate all the m-tuptes of vertices of any graph G with an appropriate labelling function,
thanks to a graph rewriting system with priority. Given a rn-tuple of vertices of G, it 's rather easy
to associate each vertex to a vertex of H. Thus, we jus t have to check if this mapping is a good
one.

Our graph rewriting system works into two parts of computation :

First part It consists in enumerating all the m-tuples of vertices of G. So, we use the PGRS de-
fined in [LMS95] 7~n~m. When a m-tuple is found (we use a label Foundm when we find the
last vertex of the m-tuple), the second part has to start . If we can' t find H as subgraph thanlc~
to this m-tuple, then we have to change it i.e. to resume the m-enumeration. If the end of the
m-enumeration is reached, then H isn't a subgraph of G.

Second p a r t It consists in checking tha t the mapping of the vertex-set V(H) into the m-tuple
of G is an isomorphism between H and a subgraph of G having the m-tuple as vertex-set. Let
us describe how we solve this problem by means of a graph rewriting system ~ c o , , .
First, we use a graph traversal to label the j t h vertex of the m-tuple with the degree of the
j t h vertex of H. Then, using another graph traversal, we just have to check if for any edge
{i,j} in H there is in G an edge linking the j t h and i th vertices of the m-tuple. Then we use
another graph traversal in order to verify if every edges have been found (partial subgraph)
and if there isn't any other edge between vertices of the m-tuple (induced subgraph). Thus at
the end of such a traversal, either the last vertex of the rn-tuple is labelled Fail or the root of
the spanning tree is labelled Win. In the first case, the m-enumeration has to resume. In the
second case, the re~-riting has to be stopped.

118

These parts are realized by means of graph rev,-riting systems with priority. Our general system,
called 7"s is the result of the composition of 7"s [LMS95] (with a weak modification),
and 7~co~t introduced and proved in [Bot97].

For the sake of brevity we shan't give this system in details. For such a composition we use
couples of labels. The first component concerns the m-enumeration. The second component con-
cerns the subgraph's checking. We consider that such a system works on a labelled graph with a
distinguished vertex (with a labelling function issued from T~span).

In order to prove the termination and the validity of ~bg~aph, we use the fact that each part
is noetherian and valid. Moreover the rules used in this system are very simple (the left-hand-side
are isomorphic to a single vertex or a single edge). Therefore we state that :

Proposi t ion 8 Given a connected labelled graph H, the graph rewriting system with priority
7~suburaph allows to check on any connected labelled graph with a distinguished vertex if H is
one of its subgraph (partial or induced).

Our graph rewriting system T~suburaph has a finite number of rules depending of the num-
ber of rules of 7~en,rn and linearly depending on m 2 where m is the vertices number of H :
#rules,ubg,~ph = O(mZ). The number of labels depends (linearly) on #labels~,z~m and rn :
~labelSsuboraIJh = ~labelsenmn = O(m * 2m).

3.2 M i n o r search;rig

T b a , k.~ to the notion of model defined in [RS95], we are able to prove the following equivalence :

Lernma 2 Given two connected graphs H and G, the]ollowin9 statements are equivalent :

- H is a m i n o r of G ;
- There exists a model ~ from H onto G defined by :

�9 for any edgee ofH, ~(e) is an edge of G;
�9 for any vertex u of H, O(u) is a connected partial subgraph of G (non empty).

The model �9 has the following properties :
1) for any u and v of V(H), the intersection of O(u) by ~(v) is empty;
2) for any e E E(H), for any u E V(H), the edge f~(e) doesn't belong to the partial subgraph

~(u);
3) Let e = {u,v} be an edge of H, then ~(e) has an end-point in V(~(u)) and the other in

v(~(~)).
- There exists an injextion V from V(H) to V(G) such that for any edge {u, v} of H, there is a

simple path in G between 7(u) and 7(v), denoted P(v(u), 7(v)). Moreover these paths are said
to be valid i.e. they verify the following properties :
1) For any edges {a, b} and {e, d} of H, with disjoint end-points, the paths P(7(a), 7(b)) and

P(7(o),7(d)) are vertex-disjoint.
2) For any edge {a, b} E E(H), the path P(7(a), 7(b)) has at least one edge that is disjoint

from any other path P(7(c), 7(d)) for { e, d} E E (H) . Such kind of edge is called own edge.

We present a graph rewriting system based on the fact that a minor of graph can be defined
tb~mks to particular simp!e paths. Such simple paths (as defined in our lemma 2) will now be
called valid simple paths.

Explana t ions The connected labelled graph H is known. We assume that we perfectly know
its vertex-set]2 and its edge-set E. Let m be the number of vertices of H. We assume that
V = {1,2,3,- . . ,m}. The edges are denoted {i , j} with i < j . Thus an order is defined on E :
{i , j} < {l, k} iff (i,j) <2 (l, k) (i.e i < l or i = l and j < k). We denote by succ(i,j) the successor
of { i , j} and pred(i,j) the predecessor of {i, j} according to <. We consider that succ(i,j) = { i , j }
if it is the greatest edge in E (denoted max(i , j)) , pred(i,j) = { i , j } if it is the smallest one
(denoted min(i , j)).

119

The whole system consists of a part of m-enumeration and a part of research of valid paths
linking vertices of the m-tuple. We explain the algorithm we used for the second part.

The computation starts on a graph G with a m-tuple (xl, z2,-. �9 z~). For any edge {i, j} of H,
we mark in G a ~l id simple path between the vertices zi and ~j (starting with the smallest edge).
The construction of valid paths is made with the enumeration of simple paths (with a checking
of validity) and also backtracking. At the end of this computation, we have two possibilities.
If we have found all the valid simple paths, then H is a minor of G. If we haven't succeeded
with the current m-tuple, then it means that we have to change the m-tuple i.e. to resume the
m-enumeration. If the m-enumeration is done, then H isn't minor of G.

Valid pa ths We are able to mark simple paths th~nk, to the system 7~en~rn,~- In order to mark
a simple path concerning the j th and ith vertices of the m-tuple, we use this previous system with
parameter (I, J). We have to check that :

- For any couple of vertices (L,K) disjoint from (I,J), any vertex labelled VLK mustn't be
labelled VIj by 7~en~m.~ (/, J). It must be the same for the edges.

- Given a path from I to J , there is at least one edge uniquely labelled with EIj.

The first condition is easy to realize, we just have to change the two first rules to prevent the
labelling. The second one is done by means of a traversal of the simple path in order to check that
this path contains at least one own edge, and that all the other valid paths are still valid.

The new graph rewriting system obtained is denoted 7ZEv(i,]) for the edge {i,]}. Such a
system is made up of traversals based on a spa.ning tree.

S u m up The graph rewriting system Ts consists of the following systems with the following
priorities :

r~..~ > ~.~ > ~sv(i,])~. >''" > 7~sv(i,j)

With,

�9 7Zen~.., enumeration of rn-tuples in G ;
�9 ~ /n i t , b%d.ning of the second part ;
�9 7ZEv(i,j), D~-~em of enumeration of valid simple path between the vertices i and j in the

current m-tuple. These system are made by the system of enumeration of simple paths, a
part for the checking of validity, and optionally a part for acknowledgment sending (for {i,j}
different from the ml.lm~l edge) and cleaning (if {i,]} is the minimal edge).

We show on the following example how we use acknowledgment in order to compute valid
simple paths according to the order <.

Example 2 Consider the following graphs H and G. The graph H has three vertices and three edges :
{1,2} < {1,3} < {2,3}. The graph G has a distinguished vertex called u, which is the root of a
spanning tree (denoted T(G)) computed by a graph rewriting system.

The graph H The ~aph G

120

Given a 3-tuple of vertices labelled on G, we start the construction of valid simple paths for the three
edges of H. Firstly, a traversal of the spanning tree is used to label the vertex 1 and 2 by the list of
Search labels.

This part is done by the rules of the system T~,it.

T h e spanning tree T(G) rooted in ~.

/ I S~r~(l, 2)
~ / ~ S ear c~ (1, 3)

The smallest edge of H related to < is the edge {1, 2}. Computations start now by the labelling
of a valid simple path for this edge, thanks to a system 97~Ev(1,2). As this is the smallest edge, we
haven't to wait for an acknowledgment.

The following picture shows a computation leading to a valid path : the vertex 2 receives a label
of success Valid(l , 2).

As a valid path has been found, an acknowledgment is sent to the vertex 1, smallest end-point of
the next edge. A traversal of the spanning tree is used.

v

The vertex 1 has got labels Search(I,3) and Ac~(1,2) : rules of ~ , (1 , 3) are thus applicable
and the enumeration of valid simple paths for this couple of vertices can start.

E x S

E~= / .7 ~.

\ I v~id(1, s)

121

In this example, a valid simple path has been found for the couple (1, 3). Thus, an acknowledgment
is sent to the vertex 2 (smallest end-point of the next edge). This is done by a traversal. The rules of
77-Ev(2, 3) become applicable to the graph because of this acknowledgment. If a valid simple path is
found for this couple, then the computation stops (i.e. no more rules are applicable) : H is a minor of
67. In the case where no valid simple path exists, the enumeration of valid simple path is resumed for
the previous couple (t, 3), and so on.

The last picture gives us successful computations showing that H is a minor of G.

2 E ~ V1s

v~ C ~ "-3,
~ ' ~ \ ~ Va l id (2 , 3)

I

Details about this graph rewriting system can be found in [Bot97]. We recall tha t h denotes
the number of edges of H. The number of rules of T4~i.o~ is a linear function of #rulese.u,n, m
and h 2 : #ru les .~ i ,~ = O(h 2 + m). The number of labels is a linear function of #labelse.um, h
and h 2 : #1abelsminor = O(m * 2 ra + h2).

The system T~i .or satisfies the following theorem :

Theorem 1 Given a connected labelled graph H, there exists a graph rewriting system with priority
which allows to check onto any connected labelled graph G with a distinguished vertex i f H is a
minor of G.

Thus, given a family of graphs defined with a finite set of forbidden minors, there exists a
graph rewriting system with priority which verifies ff a given graph with a distinguished vertex
belongs to the fatally. The forbidden minors must be known. We just have to compose a set of
systems Timlno~ corresponding to the forbidden minors.

Coro l lary I Let 5 c be a family of connected graphs, defined by a finite set of forbidden minors.
We can check by means of a graph rewritin 9 system i f a connected graph G with a distinguished
vertex belongs to 5 r.

Therefore we are able to give a graph rewriting system with priority which verifies if a labelled
graph with a distinguished vertex is planar or not.

4 N o r m a l f o r m s f o r g r a p h r e w r i t i n g s y s t e m s

In this par t we introduce different kinds of normal forms for graph rewritings and more partic-
ularly the k-normal form of graph rewriting. Then we prove tha t for any graph rewriting system
there exists a PGRS in k-normal form equivalent to the original system : any GRS can be nor-
mali~.ed according to the k-normal form. Our method consists in building the PGRS in k-normal
form using systems of enumeration.

4.1 Def imt ions

We are interested in the structure of the subgraphs which are rewritten by the rules of our
systems.

As a first normal form we consider the case where the ld t -hand sides of the rules are isomorphic
to a vertex or an edge :

122

D e f i n i t i o n 7 A graph rewriting system has a 2-normal form i f each rule rewrites one vertex or
one edge and the two incident vertices.

Most of our graph rewriting systems are in 2-normal form. The computation of a sp~tnnlrlg
tree, the traversal of a tree, and of course the subgraph searching can be done thanks to graph
rewriting systems in 2-normal form.

We can also consider that the left-hand sides axe equal to simple paths of bounded length.

D e f i n i t i o n 8 A graph rewriting system has a k-normal form i f each rule rewrites a simple path
of length bounded by k - 1.

4.2 S i m u l a t i o n of a F C G R S by a P G R S in k - n o r m a l f o r m

We want to prove that any GRS without normal form can be simulated by a GRS in 2-normal or
k-normal form. To this end, we use the method introduced in [LMS95] to simulate any FCGRS by
a PGRS. In a first part we recall this method, and then we provide our application.

Method for the simulation of a F C G R S b y a P G R S
This method is made up of three steps.

I The first part concerns the partition of the initial graph into subgraphs of k-bounded diameter
where k is the maximal diameter of the graphs in the rules of the FCGRS. This part is called
the k-election. The k-election problem (introduced in [LMS95]) can be explained as follows.
Each vertex of the graph stands for a toum. We want to orga~i~ the graph by delimiting
countr/~, each country having one capita]. In each country the distance between town and the
capital must at most be k. Moreover, the distance between two different capitals in the graph
must be at least k + 1. This part is done by a PGRS in (2k + 1)-normal form.

II The second part consists in supervising the activity of the capitals. If a capital is active, it
means tha t we can simulate on its country the application of a rule of the system. This part
is done by a P a R S in k + 1-normal form.

ITI The third part consists in simulating the application of the rules on a country having an active
capital. This part is called the local s i m u l a t i on . We have to adapt this local simulation to
our problem.

Application to the k - n o r m a l f o r m
We are able to realize a local simulation by a PGRS in 2-normal form.
We consider we are working on a country with an active capital.

1. Using a tree traversal, towns are activated one by one (T~rav).
2. Given an active town, we construct a spanning tree of the ball of center the active town and

of radius k (7~s~n(k) with orientation from the root to the leaves).
3. For each rule r with forbidden context, we make a system T~r so as to test the applicability of

r on the ball of radius k. We now explain this part of the simulation :
(a) We look for a subgraph isomorphic to (Gr, At) in the ball of center this town and of radius

k. We can do that by means of 7~,ubg~aph. Then in G, some vertices have label (l i ,x) and
some edges have label (p, x) where z is a symbol holding for the label issued from A~.
These vertices and edges form a subgraph isomorphic to (G~, ~) . The values of i axe in
{1, .-- , IV (a ,) I] .

(b) Then, given an occurrence of (Gr: ~r), we search all the forbidden contexts using one
PGRS ~8~bg~aph by context.

(c) If we find such a forbidden context, then we resume the searchlng of another occurrence.

123

(d) If there aren't any forbidden contexts, then we have to apply the rule r by changing the
labels of the edges and then of the vertices. In this way we will realize a rewriting in 2-
normal form. Let us now introduce the system 7Z,o~me in 2-normal form. We consider we
are working on a connected graph having a labelled spanning tree (one vertex is labelled
Edge, the others No). Some vertices and edges have labels coming from Ar (as explained
before). A first traversal is done in order to change the label for the edges (p,x), a second
traversal deals with the vertices. The symbol x' means the label issued from A'.

System T4..orm, �9
We walk on a branch of the tree (by using edges o f the tree).

Edge No W Edge
a l : r C r ~ r C : (3)

I f we meet a vertex labelled I i , then we change the labels o f all the edges incident to this
vertex. Edges could be edges o f the spanning tree, we don't specify i t in our rule.

Edge X Edge X
k > Z, a=(l,k): r r , r r (2)

p,z p,$t
It lk lz 1~

When we reach a leaf or when there is nothing else to do, then we come back in the tree.

W Edge Edge Nx
P~: : C .~ , : C : (1)

When we are on the root o f the tree, then we start a new traversal in order to rewrite the
vertices.

Edge Ve~ez
1~: �9 , �9 (0)

We advance on a branch of the tree.

V e~ez Nx W V ert ez
~ : .r C $ * r C .r

When we reach a vertex which is an image of a vertex o f V(Gr) , then we change its label

Vertez Vertez

l i ~z l i , z I

The traversal goes on by going back to the root.

W r Vertex Vertex (i)

When we reach the root, then the computation is done.

124

Vertex End
th: �9 p �9 (0)

This graph rewriting system comes from the traversal of a tree. A system for tree traversals
has been proved to be noetherian and valid in [LMS95]. Thus our system is noetherian and valid
because we are sure to reach all the vertices and the edges we have to rewrite.

For our simulation we use graph rewriting systems in k + 1-normal form and systems in 2-
normal form. The k-election problem and the computation of a spanning tree of a ball of radius k
are realized by graph rewriting systems in k + 1-normal form (in respect of our notation).

Proposi t ion ~ Any graph reu~itin 9 system with forbidden context can be simulated by a graph
rewritin 9 system with priority which is in k + 1-normal form.

Moreover any graph rewriting system with priority can be moved into a graph rewriting system
with forbidden context as it is explas in [LMS95]. Thus,

Theorem 2 Any graph re~ri~ing system (with priority or forbidden contc~t) can be normoJizezl
into a graph reuniting system with priority in k-normal form with a convenient integer k.

References

[AngSOl

IBM96]

[Bot97]

[CM94]

[Cou90]

[LM921

[LM93]

[LMS95]

[LMZ95]

[Maz87]

D. Anghiin. Local and global properties in networks of processors. In 12 th STOC, pages 82-93,
1980.
A. Bottrean and Y. M~ivier. Kronecker product and local computation in graphs. In CAAP'96,
volume 1059 of Lect. N o ~ in Comp. Sci., pages 2-16, 1996.
A. Bottrsau. R~critur~ de graphe ~t calcals di.stribu~s. Phi) thesis, Universit~ Bordeaux I,
LaBRI, juin 1997.
B. Cottrcelle and Y. M~tivier. Coverings and minors : Application to local computations in
graphs. Europ. J. Combinatorics, 15:127-138, 1994.
B. CourceUe. The monadic second order logic of ~aphs i. recognizable sets of finite graphs.
Inform. and Comput., 85:12-75, 1990.
I. Litovsky and Y. M~,~ivier. Computing trees with graph rewriting systems with priorities. Tree
Automata and LanguageJ , pages 115-139, 1992.
I. Litovsky and Y. M~tivier. Computing with graph rewriting systems with priorities. Theoretical
Computer Science, 115:191-224, 1993.
I. Litovsky, Y. M6tivier, and E. Sopen& Di~erent local controls for graph relabelling systems.
Mathematical Systerr~ Theory, 28:41--65, 1995.
I. Litovsky, Y. M~tivier, and W. Zielonka. On the recognition of f~rni|ies of graphs with local
computations. Information and computation, 115(1):110-119, 1995.
A. Maz~kiewicz. Petri nets, applicatior.8 and relationship Go other models of concurrenc~/, volume
255, chapter ~l~ace Theory, pages 279-324. W. Brauer et al., 1987.

[RFH72] P. Resensthiel, J.~L Fiksel, and A. Holliger. Intelligent graphs : networks of finite automata
capable of solving graph problems. In Graph Theory and Computiny, pages 219-265. Academic
Press, 1972.

[RS95] N. Robertson and P.D. Seymour. Graph minors xiii. the disjoint paths problem. Journal of
combinatorial theory, SerieJ B, 63:65-110, 1995.

[YK96a] M. Yamashita and T. Kameda. Computing on anonymous networks: Part i - characterizing the
solvable cases. IEEE 2~an~action~ on parallel and distributed s~xtems, 7(1):69-89, 1996.

[Y-K96b] M. Yamashita and T. Kameda. Computing on anonymous networks: Part ii - decision and
membership problems. IEEE Transactions on parallel and distributed systems, 7(1):90-96, 1996.

