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Abstract .  We present a realizability interpretation of co-inductive types 
based on partial equivalence relations (per's). We extract from the per's 
interpretation sound rules to type recursive definitions. These recursive 
definitions are needed to introduce 'infinite' and 'total' objects of co- 
inductive type such as an infinite stream, a digital transducer, or a non- 
terminating process. We show that the proposed type system subsumes 
those studied by Coquand and Gimenez while still enjoying the basic 
syntactic properties of subject reduction and strong normalization with 
respect to a confluent rewriting system first put forward by Gimenez. 

1 Introduction 

Coquand proposes in [4] an approach to the representation of infinite objects 
such as streams and processes in a predicative type theory extended with co- 
inductive types. Related analyses on the role of co-inductive types (or definitions) 
in logical systems can be found in [14, 11] for the system F, [16] for the system 
HOL, and [20] for Beeson's Elementary theory of Operations and Numbers. Two 
important  features of Coquand's approach are that: (1) Co-inductive types, and 
related constructors and destructors, are added to the theory, rather than being 
represented by second order types and related A-terms, as in [7, 17]. (2) Recur- 
sive definitions of infinite objects are restricted so that  consideration of partial 
elements is not needed. Thus this work differs from work on the representation 
of infinite structures in lazy programming languages like Haskell (see, e.g., [21]). 

In his thesis [8], Gimenez has carried on a realization of Coquand's pro- 
gramme in the framework of the calculus of constructions [5]. More precisely, he 
studies a calculus of constructions extended with a type of streams (i.e., finite 
and infinite lists), and proves subject reduction and strong normalization for 
a related confluent rewriting system. He also applies co-inductive types to the 
representation and mechanical verification of concurrent systems by relying on 
the Coq system [3] extended with co-inductive types (another case study can be 
found in [6]). In this system, processes can be directly represented in the logic as 
elements of a certain type. This approach differs sharply from those where, say, 
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processes are represented at a syntactic level as elements of an inductively defined 
type (see, e.g., [15]). Clearly the representation based on co-inductive types is 
more direct because recursion is built-in. This may be a decisive advantage when 
carrying on formal proofs. Therefore, the issue is whether this representation is 
flexible enough, that  is whether we can type enough objects and whether we can 
reason about their equality. These questions are solid motivations for our work. 

The introduction of infinite ' total '  objects relies on recursive definitions which 
are intuitively 'guarded' in a sense frequently arising in formal languages [18]. 
An instance of the new typing rule in this approach is: 

F, x : a I- M : a M J, x <r co-inductive type 
F I- fix x.M : o (1) 

This allows for the introduction of 'infinite objects' in a 'co-inductive type',  by 
means of a 'guarded' (recursive) definition. Of course, one would like to have 
notions of co-inductive type and of guarded definition which are as liberal as 
possible and that  are supported by an intuitive, i.e., semantic, interpretation. 

In Coquand's proposal, the predicate M $ z is defined by a straightforward 
analysis of the syntactic structure of the term. This is a syntactic approximation 
of the main issue, that  is to know when the recursive definition fix x .M deter- 
mines a unique total object. To answer this question we interpret co-inductive 
types in the category of per's (partial equivalence relations), a category of to- 
tal computations, and we find that  the guard predicate M $ x has a semantic 
analogy which can be stated as follows: 

Va ((d,e) E ~ :  =~" ([M][d/x],[M][e/x]) E ~r~+,) (2) 

where ~'a is a monotonic function on per's associated to the co-inductive type 
a, and ~-~ is its a th iteration, for a ordinal. We propose to represent condition 
(2) in the syntax by introducing some extra-notation. With the side conditions 
of rule (1), we introduce two types 6" and 6"+ which are interpreted respectively 
by 3rff and 3r~ +1. We can then replace the guard condition M $ x by the 
typing, judgment x : 6" I- M : 6"+ whose interpretation is basically condition 
(2). The revised typing system also includes: (1) Subtyping rules which relate 
a co-inductive type ~ to its approximations ~ and ~,+, so that  we will have: 
o" < ~+ _< ~. (2) Rules which overload the constructors of the co-inductive type, 
e.g., if f : r --+ ~r is a unary constructor over or, then f will also have the type 
6" ---r ~,+ (to be understood as Va x E ~ ::~ f(~) e .T~ '+1 ). The types a --+ a 
and ~ --+ #+ will be incomparable with respect to the subtyping relation. 

The idea of expressing the guard condition via approximating types, subtyp- 
ing, and overloading can be traced back to Gimenez's system. Our contribution 
here is to provide a semantic framework which: 

(1) Justifies and provides an intuition for the typing rules. In particular, we will 
see how it is possible to understand semantically Gimenez's system. 

(2) Suggests new typing rules and simplifications of existing ones. In particular, 
we propose: (i) a rule to type nested recursive definitions, and (ii) a way to type 
recursive definitions without labelling types. 

(3) Can be readily adapted to prove strong normalization with respect to the 
confluent reduction relation introduced by Gimenez. 



50 

2 A s i m p l y  t y p e d  c a l c u l u s  

We will carry on our s tudy in a simply typed )~-calculus extended with co- 
inductive types. 2 Let F be a countable set of constructors. We let fl, f 2 , . . - r ange  
over F.  Let tv be the set of type variables t, s , . . .  The language of raw types is 
given by the following (informal) grammar: 

r ::= *v I - +  r')  I v ,o  (f= : . ,  .fk : "rk -+ tv) (3) 

where r i  --+ tv stands for rid -+ �9 �9 �9 --+ ri,,~, -+ ~v (--+ associates to the right), and 
Mlfi are distinct. Intuitively, a type of the shape ~t.(fl : r l  --+ t . . . f k  : rh  --~ t) 
is well-formed if the type variable t occurs positively in the well-formed types 
r~,j, for i = 1 . . . k ,  j = 1 . . . n i .  Note that  the type variable t is bound by ~, and 
it can be renamed.  We call types of this shape co-inductive types, the symbols 
fl - . . f t  represent the constructors of the type. We will denote co-inductive types 
with the letters or, ~r ~, or1,..., and unless specified otherwise, we will suppose that  
they have the generic form in (3). A precise definition of the well-formed types 
is given as follows. 

D e f i n i t i o n  1 t y p e s .  If r is a raw type and s is a type variable then the pred- 
icates w f ( r )  (well-formed), pos(s ,r)  (positive occurrence only), and neg(s, r) 
(negative occurrence only) are the least predicates which satisfy the following 
conditions. 

(1) If t e tv then wf( t ) ,  pos(s, t), and neg(s, t) provided t r s. 

(2) If w f ( r )  and w f ( r ' )  then w f ( r  -+ r ' ) .  Moreover, pos(s, r --+ r') if pos(s, r ' )  
and neg(s, r), and neg(s, r --+ r') if neg(s, r') and pos(s, r) .  

(3) If a = yr.(f1 : r l  --+ ~ . . . fk  : rk --+ t) and t # s (otherwise rename t) then 
wf ( r  provided wf(r i , j )  and pos(t, ri,j) for i = 1 . . .  k, j = 1 . . . h i .  Moreover, 
pos(s, ~) if pos(s, rl,j) for i = 1 . . .  k, j = 1 . . .  ni, and neg(s, ~r) if neg(s, rl,j) for 
i = 1 . . . k ,  j = 1 . . . h i .  

Example 1. Here are a few examples of well-formed co-inductive types where we 
suppose that  the type r is not bound by v. 

(1) Infinite streams over r:/zs.(cons : r --+ (s --+ s)). 

(2) Input-output  processes over r:  vp.(nil : p, ! : r --+ p --+ p, ? : ( r  -+ p) -+ p). 

(3) An involution: vt.(inv : ((t --+ r)  -+ r)  -+ t). 

Definition 1 allows mutually recursive definitions. For instance, we can define 
processes over streams over processes . . . :  

cr = ~, t . (n l l  : t ,  ! : ~r' --~ t - +  t,  ? : (a '  -+ t )  - +  t )  o" = ~ ,s . (cons : t - +  s --+ s)  . 

2 Per's interpretations support other relevant extensions of the type theory, including 
second-order types (see, e.g., [13]) and inductive types (see, e.g., [12]). As expected, 
an inductive type, e.g., pt.(nil : t, cons:  o -+ t ---> t) is interpreted as the least 
fixpoint of the operator Jr described in section 3. It follows that there is a natural 
subtyping relation between the inductive type and the corresponding co-inductive 
type ~,t.(nil : t, cons: o --~ t -~ t). 
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These  mu tua l l y  recursive defini t ions lead to some compl ica t ion  in the  typ ing  
of  constructors .  For instance,  the  type  of cons should be [~ / t ] ( t  -+ e '  -+  ~r'), 
and moreover  we have  to make  sure t h a t  all occurrences  of  a cons have  the  s a m e  
type  (after  unfolding).  To make  our  analysis  clearer, we prefer to  gloss over  these 
technical  issues by tak ing  a s t ronger  definition of posi t ivi ty .  Thus ,  in the case 
(3) of  definit ion 1, we say pos(s, ~r) (or neg(s, ~r)) if s does not  occur  free in ~r. 
In this way a type  var iable  which is free in a co- induct ive  type  canno t  be bound  
b y a v .  

Let v be the set of  t e rm  var iables  x, y, . . .  A contex t  _r' is a poss ibly  e m p t y  
list x l  : v l . . .  zn : r ,  where all xi are dist inct .  R a w  t e rms  are defined by the  
following g r a m m a r :  

M ::= v I (~v .M)  i ( M M )  I f  a I case ~ I (fix v . M ) .  (4) 

We denote  with F V ( M )  the set of  variables  occurr ing free in the  t e r m  M .  T h e  
typ ing  rules are defined as follows: 

~ : r E I  ~ F , x : r ~ - M : r  ~ F b M : r ' - - ~ r  /~ F" N : r '  
F ~ - x : r  F F A x . M : r - + r  ~ F b M N : r  

= yr . ( f1  : r l  -+ t . . . f k  : r k  ~ t )  
Assuming:  r '  ~ ~r = r ;  ~ . . .  z~, ~ o" ( m  > O) 

r f ; ' :  [,,It]n,, '[o-p]n,,,, --+ ,,- 

F'F- c se" i ,, e --+ 

.P, az : -r '  --~ cr I- M : -r '  ---~ ~r M J ,  z 
/1 I-f ix  x . M  : -r '  -+ 

T h e  guard  predica te  ' M  J, x '  is left unspecified. Intui t ively,  this  pred ica te  has  
to  gua ran tee  t ha t  a recursive definit ion does de t e rmine  a unique ' t o t a l '  object .  
Before t ry ing  a fo rmal  definition, we will consider a few examples  of  recursive 
definitions, where we use the  no ta t ion  let z = M in N for ( )~x .M)N,  and let 
appl ica t ion  associate  to the left. 

Example ~. Let o be a basic type  of  numera l s  wi th  cons tan t s  0 : o and  suc : o -+ o. 
Let us first consider the  type  of  infinite s t r eams  of numera ls ,  wi th  des t ruc tors  
head and tail: 

,,~ = v t . ( c o n s  : o -~  ( t  - ~  t ) )  
hd = ,~x.case "1 x()~n.)~y.n) tl = ,~x.case ul x(~n.)~y.y) . 

(1) We can in t roduce an infinite list o f  O's as follows: fix x .consa l0x .  

(2) We can also define a funct ion which adds 1 to every e lement  of  a s t ream:  

fix addl.~x.case ~l x ( . k n . , ~ x ' . c o n s  a~ ( suc n )( addl x') ) . 
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(3) Certain recursive definitions should not type, e.g., fix x.consal0(t/=).  The 
equation does not determine a stream, as all streams of the form cons ~10z' give 
a solution. 
(4) The function db doubles every element in the stream: 

f ix db.Ax.let n = (hd x) in cons#'n(cons#'n db(tl  x ) )  . 

(5) Next we work over the type as of finite and infinite streams. The function 
C concatenates two streams. 

a2 = ~, t . (ni l  : t ,  cons : o - +  t - +  t )  
C ---- fix conc.,kx.Ay.case "~ x y An.Ax'.(cons#~n(conc x '  y)) . 

(6) Finally, we consider the type #3 of infinite binary trees whose nodes may 
have two colours, and the following recursive definition: 

# s  = ~ t . ( b l n l  : t - +  t - +  t ,  bin~ : t - ~  t - +  t )  

( f ix  x . b i , ~  ~ x ( f ix  y .b in~  3 x y ) )  . 

We recall next Coquand's definition [4] of the guard predicate in the case the 
type theory includes just one co-inductive type, say a = vt.(nil : t, cons : o --+ 
t --~ t). 

D e f i n i t i o n 2 .  Supposing F, �9 : r '  --+ # t- M : "1"' --+ #, we write M $ m if the 
judgment  F, x : r I --+ 0" I- M ~- ' - ,a  x can be derived by the following rules, 
where n ranges over {0, 1}. The intuition is that  'x is guarded by at least a 
constructor in M' .  For the sake of readability, we omit in the premisses the 
conditions that  x : ~" -+ cr E 1" and the terms have the right type. 

x ~ F V ( M )  F , y : r I - M J / ~ " * " x  y • x  
F I- M $~ x F I- Xy .M ~r.=)~.~,, x 

�9 ~FV(M~)  rFM2~ 
F ~- cons~Ml M2 J~' x 

~ FV(M~) r~ M ~  
F ~ cons#M1 M2 ~ x 

x ~ F V ( N )  Fty  M1 ~.~ x F I-. M2 $o-.#...,, x x ~ F V ( M i )  j -- 1 . . . m  
1 "~ ~- case#NM1M~ ~L~, x xMl  . . .  M,~ .l.'J x 

Coquand's definition is quite restrictive. In particular: (i) it is unable to tra- 
verse fl-redexes as in example 2(4), and (ii) it does not cope with nested recursive 
definitions as in example 2(6). We present in the next section a simple semantic 
framework which clarifies the typing issues and suggests a guard condition more 
powerful than the one above. 

3 Interpretation 

In this section we present an interpretation of the calculus in the well-known 
category of partial equivalence relations (per's) over a A-model (cf., e.g., [19]). 
Let (D,. ,  k, s, c) be a Aft-model (cf. [2]). We often write de for d .  e. We denote 
with A, B , . . .  binary relations over D. We write d A  e for (d, e) E A and we set: 
[d]A= {e E D ] d A e } ,  IAI = { d E  D I d A d  }, and [A] = {[d]A I d E  IAI}. 
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D e f i n i t i o n 3  p a r t i a l  e q u i v a l e n c e  r e l a t i o n s .  Let D be a A-model. The cate- 
gory of per's over D (perD) is defined as follows: 

p e r  D = {A I A _C D x D and A is symmetric and transitive} 
p e r D [ A , B  ] = { f :  [A] --~ [B] I 3 r  E D (r 
r  [A] ---r [B] iff Vd e D (d e IAI ~ Cd e f([d]A)) �9 

We will use the A-notation to denote elements of the A-model D. E.g., 
Ax.zl~- f stands for [Ax.z]Dl~-f. The category p e r  D has a rich structure, in 
particular it has finite products, finite sums, and exponents, whose construction 
is recalled below. 

dAx  • . . .  • An e iff Vi E { 1 . . . n }  (p ld)Ai  (pie) where: 
p~ = A u . u ( A x l . . . A x , , . z l )  p~l~Tr~ : [//~=x...,Ai] ---r [Ai] 

: I t ]  [A,] (r . . .  f , )  : [C3 [rZ,=l...,,a,] 

dA1 + . . . +  An e iff 3 i  e { 1 . . . n }  (d = (jid'), (e = jie')  and d' A ie ' )  where: 
ji = Au.Ayl . . .Ayn .y iu  jilFini : [Ai] ~ [Si=l...nAi] 

r  : [A,] ~ [el  =~ A d . d r 1 6 2  . . . f n ] :  [,U,i=I...nA,] .-> [C] 

d A - - . ~ B e  iff Vd' ,e '  ( d ' A e '  ::r (dd ' )B(ee ' ) )  where: 
Ad.(pld)(p~d)l]-ev : [B A • A] ~ B 

r  [C • A] --+ [B] =r Ad.Ad'.r  : [C] ..-+ [BA].  

As degenerate cases of empty product and empty sum we get terminal and initial 
objects: 

I = D x D  A z . x l ~ f : [ A ] ~ l  0=1~ Az .x l~- f : [0 ] - - r [A] .  

We denote with 77 : tv -+ p e r  D type environments. The interpretation of type 
variables and higher types is then given as follows: 

As for co-inductive types, given a type r = yr.(f1 : r l  -+ t . . . f k  : ~'k -'+ t), and 
a type environment r/, we define a function ~'a,n on p e r  D as follows: 

.T,,,, 7 (A) = 2Yi=l...k (/-/j= 1...hi [rij],7[A/t]) . (5) 

We then observe that  p e r  D is a complete lattice with respect to set-inclusion, 
and that thanks to the positivity condition in the definition of co-inductive type, 
5va,n is monotonic on per/9. Therefore we can define (gfp stands for greatest 
fixpoint): 

[~]o = U {  A I A C_ 2"a,o(A)} (= gfp(.Ta,,7)). (6) 

In general, if f is a monotonic function over a poset with greatest element T 
and glb's, we define the iteration f a ,  for a ordinal as follows: 

fo  = T f~,+l = f ( f~ , )  f~ = A~<x f "  (A limit ordinal) . 
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With this notation, we have gfp(.Ta,.) = ~r~. for some ordinal c~. 
Since p e r  D is a CCC there is a canonical interpretation of the simply typed 

)t-calculus. The interpretation of constructors and case is driven by equation (5). 
Note that  to validate the typing rules it is enough to know that  the interpretation 
of a co-inductive type is a fixpoint of the related functional defined by equation 
(5) (as a mat ter  of fact, these rules are sound also for inductive types). The 
interpretation of fix is more problematic (and represents the original contribution 
of this section as far as semantics is concerned). We proceed as follows: 

�9 We define an erasure function er from the terms in the language to (pure) 
untyped )t-terms, and we interpret the untyped ).-terms in the )t-model D. This 
interpretation, is always well-defined as the )t-model accommodates arbitrary 
recursive definitions. 

�9 We see what it takes for the interpretation of (the erasure of) a fixpoint 
to be in the corresponding type interpretation, and we derive a suitable guard 
condition which is expressed by additional typing rules in a suitably enriched 
language. 

�9 We prove soundness of the interpretation with respect to the enriched typing 
system. 

D e f i n i t i o n 4  e r a s u re .  We define an erasure function from terms to (pure) un- 
typed )t-terms, by induction on the structure of the term (assuming a - t~t.(fl : 
r l  ~ t . . . f k  : r k  ~ t ) ) .  

er(x) "- z er() tx .M) -- ) tx.er(M) e r ( M N )  - e r ( M ) e r ( N )  

er(fi a) = )t~gl... )t~n,.)tYl...  )tYk.Yi()tu.UZl... Znl) 

er(case ~) = )tx.Ayl. . .)tyk . x U ( y l ) . . .  U(yk) with U(y~) = Au .y i (p lu ) . . .  (p , ,u)  

er(fix z . M )  - Y( ) tx .er (M))  with Y - ) t f . ( ) tx . f (xz ) ) ( ) tx . f (xx) )  . 

If ni = 0 then we have er(fi a) = Ayl. . .Ayk.yi(Au.u) and U(yi) = Au.yi. If 
k = 1 then the definitions simplify to er(fl a) = Axl . . .Axn~ .Au .ux l . . . z ,~  and 
er(case = )t .)tYl .Yl (Pl 

The erasures of fl a and c a s e  a are designed to fit the per interpretation of co- 
inductive types, in particular they rely on the definition of sum and product in 
p e r  D. 

We sketch with an informal notation an instance of our semantic analysis. 
We write ~ P : r if [ p i p  E [[7-][. The typing rule for recursive definitions is 
sound if we can establish: 

Y(),x.er(M)) : a ,  (7) 

Given the iterative definitions of the interpretation of the co-inductive type ~, 
we can try to prove: 

Va ordinal ~ Y()~x.er(M)): Y:~ (8) 
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by induction on the ordinal a. The case a = 0 is trivial since Sr~ -- 1, and the 
case a limit ordinal follows by an exchange of universal quantifications. For the 
case a = a '  + 1, it would be enough to know: 

Va ( ~  Y(Ax.er(M)) : .T~, =e~ ~ Y(Ax.er(M)) : fi~+l) . (9) 

Since Y(J~x.er(U)) = [Y( , kx .er (U) ) lx]U,  property (9) is implied by the fol- 
lowing property: 

Vot, P ( ~ P : ~ ' ~  :=~ ~ [P/x]er(M) : ~'~§ . (10) 

In order to represent this condition in the syntax, we parameterize the type 
interpretation on an ordinal a,  and we introduce types ~ and ~+ so that [~ |"  = 
~r~,, and [~+1~ = ~'2+~. Property (10) is then expressed by the judgment z : 
~-H M : ~ + .  

Let T be the set of types specified in definition 1. We define the set T' as 
the least set such that: (i) T C T', (ii) if r ~ T is a co-inductive type then 
/~ ~ T' and &+ ~ T', and (iii) if r ~ T ~ and r '  ~ T' then r --+ r ~ ~ T'. We also 
define the set T + as the set of types in T' such that all types of the form & and 
&+ appear in positive position (the interpretation of these types is going to be 
anti-monotonic in the ordinal). I f / '  is a context then T(F)  - {r I x : r ~ F}. 

The revised typing system contains the typing rules presented in section 2 
(applied with the enriched set of types) but for the rule for fix which is replaced 
by the rules displayed below. Of course, all the rules are applied on the enriched 
set of types, and under the hypothesis that all types are well-formed. 

= v t . ( f l  : r i  --+ t . . . f ~  : r ,  - 0  t)  
Assuming: -r' ~ r --- r~ - + . . .  ~ -o a (m _> O) 

T(/ ' )  U {r~ . . .  ~n} C T 

F , z  : r '  -4 ~1- M : r ! - - ~ +  
F t- fix x . M  : *" - o  v 

TiF)  U {r~ . . . r~}  C T + 
, / ' ,x  : ~.t _+ ~ F M : ~.e _@ ~+ 

r v'fi ~ i'[~i,]n., -+. . .":+'[~/t]'~. , ,-+ ~ '  
r I - M : r  r<_r' 

F b M : r '  

r v C,,e <' ~ + - +  ([~'f i iT;-+ ~') -->.. "'([~'/d~ --7 ~-) -4,~" 

We give some motivation and intuition for these rules. In the first rule, the 
condition M ~ x is replaced by the typing judgment P, x : v -4 �9 b M : v -@ gr+. 
The second rule for fix is used to type nested fixpoints as in example 2(6). 
In the rules for fix, the side conditions T(r) u {rl...r~} g T and T(/'} U 
{r~.. .  r~ } C T + guarantee independence and anti-monotonicity, respectively, of 
the type interpretation with respect to the ordinal parameter. 
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The additional rule for the constructors fi is needed to introduce terms of 
type gr+. Note that  in this way we overload the constructors fi by giving them 
two related types (but incomparable with respect to subtyping). There is also a 
related rule which overloads the destructor case. 

The following rules just  state the subtyp ing  relations between ~r ~r, and b+,  
and the way this relation is lifted higher-order. The obvious transitivity rule for 
the subtyping relation < can be derived. Types with the relation < form a quite 
simple partial order. In particular, if R = <  U <-1  then {r '  I rR*r '}  is finite. 
We state some basic properties of the typing system. 

L e m m a 5 .  (1) Exchange.  I f  F , x  : v l , y  : r2 ,1  ~' t- M : r then F , y  : r 2 , x  : 
r l ,  F '  t- M : r (wi th  a proo f  o f  the s a m e  depth) .  

(2) R e m o v e .  I f  F, x : 7" F- M :  r and  x ~ B Y ( M ) ,  then F ~" M :  r .  

(3) W e a k e n i n g  (restr ic ted) .  I f  F t- M : r, x fresh,  and  e i ther  r ~ E T or  fix does 
not  occur in M then F , x  : v ~ t- M : v .  

(4) Transi t iv i ty .  I f  k r < r I and  t- 7 "l < v"  then ~" r < v ' .  

(5) Subs t i tu t ion .  I f  F, ~: : v '  ~- M : r and  F k N : r '  then F F [ N / x ] M  : r .  

The terms typable using Coquand's guard condition, are strictly contained 
in the terms typable in the proposed typing system (as a matter  of fact, all 
examples in 2 (but (3) of course) can be typed). This is a consequence of the 
following lemma. 

L e m m a 6 .  (1) I f  F, x : r -+ q t- M : r ,  x q~ F V ( M ) ,  and  M has no occurrence 
o f  fix, then r', x : v -.4 ~ t- M : v. 

(2) l f  [ ' , x  : r---~ ~ l "  M J,~'-*~ ~ then l~,x : ~ ' -+ ~ l -  M : ~J--+ ~. 

(3) I f  F, x : r " ~  ~ "  M $~"-*~' x then I~,x : r " +  ~ l -  M : r~--~ # +. 

We parameterize the type interpretation on an ordinal ~, and we define for 
= vt.(fl : r l  "-+ t . . . f k  : rk --+ t): 

IriS' = ,7(t) #-  --, = 
[a]]~ = gfP(J:a,o,a) Y:a,o,a(A) = ,U,i=l...k(IIj=l...n,[']~[Ait]) 

O'jr/~Or 

R e m a r k .  If r E T then [r],~ does not depend on e.  In particular, if ~r E T'  or 
h + E T ~ then ~ E T and therefore ~'a,0,~ = 9v-,, �9 If r E T + and e < ~ then 
[r]~ ~ Ir iS ' ,  since the types of the shape # and #+ occur in positive position. 

Let us now consider the soundness of the typing rules. If P is a pure ,~-term, 
we w r i t e ~ x : r ~ . . . ~ , : r , # P : r i f  

Va,~/ ((Vi e { 1 . . . n }  di [vii, di) ==~ ( [P][d/x]  [v ]g[P] [d ' /x ] ) ) .  

P r o p o s i t i o n  7 s o u n d n e s s .  I f  -P I- M : r then F ~ er(M) : r .  
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It follows from proposition 7 that: ~" M :  r ~ [ e r (M)]  E II~]l. This result 
justifies the interpretation of a typed term as the equivalence class of its erasure 
(it is straightforward to adapt this interpretation to take into account contexts 
and environments). Thus, if t- M :  r ,  then we set [M]  = [Ier(M)]][ d. 

Clearly, there is a trade-off between power and simplicity/decidability of the 
type system. Our contribution here is to offer a framework in which this trade- 
off can be studied, and to extract from it one possible type system. We will s e e  

in section 4 that  this 'experimental '  type system has some desirable syntactic 
properties, and we will discuss its relationships with Gimenez's system. We hint 
here, by example, to limits and possible extensions of the system. 

(1) The following two definitions 'make sense' but  are not typable. Here we 
work with the type of infinite streams ~ = v t . ( c o n s  : o --+ t ---r t): 

- If x is a stream of numerals we denote with zl its i th element. We define a 
function F such that  F(=)i  = (suc(2~)xi), for i E w: 

F -- fix f.)~x.conse(suc(hd x ) ) ( f ( f ( t l  x ) ) ) .  (11) 

- A 'constant '  definition which determines the infinite stream of O's. 

f i x  x . c a s e  = x(An.Ay.(fix x ' . c o n s  = 0 x ' ) )  . 

(2) We can soundly generalize the two rules for fix as follows: 

T(F) U {r~ .. .  ~ }  C_ T pos(t, r~) T(F) U {r~ . . .  7',~} C_ T + pos(t, r~) 
F, x :  [~r/tl(r' -+ t) t- M :  [c,/t](r' --+ t) 

F,x  : [b/t]( r '  -.+ t) I- M :  [&+ / t](r '  --+ t) F,[#/t](~" --+ t) t- M :  [~r+/t](f ' --+ t) 
F I- fix x . M :  [a/t](r'  -o t) 1 ~ t- fix x . M :  [~/t](a" --+ t) 

(12) 
where ~ E {&, &+ }. These rules are particularly powerful and will be analysed in 

a forthcoming paper. For instance, they can be used to type: the representation 
of a sequential circuit as a function over streams of booleans (we found the rules 
trying this example), the example (11) above, and a tail append function. 

(3) One may consider the extension of the type system with a finite or infinite 
hierarchy of approximating types, say: v < . . .  < ~+++ < &++ <: &+ < &. 

Next we turn to equations. We say that  an equation M = N : r is valid in 
the per interpretation, if 

VP ( F b M : r a n d F F ' N : r  ~ / ' ~ M = N : r )  

w h e r e z l : r l . . . x , = : r n  ~ M = N : r ,  if 

Va,  r/ ( ( V i e  { 1 . . . n }  di[v~]~d~) =r [er (M)][d /x]  [ r ] ~ [ e r ( N ) ] [ d ' / x ] ) .  

Reasoning at the level of erasures, it is easy to derive some valid equations. 

P r o p o s i t i o n  8 va l id  e q u a t i o n s .  The following equations are valid in the per 
interpretation: 

([3) ()~x.M)N = [N/x]M : r (r/) )~x.(Mx) = M :  r --+ r' x ~ F V ( M )  

(case) (case = (fi=Ma . . .  Mni)N) = N I M I . . .  Mni : 1" 
(casen) (case" x f~ . . .  f~) = x : r (fix) fix x . M  = [fix x . M / x ] M  : ~r --.> a .  
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The following proposition introduces an important  principle to prove the 
equality of terms of co-inductive type. 

Proposition9 u n i q u e  f ixed po in t .  Suppose F I" N : ~" ~ tr, F I- N '  : I" 
~, F, z :  T -+ ~ ~- M :  r --+ ~+, and T ( F )  U {~} C T.  Then I" ~ [N/x]M - N : 

Proposition 9 resembles Banach's theorem: contractive functions have a unique 
fixed point (in our case, 'contractive' is replaced by 'guarded'). Combining with 
unfolding (fix), one can then prove equivalences such as (cf. [18]): 

f ix  x.cons n (cons n x )  = fix x . c o n s ,  x .  

An interesting question is whether the interpretation identifies as many closed 
terms of co-inductive type as possible. We consider this question for the type of 
streams of numerals a = ut.(cons : o --~ t --~ t) (cf. example 2) and leave the 
generalization to a following paper. Suppose that  for M, N closed terms of type 
o we have: 

M = g : o  iff [M] = IN] 

where the left equality denotes conversion. We define a simulation relation ,,~'~ 
over the closed terms of type o, say A ~ as ,-,~= Nn<~ " ~ ,  where: 

~0=  A0a • A0a ~ - + 1 =  { ( M , N )  l (hdM = h d N  and ( t iM, t l g )  EN")} . (13) 

Equivalently, we can characterize ,,,~ as: 

M ~  N iff V n E ~  h d ( t l n M ) = h d ( t l n N ) .  

Clearly N ~ is the largest (sensible) equivalence we can expect on A~ We can 
show that  this equivalence is precisely that  induced by the per's interpretation. 

Proposition 10. Let M, N E A ~ Then M ,,~ N iff [M] - IN] .  

4 Reduct ion  

It is easy to see that  the equality induced by the per's interpretation on co- 
inductive types is in general undecidable (E.g., let the n :h element of a stream 
witness the termination of a Turing machine after n steps). In the presence of 
dependent types (like in the Calculus of Constructions), it is imperative to have 
a theory of conversion which is decidable. Thus the approach is to: (i) Consider a 
weaker (but decidable) notion of conversion on terms, and (ii) Define in the log- 
ical system a notion of term equivalence which captures the intended meaning, 
e.g., using a notion of simulation as in (13). A standard way to achieve decidabil- 
i ty for an equational theory is to exhibit a rewriting system which is confluent 
and terminating. In order to achieve termination, the unfolding of fixpoints has 
to be restricted somehow. Gimenez has proposed a solution in which fix is un- 
folded only under a case. Intuitively, fix is considered as an additional constructor 
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which can be simplified only when it meets the corresponding destructor. 3 In the 
following we will simplify the matter  by ignoring the extensional rules: 

()~x.M)N --r [N/x]M 
c a s e  '~ (f~M)N -'r NiM 
case ~ ((fix x.M)M)N --+ case ~ (([fix x .M/x]M)M)N.  

We also denote with --r the compatible closure of the rules above. It is easily 
seen that  the resulting rewriting system is locally confluent. Subject reduction 
is stated as follows. 

P r o p o s i t i o n l l .  If F h M : 1" and M -~ M' then I" ~- M' : r. 

The strong normalization proof is based on an interpretation of types as 
reducibility candidates. We outline the construction (which is quite similar to 
the one for per's) by assuming that there is just  one ground type o and one 
co-inductive type ~r = ~t.(cons : o -+ t --+ t). Let SN be the set of strongly 
normalizing terms. We say that a term is not neutral if it has the shape (we omit 
the type labels on cons and case): 

Ax.M, consM, (fix x.M)M, case, case(consMiM2), case((fix x.M)M) . 

We note a fundamental property of neutral terms. 

Lemma 12. If M is neutral, then for any term N, M N  and caseMN are neu-  
tral ,  and they are not redexes. 

Therefore a reduction of M N  (or caseMN) is either a reduction of M or 
a reduction of N. Following closely [10], we define the collection of reducibility 
candidates. 

De f in i t i on  13. The set of terms X belongs to the collection RC of reducibility 
candidates if: (C1) X C_ SN. (C~) I f M  E X and M -+ M' then M '  E X. (Cs) 
If M is neutral and VM'(M --+ M I =~ M ~ E X)  then M E X. 

The following are standard properties of reducibility candidates (but for (/)5) 
and (P6) which mutatis mutandis appear in [8]): 

P r o p o s i t i o n  14. The set RC enjoys the following properties: 

(P1) SN ~ RC. 
(P2) If X E RC then z ~ X.  Hence X # ~. 

(P3) I f X ,  Y E R C  t h e n X - - - r Y = { M I V N E X  ( M N e Y ) } E R C .  

(P4) I f V i E I  Xi E RC then~ iexXi  E RC. 

(t)5) If X e ~RC then 

Af(X) = {M IVY E RC VP E SN --+ X -+ Y case MP E Y} E RC . 

(t'6) If X C X '  then A/'(X) C_ H(X ' ) .  

s Another possible approach, is to stop unfolding under a constructor. However this 
leads to a non-confluent system (exactly as in a 'weak' ,\-calculns where reduction 
stops at )ds). 



60 

We can then define the type interpretation which is (again) parameterized 
on an ordinal a (of course, we take Af ~ = SN):  

[o] ~ = S N  Iv --~ r ' ]  a = [I"] ~ -+ [r ']  ~ 

[~r]" = gfp(Af) [#]~ = .Af" [~+]~ = A f~+l . 

W e d e f i n e x l  : r l . . . z ,  : r ,  ~ R c  M : r i f V a  ( ( V i e  {1 . . . n}  P i f i [ r i ]  a) =~ 
[ P 1 / z l . . .  P , / x , ] M  6 [r]~). We can then state the following result from which 
strong normalization immediately follows by taking Pi = zi. 

P r o p o s i t i o n l 5  s t r o n g  n o r m a l i z a t i o n .  I f  F b M : r then F ~ n a  M : r .  

Remark.  From these results, we can conclude that  it is always better to normalize 
the body M of a recursive definition fix z .M,  before checking the guard condition, 
e.g., consider: M = (Az.case z(An.Az ' .z ' ) ) (cons n (cons n x)). This term cannot 
be typed, but if M I is the normal form of M then fix x .M I can be typed. 

In his thesis, Gimenez has studied an extension of the calculus of construc- 
tions with the co-inductive type of finite and infinite streams (cf. example 2(5)). 
In the Coq system, the user can actually introduce other co-inductive types. 
Among the examples of co-inductive type considered in this paper, the type in 
example 1(3) is the only one which is rejected. The reason is that  Coq relies on 
a stricter notion of positivity to avoid some consistency problems which arise 
at higher-order types [9]. It should be noted that  Coq implementation of co- 
inductive types was developed before the type theory was settled, and cannot be 
considered as a faithful implementation of it. 

We sketch a semantic reconstruction of Gimenez's system. In the interpreta- 
tion studied in section 3, all approximating types are assigned the same ordinal. 
We might consider a more liberal system in which different ordinals can be as- 
signed to different approximating types. However, to express the guard condition, 
we still need a linguistic mechanism to say in which cases the ordinal assignment 
really has to be the same. Following this intuition, we label the approximat- 
ing types with the intention to assign an ordinal to each label. As before, we 
restrict our attention to the type of infinite streams, say ~ with constructor 
c o n s  : o --~ o" -+ o'. The collection of types is then defined as follows: 

r : :=  o I ~ I ~ I ~+~ I ( "  ~ " ) -  (14) 

Roughly, we replace the type ~ with the types ~ and the type ~+ with the 
types ~ + ~ ,  where x is a label which we take for convenience as ranging over the 
set of term variables x, y , . . .  (any other infinite set would do). More precisely, 
if h denotes an assignment from variables to ordinals then we define a type 
interpretation parametric in h. 

[o]h = 0 (for some chosen per O) Iv  -+ r']h = [r]h -+ [r']h 
[a]h -- gfp(.T) • (A)  = 0 x A 
[ a ~ ] h  = .~.h(~) ( ,7~+~]h = y h ( ~ ) + l  . 
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If P is a pure A-term, we write xl : rl . . .  xn : rn ~ P : 1" if 

Vh ( ( V i e  { 1 . . . n }  di [ri]hd~) =:# ( [P] [d /x]  [ v ]h [P ] [d ' / x ] ) )  . 

We now turn to syntax. Let va t ( r )  be the set of variables which occur in the 
type r .  If F is a context, we also define vat(F) = U{var(r) I x : r E F}.  If x is a 
variable, we define T + (z) as the set of types such that  all subtypes of the form 
~ or ~z+t occur in positive position. Following the interpretation above, the 
typing rules for, e.g., fix can be formulated as follows, where ~'~ ---r ~r u = r~ -+ 
�9 .. -~ v~ ---r ~u, m > 0, u can be a label or nothing. 

r var( )uU{  r(W)I i = 1 .  m}  
/~, :c : ,-rl -.-~ o- I- M : ,r~ -..+ a- 

E, z : ~" ---r ~,x t- M : "r' --+ a ~r+l 

/~ i- fix x .M : ~" --+ 

T(F) O {r[ l i = 1 . . . m )  C T+(y) 
/~, z : ~-' --+ ~Y b- M : ~'~ -+ ~y+l 

.r' I- fix a:.M : r '  ~ b "y+~ 

Soundness can be proved as for proposition 7. When Gimenez's system is consid- 
ered in a simply-typed framework, the following differences appear with respect 
to the system with labelled types (ignoring some minor notational conventions): 
(1) Gimenez's typing system is presented in a 'Church'  style. More precisely, 
the variables bound by A and fix carry a type, and this type is used to constraint 
(in the usual way) the application of the related typing rules. (2) The subtyp- 
ing rule for functional types r -+ r I is missing. (3) The second rule for typing 
recursive definitions is missing. 

Obviously these differences imply that  one can give less types to a term in 
Gimenez's system than in our system. To be fair, one has to notice tha t  the 
presentation as a Church system and the absence of subtyping at higher-types is 
essentially justified by the complexity of the calculus of constructions, and by the 
desire to avoid too many complications at once. On the other hand, the lack of 
the second rule for fix is, in our opinion, a genuine difference, which moreover has 
an impact in practice, as the rule is needed to type nested recursive definitions 
as that  of example 2(6) and can be further generalized as shown in (12). A 
question which should be raised is whether the system with type labels is better  
in practic e than the simpler system without type labels. So far, we could not 
find any 'natural '  example suggesting a positive answer. 
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